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Abstract

The paper aims to find equilibrium conditions in connected re-
action graphs (reaction networks) consisting of reaction complexes
with some special properties. Such graphs often arise when study-
ing complex chemical systems. Connectivity in this case implies the
existence of linear stoichiometric relations, including all available
complexes, which express material balance restrictions on the graph
arcs. The methodology is based on chemical thermodynamics and
statistical physics: connected graphs may be considered as an en-
semble of chemical states, having their own meta-thermodynamic
functions. It is shown that equilibrium composition can be cal-
culated using the analogue of the partition sum. Some numerical
examples are presented.

1 Introduction

The issues of chemical equilibrium on graphs of chemical transformations

have been considered previously in a large number of works. For example,

in the works [1–3] from the point of view of the fulfillment of the principle of
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detailed equilibrium, the conditions under which equilibrium can exist on

the reaction graph were established. The extension of these results to het-

erogeneous and non-ideal systems is proposed in the works [4,5]. As shown

in the monographs [6, 7], qualitative features of the dynamic behavior of

reacting systems can be obtained without solving differential equations or

analyzing their stability, only by studying the graphs of chemical reac-

tions. The analysis of reaction graphs based on Kirchhoff’s laws (with a

special type of potential function) was carried out in the works [8–10]. The

stability of the behavior of systems with linear mechanisms was studied

in [11–13].

Graphs of open chemical systems (interacting with chemostats) were

analyzed in detail in [14], where analogues of Korzhinsky (semi-opened)

potentials [15,16] are used for the outliers of their mass conservation equa-

tion (”mobile”) components.

Equilibria on random graphs were studied in [17]. Tools for generat-

ing mechanisms of complex reactions using graph theory were developed

in [18–20]. A joint consideration of chemical reactions and transport pro-

cesses on graphs (the so-called thermodynamic graphs) was proposed by

the authors of [21–23]; graph representation allows describing heteroge-

neous processes [24, 25]. Combinatorial analysis of the mechanisms of

complex reactions to determine the connectivity threshold and extreme

amounts of substances that can form during the reaction was carried out

in several works [26–28], including checking of the consistency of the reac-

tion mechanisms [29,30].

The purpose of this work is to determine the equilibrium conditions for

chemical systems of a special type, the graph of chemical transformations

for which is connected and stoichiometrically consistent. Analysis of these

conditions shows that such graphs can be represented as simple statistical

systems for which the equilibrium is described by the Gibbs distribution.

2 Reaction graph statistics

Let us consider a connected reaction graph consisting of a set of reaction

complexes (Fig. 1). Its feature is that the transitions between sets of sub-
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Figure 1. Reaction graph scheme

stances (complexes) at the nodes occur stoichiometrically (i.e., the balance

of atoms is maintained on any arc). When the reaction coordinate changes,

the number of reagents and products changes strictly proportionally. We

will assume that no more than two components participate in one chemical

reaction [26, 27]. Then we can approximately consider each complex as a

gross component of the reaction system.

Gibbs free energy in isothermal and isobaric reacting systems is a sum

of its components contributions:

G =

components∑
j

µjnj . (1)

Here µj is the chemical potential, and nj is the molar quantity j-th

component.

The minimum of the Gibbs energy in the form (1) does not necessarily

correspond to the equilibrium for the reaction graph (for example, shown

in Fig. 1), since the mutual transformations of substances occur in strict

accordance with stoichiometry. Therefore, even if one of the components

has a significantly lower chemical potential compared to the others, its

equilibrium amount will be limited by the conditions of the transition from

node to node; for example, it is impossible to form such a ”low-energy”

component from other components entering into the same reaction complex

with it. Equilibrium conditions should take into account stoichiometry.

In this regard, we can divide Gibbs free energy into contributions of
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reaction complexes (graph nodes):

G =

complexes∑
i

gi. (2)

Here gi is the i-th complex contribution: for example, g1 = µAnA +

µBnB . Given a special initial composition with a stoichiometric ratio of

components in reaction complexes, we obtain g1 = nA(µA + µB). In an

ideal mixture, one can write:

g1 = nA

[
µ0
A + µ0

B + 2RgT ln
(nA

σ

)]
(3)

Here σ is a sum of moles for all components. Further, we change

variables from components to complexes:

g1 = N1

[
µ0
A + µ0

B

2
+RgT ln

(
N1

N0

)]
= N1M1 (4)

The expression in square brackets can be considered as the apparent

chemical potential of the reaction complex (correspondingly, the average

standard chemical potential of the constituents is the apparent standard

potential of the complex), and N1 is the apparent quantity of this complex.

Substituting eq. (6) into eq. (2), we obtain:

G =

complexes∑
i

NiMi =

complexes∑
i

Ni

[
M0

i +RgT ln

(
Ni

N0

)]
(5)

Stoichiometric restriction gives a linear equation:

complexes∑
i

Ni = N0. (6)

Now let us find equilibrium composition using the Lagrange multipliers

method [32]. The Lagrange function is as follows:

L =
∑
i

NiMi + λ

(∑
i

Ni −N0

)
. (7)

Partial derivatives of L can be found immediately:
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∂L

∂Nk
= Mk + λ = 0. (8)

It follows that all apparent chemical potentials of the complexes in

equilibrium are equal. Such an equilibrium condition could be immedi-

ately obtained from the transitivity of equilibrium (so-called ”zero law of

thermodynamics” [33]) for a connected set of complexes (see Fig. 1). If

chemical equilibrium assumes that the sum of the chemical potentials of

the products and reactants is equal (i.e., the difference in Gibbs energy

is zero), then the sums of the chemical potentials in each node in the

connected graph must be equal.

Note that equation (9) requires a number of conditions to be met, the

main one being the stoichiometric transition between all pairs of com-

plexes. This condition allows us to move immediately to the single con-

dition (8) instead of considering the material balance for each chemical

element (which would lead to several uncertain coefficients λj).

Solving eq. (9) with respect to Nk, we obtain:

Nk

N0
= exp

(
−M0

k + λ

RgT

)
. (9)

Then using eq. (8) we can find λ:

exp

(
λ

RgT

)
=

complexes∑
i

exp

(
− M0

i

RgT

)
. (10)

The exponent in the l.h.s. of eq. (11) is an analogue of the partition

sum, a normalization factor containing all available chemical states in the

reacting mixture. Marking it with Q, we can rewrite eq. (10) in the

following way:

Nk

N0
=

1

Q
exp

(
− M0

k

RgT

)
. (11)

The distribution (12) highlights some important properties of the equi-

librium in reacting systems. Evidently, the equilibrium fraction of a com-

plex depends on its apparent standard chemical potential: the more the

potential, the less the equilibrium fraction (although it does not reach zero
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in ideal mixtures due to logarithmic singularity at the boundary [34]).

The Lagrange multiplier λ is an analogue (up to the sign) of the sta-

tistical free energy for this distribution [35]:

λ = RgT lnQ = −AG. (12)

Here AG is the free meta-energy of the graph, which determines the

equilibrium of connected reaction complexes.

The requirement of graph connectivity is thus necessary for a complete

accounting of the chemical states in the sum (11): the presence of several

isolated ”islands” would lead to a splitting of the equilibrium condition for

the subsystems, each of which can be considered as independent (at least

in the first approximation) of the state of the others. Connectivity for a

system of reversible reactions allows one to use the weakened principle of

detailed reversibility [3], and hence its statistical consequences.

Thus, a chemical system in the form of a connected graph (like the

one shown in Fig. 1) behaves as a statistical-mechanical system associated

with a thermostat: distribution (12) is nothing other than the Gibbs distri-

bution in such a system. The energy states correspond to different reaction

complexes, and the condition of material balance leads to the appearance

of an additional parameter corresponding to the ”effective temperature”

of the distribution, which has the meaning of the equilibrium chemical

potential.

3 Model example

Let us consider a simple reacting system consisting of three mutual isomers

[32]:

A ⇐⇒ B ⇐⇒ C. (13)

The equilibrium condition for this system is as follows:

µA = µB = µC . (14)
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The stoichiometry condition is:

nA + nB + nC = N. (15)

Then, using the ideal mixture approximation, we can express fractions

of B and C:

nB = nA exp

(
µ0
A − µ0

B

RT

)
, (16)

nC = nB exp

(
µ0
B − µ0

C

RT

)
= nA exp

(
µ0
A − µ0

C

RT

)
(17)

Then eq. (16) allows us to solve the problem:

nA =
exp

(
− µ0

A

RT

)
exp

(
− µ0

A

RT

)
+ exp

(
− µ0

B

RT

)
+ exp

(
− µ0

C

RT

) (18)

The denominator in eq. (17) is the normalization factor given by eq.

(11). It should be noted that although components A and C do not have

mutual transitions, the system (14) forms a connected graph, so the theory

is applicable.

It should be also noted that the estimation of equilibrium concentration

using formula similar to eq. (18) was proposed in early works on the

calculation of chemical equilibria [31].

4 Numerical example

Let us consider a connected graph of six nodes with arbitrarily specified

values of chemical potentials for the complexes (Table 1). The equilibrium

composition was found using the Gibbs energy minimization method (the

numerical method is described in [32, 34]). At a pressure of 1 atm and

a temperature of 300 K, the value of λ calculated using formula (11) is

1.018×104 J/mol; a comparison of the optimization results shows that the

numerical values of the chemical potentials of all complexes in equilibrium

are close to this value with good accuracy. As expected, a larger proportion



30

Complex M0 Neq Meq

A1 103 1.1298× 10−2 −1.0183× 104

A2 −102 1.7560× 10−2 −1.0182× 104

A3 102 1.6207× 10−2 −1.0182× 104

A4 104 3.0612× 10−4 −1.0183× 104

A5 −104 9.2944× 10−1 −1.0183× 104

A6 −103 2.5190× 10−2 −1.0182× 104

Table 1. Results of equilibrium calculation for six-node graph

Figure 2. Water shift reaction graph

of the complexes in the equilibrium state are those with a lower value of

the standard chemical potential.

5 Water shift reaction

Let us now consider a typical reaction of syngas conversion [36]. The initial

composition of the reactive mixture is 1 mole of CO, 1 mole of H2O, and

10 moles of N2 (inert diluent). Possible reaction products are CO2 and H2.

Depending on syngas use, one needs to have different CO/H2 ratios. We

consider the reaction graph presented in Fig. 2. Stoichiometric restriction

holds, so the theory can be applied, although the reaction graph is the

simplest possible, as it consists of two nodes.

Let us fix temperature and pressure at 800 K and 1 atm. The equilib-

rium composition for these conditions is presented in Table 2. Chemical

potentials of reagents and products are equal (about −7.28× 105 J/mol),

and the graph free energy gives is nearly a half of its value (λ = 3.47×105

J/mol). Equilibrium values calculated from eq. (11) are 0.33 and 0.67

moles, which is close to the solution obtained by minimization of Gibbs

free energy.
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Substance µ0, J/mol neq µeq

CO −2.77× 105 0.327 −3.01× 105

H2O −4.03× 105 0.327 −4.27× 105

H2 −1.13× 105 0.673 −1.32× 105

CO2 −5.77× 105 0.673 −5.96× 105

N2 −1.62× 105 10 −1.63× 105

Table 2. Results of equilibrium calculation for water shift reaction at
800 K

Figure 3. Water shift equilibrium at different temperatures: solid line
and squares – H2; dashed line and circles – CO.

The observed agreement is not a coincidence. Fig. 3 shows the de-

pendence of CO and H2 fraction in the reactive mixture on temperature.

Lines show results of equilibrium calculations by the Gibbs free energy min-

imization method, and markers show estimation by the proposed method.

Good agreement between the two methods is observed.

Although simple, the new method has several disadvantages. Among

numerical problems, there arise big exponents: typical standard chemical

potentials (as can be seen from Table 2) have the order of 105, so calcu-

lating the partition sum leads to summing large numbers. In such cases,

methods may be applicable that were developed in statistical physics, such

as the biggest term approximation [37], etc. The main problem, however,

is a special form of the stoichiometry condition, which is not common.

It is interesting to develop similar methods for non-ideal systems and

systems with more complicated stoichiometry. It can be shown that for
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separable systems (i.e., systems having several linear balance equations

without intersecting variables), independent λi (subgraph free energies)

parameters exist, corresponding to particular subsystems. Searching for

new properties of reaction graphs may lead to more efficient methods of

equilibrium calculations.

6 Conclusions

In the present work, a statistical mechanics approach is applied to the anal-

ysis of connected reaction graphs with special stoichiometric properties. It

is shown that the equilibrium state in the reacting systems described by

these kinds of graphs is governed by the chemical potentials of reaction

complexes. The graph free energy approach can be applied to equilibrium

calculations. The approach is illustrated by several numerical examples.
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