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Abstract

A general VDB topological index of a tree T is defined as

TIf (T ) =
∑

uv∈E(T )

f(d(u), d(v)),

where f(x, y) is a real symmetric function for x, y ≥ 1. This paper
aims to solve the minimum value problems of VDB indices for trees
with given pendent vertices through a unified approach. We present
the sufficient conditions for achieving the minimum value and char-
acterize the extremal graphs. As an application, we demonstrate
that fifteen types of VDB indices satisfy these sufficient conditions.

1 Introduction

Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G)

and edge set E(G). If G contains no cycles, it is called a tree, denoted
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by T . A chemical tree, denoted by CT , is a tree with d(v) ≤ 4 for all

v ∈ V (T ), where d(v) stands for the degree of vertex v. A vertex v is a

pendent vertex or a leaf if d(v) = 1. Let us use Tn,k (CT n,k) to denote the

set of trees (chemical trees) of order n and with k pendent vertices, and Tn
represents the set of trees with order n. Other undefined definitions and

terms can be referred to in Bondy’s Graph Theory [3].

Topological indices of graphs are among the useful tools for characteriz-

ing the physical or chemical properties of molecules. They are employed to

indicate and predict the physicochemical properties, biological activities,

and other attributes of compounds [20]. Consequently, a large number of

topological indices have been proposed and investigated [1,22], particularly

the vertex-degree-based (VDB) topological indices [6, 17,21].

A general VDB topological index of G is defined as follows

TIf = TIf (G) =
∑

uv∈E(G)

f(d(u), d(v)),

where f(x, y) is a real symmetric function for x ≥ 1 and y ≥ 1. Let mx,y

be the number of edges in G with (d(u), d(v)) = (x, y), and ∆ represents

the maximum degree. Then

TIf = TIf (G) =
∑

1≤x≤y≤∆

mx,yf(x, y). (1)

Owing to the significance of (chemical) trees in chemical molecular

structures, the problem of extremal values of the VDB topological index

on trees remains one of the most extensively studied topics. Taking the

Sombor index as an example, research on its related trees has been at-

tracting growing attention. Gutman [8] investigated the extremum of the

Sombor index for any tree T and connected graphs. Liu et al. [11] deter-

mined the maximum value of the Sombor index for chemical trees with

even vertices n ≥ 6. In 2023, Maitreyi et al. [15] determined the minimum

Sombor index for trees of n ≥ 7 with p pendent vertices. Later, they [16]

partially identified the general Sombor indices of trees on the maximum

and minimum values with given the number of pendent vertices. Recently,

Ahmad and Das [2] have completely characterized the chemical trees with
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given pendants that maximize the general Sombor index. For more results

on other indices for trees and chemical trees, refer to references [4, 7, 12].

Using a universal method to investigate the properties or extremum of

topological indices is an important issue that scholars have been exploring

for a long time. In 2005, Li and Zheng [13] introduced two transforma-

tions to uniformly investigate the maximum and minimum problems of

some topological indices for trees. Tomescu [18,19] utilized the properties

of convex functions to study the extremal problems of several topological

indices under different given conditions, as well as the properties of con-

nected graphs. In 2022, based on the properties of convex functions, Hu

et al. [9] determined the lower bounds of connected graphs on the vertex-

degree function-index. Meanwhile, by examining different conditions sat-

isfied by vertex-degree functions, the authors [10] derived the upper and

lower bounds of the value of TIf (G). Furthermore, Li and Peng [14] pre-

sented a survey on investigating extremal problems and spectral problems

about finding unified ways.

Very recently, by analyzing the structure of chemical trees and calcu-

lating the values of mij (where i, j ≤ 4), Du and Sun [5] provided some

extremal results on bond incident degree indices of chemical trees with a

fixed order and a fixed number of leaves.

Inspired by [13] and [5], we continue our efforts to investigate the ex-

tremal problems of various VDB indices on trees via a unified approach.

In Section 2, we present a new mathematical formula for TIf (T ). Based

on this formula, in Section 3, we derive the sufficient conditions for the

minimum value of the VDB index of trees with given pendent vertices

and characterize the relevant extremal graphs. As an application, we

demonstrate that fifteen types of VDB indices, including the Euler Som-

bor index, the modified first Zagreb index, and the exponential reciprocal

sum-connectivity index, satisfy these sufficient conditions.

2 Preliminaries

Since a tree T is trivial when it has only one or two vertices, throughout

this paper, we assume that T is a tree with n ≥ 3 vertices. Recall that



182

mx,y be the number of edges in T with (d(u), d(v)) = (x, y), and we use

nx denotes the number of vertices with d(u) = x. Then, for any tree T ,

the following equations hold:

∆∑
x=1

nx = n,

∆∑
x=1

x · nx = 2n− 2, (2)

∆∑
y=1,̸=x

mxy + 2mxx = x · nx, where 1 ≤ x ≤ ∆.

For convenience, let A1 = {(1, y) ∈ N × N : 2 ≤ y ≤ n − 1}, A2 =

{(x, y) ∈ N×N : 2 ≤ x ≤ y ≤ n− 1 and x+ y ≤ n}− {(2, 2), (2, 3), (3, 3)},
A∗ = A1 ∪A2, and A = A∗ ∪ {(2, 2), (2, 3), (3, 3)}. Let

g(x, y) = f(x, y)+ f(3, 3)− 2f(2, 3)+6(
x+ y

xy
− 1)

(
f(3, 3)− f(2, 3)

)
. (3)

Clearly, g(2, 3) = g(3, 3) = 0.

Lemma 1. Let T be a tree with n vertices. Then

TIf (T ) = (2n+4)f(2, 3)−(n+5)f(3, 3)+g(2, 2)m2,2+
∑

(x,y)∈A∗

g(x, y)mx,y,

(4)

where g(x, y) is defined in (3).

Proof. For T ∈ Tn, the following relations are valid∑
(x,y)∈A

x+ y

xy
mx,y = n,

∑
(x,y)∈A

mx,y = n− 1.

The previous two expressions can be rewritten as

5m2,3 + 4m3,3 = 6n− 6m2,2 − 6
∑

(x,y)∈A∗

x+ y

xy
mx,y,

m2,3 +m3,3 = n− 1−m2,2 −
∑

(x,y)∈A∗

mx,y,
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where A∗ = A1 ∪A2. The solutions to the foregoing equations are

m2,3 = 2(n+ 2)− 2m2,2 +
∑

(x,y)∈A∗

(4− 6
x+ y

xy
)mx,y,

m3,3 = −5− n+m2,2 −
∑

(x,y)∈A∗

(5− 6
x+ y

xy
)mx,y.

Thus, according to Equation (1), we deduce that

TIf (T )

= f(2, 3)m2,3 + f(3, 3)m3,3 + f(2, 2)m2,2 +
∑

(x,y)∈A∗

f(x, y)mx,y

= f(2, 3)
(
2(n+ 2)− 2m2,2 +

∑
(x,y)∈A∗

(4− 6
x+ y

xy
)mx,y

)
+ f(3, 3)

(
− 5− n+m2,2 −

∑
(x,y)∈A∗

(5− 6
x+ y

xy
)mx,y

)
+ f(2, 2)m2,2

+
∑

(x,y)∈A∗

g(x, y)mx,y

= (2n+ 4)f(2, 3)− (n+ 5)f(3, 3) +
(
f(2, 2) + f(3, 3)− 2f(2, 3)

)
m2,2

+
∑

(x,y)∈A∗

(f(x, y) + f(3, 3)− 2f(2, 3)

+ 6(
x+ y

xy
− 1)(f(3, 3)− f(2, 3)))mx,y

= (2n+ 4)f(2, 3)− (n+ 5)f(3, 3) + g(2, 2)m2,2 +
∑

(x,y)∈A∗

g(x, y)mx,y.

This completes the proof.

Lemma 2. Let T ∈ Tn,k (where k ≥ 3). If the edge counts in T satisfy

m1,2 = k, m2,2 ≥ 0, m2,3 ≥ 0, m3,3 ≥ 0, and mx,y = 0 for all other (x, y)

pairs, then T has the degree sequence π(T ) = (3, · · · , 3︸ ︷︷ ︸
k−2

, 2, · · · , 2︸ ︷︷ ︸
n−2k+2

, 1, · · · , 1︸ ︷︷ ︸
k

).

Furthermore, we have k ≤ m2,3 ≤ 3k − 6.

Proof. Clearly, n1 = m1,2 = k. From the conditions of the lemma, we

obtain ni = 0 for all i ≥ 4. Moreover, according to Equation (2), we can
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derive that

n1 + n2 + n3 = n, n1 + 2n2 + 3n3 = 2n− 2.

Hence, n1 = k, n2 = n− 2k + 2, n3 = k − 2. Therefore, T has the degree

sequence

π(T ) = (3, · · · , 3︸ ︷︷ ︸
k−2

, 2, · · · , 2︸ ︷︷ ︸
n−2k+2

, 1, · · · , 1︸ ︷︷ ︸
k

).

We now prove that k ≤ m2,3 ≤ 3k − 6. Since m1,2 = k, and the only

edges incident to 2-vertices are m2,2 and m2,3, it follows from the structure

of the tree that, regardless of the value of m2,2, we always have

m2,3 ≥ m1,2 = k.

On the other hand, from Equation (2), we have m2,3+3m3,3 = 3n3. Given

that m3,3 ≥ 0 and n3 = k − 2, this implies

m2,3 ≤ 3k − 6.

Thus, the lemma is proven.

3 Minimal VDB topological indices of trees

with given pendent vertices

In this section, we determine the minimal VDB topological indices among

Tn,k, and characterize those graphs that achieve the minimal values. In

Tn,k, have k ≥ 2, and when k = 2, Tn,2 = Pn. Therefore, we consider trees

in Tn,k such that 3 ≤ k ≤ n+2
3 , where k ≤ n+2

3 follows from the expression

m2,2 = n− 3k + 2 ≥ 0 in Theorem 1.

Let the minimal trees of TIf in Tn,k as follows:

T min
n,k = {T ∈ Tn,k : TIf (T ) is minimizing}.

Recall that g(x, y) = f(x, y) + f(3, 3) − 2f(2, 3) + 6(x+y
xy − 1)

(
f(3, 3) −
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f(2, 3)
)
, and thus,

g(2, 2) = f(2, 2) + f(3, 3)− 2f(2, 3),

g(x, y)− g(2, 2) = f(x, y)− f(2, 2) + 6(
x+ y

xy
− 1)

(
f(3, 3)− f(2, 3)

)
.

Theorem 1. Let T ∈ Tn,k with 3 ≤ k ≤ n+2
3 , and assume g(1, x) ≥ g(1, 2)

for x ≥ 2.

(i) If g(2, 2) < 0, and g(x, y) > 0 for any (x, y) ∈ A2, then

TIf (T ) ≥ kf(1, 2) + kf(2, 3) + (k − 3)f(3, 3) + (n− 3k + 2)f(2, 2),

the equality occurs if and only if m1,2 = m2,3 = k, m3,3 = k − 3, and

m2,2 = n− 3k + 2.

(ii) If g(2, 2) = 0, and g(x, y) > 0 for any (x, y) ∈ A2, then

TIf (T ) ≥ kf(1, 2) + (n− 4k + 5 +m3,3)f(2, 2)

+ (3k − 6− 2m3,3)f(2, 3) +m3,3f(3, 3),

the equality occurs if and only if m1,2 = k, m2,2 = n − 4k + 5 + m3,3,

m2,3 = 3k − 6− 2m3,3, and 0 ≤ m3,3 ≤ k − 3.

(iii) If g(2, 2) > 0, and g(x, y)− g(2, 2) > 0 for any (x, y) ∈ A2, then

TIf (T ) ≥ kf(1, 2) + (3k − 6)f(2, 3) + (n− 4k + 5)f(2, 2),

the equality occurs if and only if m1,2 = k, m2,3 = 3k − 6, and m2,2 =

n− 4k + 5.

Proof. Assume T ∗ ∈ T min
n,k , then

∑
x m1,x = k. From g(1, x) ≥ g(1, 2) for

x ≥ 2 and Equation (4) of Lemma 1, to ensure the minimality of T ∗, it

must hold that m1,2 = k in T ∗.

(i) Let m2,2 = x. From condition (i) and Equation (4) of Lemma 1, we

can derive that

TIf (T ) ≥ (2n+ 4)f(2, 3)− (n+ 5)f(3, 3) + x(f(2, 2) + f(3, 3)− 2f(2, 3))

+k(f(1, 2) + f(3, 3)− 2f(2, 3) + 6
(
f(3, 3)− f(2, 3)

)
(
3

2
− 1))
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= kf(1, 2) + (2n+4− 5k− 2x)f(2, 3) + (x+4k− n− 5)f(3, 3) + xf(2, 2),

where mx,y = 0 for all (x, y) ∈ A∗\{(1, 2)}. Now, based on the value of

x(= m2,2) in the above expression, we will determine the tree of T ∗, such

that T ∗ ∈ T min
n,k . Given that g(2, 2) = f(2, 2) + f(3, 3)− 2f(2, 3) < 0, the

smaller m2,3 is, the smaller the value of TIf (T ) becomes. In conjunction

with m1,2 = k, it follows from Lemma 2 that m2,3 ≥ m1,2 = k. Thus, we

have

TIf (T ) = kf(1, 2)+(2n+4−5k−2x)f(2, 3)+(x+4k−n−5)f(3, 3)+xf(2, 2)

≥ kf(1, 2) + kf(2, 3) + (k − 3)f(3, 3) + (n− 3k + 2)f(2, 2),

the equality holds if and only if m1,2 = m2,3 = k, m3,3 = k − 3, and

m2,2 = n− 3k + 2.

(ii) Since g(2, 2) = g(2, 3) = g(3, 3) = 0, to minimize the value of TIf ,

we should take as many of m2,2, m2,3, and m3,3 as possible in T . By

condition (ii) and (4) of Lemma 1, we have

TIf (T ) ≥ (2n+ 4)f(2, 3)− (n+ 5)f(3, 3)

+ k(f(1, 2) + f(3, 3)− 2f(2, 3) + 6
(
f(3, 3)− f(2, 3)

)
(
3

2
− 1))

= kf(1, 2) + (2n+ 4− 5k)f(2, 3) + (4k − n− 5)f(3, 3).

Assume m3,3 = y, we deduced by f(2, 2) + f(3, 3)− 2f(2, 3) = 0 that

TIf (T ) ≥ kf(1, 2)+(3k−6−2y)f(2, 3)+yf(3, 3)+(n−4k+5+y)f(2, 2),

the equality holds if and only if m1,2 = k, m2,3 = 3k − 6 − 2m3,3, and

m2,2 = n− 4k+5+m3,3, where 0 ≤ m3,3 ≤ k− 3. Here, the upper bound

m3,3 ≤ k − 3 is derived from m2,3 = 3k − 6− 2m3,3 ≥ k in Lemma 2.

(iii) Assume m2,2 = x. Similar to the proof of (i), we deduced by

condition (iii) that

TIf (T ) ≥ (2n+ 4)f(2, 3)− (n+ 5)f(3, 3) + x(f(2, 2) + f(3, 3)− 2f(2, 3))
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+k(f(1, 2) + f(3, 3)− 2f(2, 3) + 6
(
f(3, 3)− f(2, 3)

)
(
3

2
− 1))

= kf(1, 2) + (2n+4− 5k− 2x)f(2, 3) + (x+4k− n− 5)f(3, 3) + xf(2, 2).

Given the condition g(2, 2) = f(2, 2)+f(3, 3)−2f(2, 3) > 0, it follows that

the larger m2,3 is, the smaller the value of TIf (T ) becomes. Moreover, in

trees containing only m1,2(= k), m2,2, m2,3, and m3,3, Lemma 2 gives

m2,3 ≤ 3k − 6. Therefore, when m2,3 = 2n + 4 − 5k − 2x = 3k − 6, i.e.,

x = n− 4k + 5, the above expression can be transformed into

TIf (T ) ≥ kf(1, 2) + (3k − 6)f(2, 3) + (n− 4k + 5)f(2, 2),

the equality holds if and only if m1,2 = k, m2,3 = 3k − 6, and m2,2 =

n− 4k + 5. This completes the proof of the theorem.

Likewise, for a tree T ∈ Tn with no restriction on the number of pendent

vertices, we have the following theorem.

Theorem 2. Let T ∈ Tn with n ≥ 3, and g(1, x) ≥ g(1, 2) for x ≥ 2. If

one of the following conditions holds:

(i) g(2, 2) ≤ 0, and g(x, y) > 0 for any (x, y) ∈ A2;

(ii) g(2, 2) > 0, and g(x, y)− g(2, 2) > 0 for any (x, y) ∈ A2.

Then, TIf (T ) ≥ 2f(1, 2) + (n − 3)f(2, 2), the equality occurs if and only

if T ∼= Pn.

Proof. For any tree T , we have
∑

x m1,x ≥ 2, the equality holds if and

only if m1,2 = 2 and m2,2 = n−3. Let T ∗ ∈ T min
n . From g(1, x) ≥ g(1, 2),

Equation (4) of Lemma 1, and together with the minimality of T ∗, it

follows that m1,2 =
∑

x m1,x ≥ 2 in T ∗.

By the conditions of the lemma, we can easily derive that in both

cases (i) and (ii), g(2, 2) < g(x, y) holds for all (x, y) ∈ A2. Therefore, by

combining Equation (4) of Lemma 1, we can deduce that the larger of m2,2

is, the smaller the value of TIf (T ) becomes. Thus, when m2,2 = n − 3,

m1,2 = 2, and mx,y = 0 for all (x, y) ∈ A∗\{(1, 2)}, we obtain

TIf (T ) ≥ (2n+ 4)f(2, 3)− (n+ 5)f(3, 3) + (n− 3)(f(2, 2) + f(3, 3)
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− 2f(2, 3)) + 2(f(1, 2) + f(3, 3)− 2f(2, 3) + 3(f(3, 3)− f(2, 3)))

= 2f(1, 2) + (n− 3)f(2, 2),

the equality holds if and only if m1,2 = 2 and m2,2 = n − 3, that is

T ∼= Pn.

Table 1. Some VDB topological indices

No. Indices f(x, y)

1 Reciprocal sum-connectivity index
√
x+ y

2 Sombor index
√
x2 + y2

3 Reduced Sombor index
√
(x− 1)2 + (y − 1)2

4 Euler Sombor index
√
x2 + y2 + xy

5 Third Sombor index
√
2π x2+y2

x+y

6 Fourth Sombor index π
2 (

x2+y2

x+y )2

7 First Zagreb index x+ y
8 Forgotten index x2 + y2

9 Modified first Zagreb index 1
x3 + 1

y3

10 Reciprocal Randic̆ index
√
xy

11 First hyper-Zagreb index (x+ y)2

12 First Gourava index x+ y + xy

13 Product-connectivity Gourava index
√
(x+ y)xy

14 Exp. reciprocal sum-connectivity index e
√
x+y

15 Exp. inverse degree index e
1
x2 + 1

y2

Now, we apply Theorems 1 and 2 to the VDB topological indices in

Table 1. Through step-by-step calculation and verification, we can arrive

at the following proposition.

Proposition 3. (i) The VDB topological indices from No.1 to No.6 in

Table 1 meet the conditions g(1, x) ≥ g(1, 2) for x ≥ 2, f(2, 2) + f(3, 3)−
2f(2, 3) < 0, and f(x, y)+f(3, 3)−2f(2, 3)+6

(
f(3, 3)−f(2, 3)

)
(x+y

xy −1) >

0 for any (x, y) ∈ A2;

(ii) The VDB topological indices from No.7 to No.10 in Table 1 meet

the conditions g(1, x) ≥ g(1, 2) for x ≥ 2, f(2, 2) + f(3, 3)− 2f(2, 3) = 0,

and f(x, y) + f(3, 3)− 2f(2, 3) + 6
(
f(3, 3)− f(2, 3)

)
(x+y

xy − 1) > 0 for any

(x, y) ∈ A2;
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(iii) The VDB topological indices from No.11 to No.16 in Table 1 meet

the conditions g(1, x) ≥ g(1, 2) for x ≥ 2, f(2, 2) + f(3, 3)− 2f(2, 3) > 0,

and f(x, y)−f(2, 2)+6
(
f(3, 3)−f(2, 3)

)
(x+y

xy −1) > 0 for any (x, y) ∈ A2.

Regarding the above conclusions, we only verify that the Euler Som-

bor index f(x, y) =
√

x2 + y2 + xy in Table 1 satisfies conclusion (i). The

cases involving other indices can be proven analogously and are thus omit-

ted herein.

Proof. First, it holds that g(2, 2) =
√
12 +

√
27− 2

√
19 ≈ −0.575 < 0.

Second, since g(1, x) =
√
x2 + x+ 1 + 6(

√
27−

√
19)

x +
√
27 − 2

√
19, we

deduce that

g′(1, x) =
1√

1 +
3
4

(x+ 1
2 )

2

− 6(
√
27−

√
19)

x2
.

Clearly, g′(1, x) is monotonically increasing for x ≥ 3, and thus, for x ≥ 3,

we have g′(1, x) ≥ g′(1, 3) = 3.5√
13

− 6(
√
27−

√
19)

9 ≈ 0.4126 > 0. Furthermore,

given that g(1, 2) ≈ 1.6358 < g(1, 3) ≈ 1.7584, we can derive that g(1, x) ≥
g(1, 2) for x ≥ 2.

Finally, we verify that g(x, y) > 0 for any (x, y) ∈ A2. Note that

g(x, y) =
√
x2 + y2 + xy +

x+ y

xy
(18

√
3− 6

√
19) + (4

√
19− 15

√
3).

>
√

x2 + y2 + xy + (4
√
19− 15

√
3) = h(x, y).

For y ≥ x ≥ 5, we have g(x, y) > h(5, 5) =
√
75 + 4

√
19− 15

√
3 > 0.

For 2 ≤ x ≤ 4 and y ≥ 8, it follows that g(x, y) > h(2, 8) > h(5, 5) > 0.

For 2 ≤ x ≤ 4, 2 ≤ y ≤ 7, the values of g(x, y) are given in Table 2.

Thus, synthesizing the above cases, f(x, y) =
√
x2 + y2 + xy satisfies

conclusion (i).

Consequently, based on Theorems 1 and 2, we can immediately deduce

the following theorems. It should further be noted that, given that all

vertex degrees in the minimal tree are less than 4, these theorems apply

equally to chemical trees T ∈ CT n,k.
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Table 2. Some values of g(x, y) with respect to Euler Sombor index

g(2, 4) = 2
√
7− 3

2

√
3− 1

2

√
19 > 0 g(2, 5) =

√
39− 12

5

√
3− 1

5

√
19 > 0

g(2, 6) = 2
√
13− 3

√
3 > 0 g(2, 7) =

√
67− 24

7

√
3 + 1

7

√
19 > 0

g(3, 4) =
√
37− 9

2

√
3 + 1

2

√
19 > 0 g(3, 5) = 7− 27

5

√
3 + 4

5

√
19 > 0

g(3, 6) = 3
√
7− 6

√
3 +

√
19 > 0 g(3, 7) =

√
79− 45

7

√
3 + 8

7

√
19 > 0

g(4, 4) = −2
√
3 +

√
19 > 0 g(4, 5) =

√
61− 69

10

√
3 + 13

10

√
19 > 0

g(4, 6) = − 15
2

√
3 + 7

2

√
19 > 0 g(4, 7) =

√
93− 186

19

√
3 + 43

19

√
19 > 0

Theorem 4. Let T ∈ Tn,k (or T ∈ CT n,k) with 3 ≤ k ≤ n+2
3 .

(i) For VDB topological indices from No.1 to No.6 in Table 1,

TIf (T ) ≥ kf(1, 2) + kf(2, 3) + (k − 3)f(3, 3) + (n− 3k + 2)f(2, 2),

the equality holds if and only if m1,2 = m2,3 = k, m3,3 = k − 3, and

m2,2 = n− 3k + 2.

(ii) For VDB topological indices from No.7 to No.9 in Table 1,

TIf (T ) ≥ kf(1, 2) + (n− 4k + 5 +m3,3)f(2, 2)

+ (3k − 6− 2m3,3)f(2, 3) +m3,3f(3, 3),

the equality holds if and only if m1,2 = k, m2,2 = n − 4k + 5 + m3,3,

m2,3 = 3k − 6− 2m3,3, and 0 ≤ m3,3 ≤ k − 3.

(iii) For VDB topological indices from No.10 to No.15 in Table 1,

TIf (T ) ≥ kf(1, 2) + (3k − 6)f(2, 3) + (n− 4k + 5)f(2, 2),

the equality holds if and only if m1,2 = k, m2,3 = 3k − 6, and m2,2 =

n− 4k + 5.

Theorem 5. Let T ∈ Tn (or T ∈ CT n) with n ≥ 3. Then, for VDB

topological indices from No.1 to No.15 in Table 1,

TIf (T ) ≥ 2f(1, 2) + (n− 3)f(2, 2),

the equality holds if and only if T ∼= Pn.
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cal trees with given order and number of pendent vertices, MATCH
Commun. Math. Comput. Chem. 60 (2008) 539–554.

[13] X. Li, J. Zheng, A unified approach to the extremal trees for different
indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.

[14] X. Li, D. Peng, Extremal problems for graphical function-indices and
f -weighted adjacency matrix, Discr. Math. Lett. 9 (2022) 5–66.

[15] V. Maitreyi, S. Elumalai, S. Balachandran, H. Liu, The minimum
Sombor index of trees with given number of pendent vertices, Comput.
Appl. Math. 42 (2023) #331.

[16] V. Maitreyi, S. Elumalai, B. Selvaraj, On the extremal general Sombor
index of trees with given pendent vertices, MATCH Commun. Math.
Comput. Chem. 92 (2024) 225–248.

[17] G. Su, M. Meng, L. Cui, Z. Chen, X. Lan, The general zeroth-order
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