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Abstract

A general VDB topological index of G is defined as

T If = T If (G) =
∑

uv∈E(G)

f(d(u), d(v)),

where f(x, y) is a real symmetric function for x ≥ 1 and y ≥ 1.
Recently, Liu et al. (2024) presented a uniform method for solving
the extremal problem with general VDB topological indices for c-
cyclic graphs, which was later extended by Gao (2025) and Ali et
al. (2025).

In this note, we further investigate this problem. A new math-
ematical formula for T If was obtained, which provided sufficient
conditions for G to take its minimum value. As an application,
we show that there are sixteen VDB topological indices that sat-
isfy these conditions. In addition, we ordered six VDB topological
indices for bicyclic and tricyclic graphs.
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1 Introduction

All graphs we consider are simple and connected. Let G = (V (G), E(G))

be a graph with vertex set |V (G)| = n and edge set |E(G)| = m. If

m = n+ c− 1, then G is said a c-cyclic graph. In particular, if c = 1, 2, 3,

then G is called to be a unicyclic graph, a bicyclic graph, and a tricyclic

graph, respectively. If the number of maximum degree |∆(G)| ≤ 4, then

G is called a chemical graph. We use Gn,c (CGn,c) to denote the set of all

c-cyclic graphs (chemical graphs) with order n.

Topological index is a research hotspot in the field of mathematical

chemistry. Since Wiener [21] proposed the concept of the Wiener index

in 1947, a large number of topological indices have been introduced, such

as the ABS index [1, 2], the sum-connectivity index [8, 23], the Mostar in-

dex [3, 10], etc. Topological indices are used to indicate and predict the

physicochemical properties, biological activity, and many other aspects of

compounds [18,19]. Undoubtedly, the vertex-degree-based (VDB) topolog-

ical indices are currently the most interesting and extensively investigated.

A general VDB topological index of G is defined as follows

T If = T If (G) =
∑

uv∈E(G)

f(d(u), d(v)),

where f(x, y) is a real symmetric function for x ≥ 1 and y ≥ 1. For

example, if f(x) =
√

x2 + y2 + xy, then

T If =
∑

uv∈E(G)

√
d(u)2 + d(v)2 + d(u)d(v),

which is called the Euler Sombor index and was proposed independently

by Gutman [12] and Tang et al. [20] in 2024. Especially, Gutman collected

a few significant and well-investigated VDB topological indices in [13] .

Let mi,j be the number of edges in G with (d(vi), d(vj)) = (i, j), where

vivj ∈ E(G). Then

T If = T If (G) =
∑

1≤i≤j≤∆

mi,jf(i, j), (1)



165

Due to the importance of the c-cycle graphs in chemical molecular

structures, the extremum and extremal graphs of VDB topological in-

dices over all c-cyclic graphs are one of the most investigated problems in

mathematical chemistry. Deng [6] proposed a uniform method for some

extremal results for Zagreb indices among unicyclic graphs and bicyclic

graphs. Cruz and Rada [5] presented the minimal values of unicyclic and

bicyclic graphs for the Sombor index and presented open problems for such

graphs. In 2024, Das [9] completely solved these problems about unicyclic

and bicyclic graphs. In 2017, Gutman [14] ordered the connected graphs

with cyclomatic number 1 ≤ c ≤ 5 with respect to forgotten indices. Later,

Ghalavand and Ashrafi [11] ordered the connected graphs with cyclomatic

number c by total irregularity. In addition, the minimal Sombor indices of

chemical unicyclic graphs, chemical bicyclic graphs, and chemical tricyclic

graphs are ordered by Liu et al. [16]. For more results on c-cyclic graphs,

refer to references [7, 17,22].

Recently, several scholars have attempted to use a universal method to

solve the extremal problems with general VDB topological indices for c-

cyclic graphs. In [17], by restricting functions f(x, y) and f(a, y)−f(b−x)

to satisfy certain properties (such as monotonicity), sufficient conditions

with the minimum VDB index for c-cyclic graphs (c ≥ 3) are given. By

transformations, Gao [15] provided a few general results for c-cyclic graphs

(c ≥ 0) having the minimum VDB index. Very recently, Ali et al. [4] have

improved some restrictive conditions and provided some new sufficient

conditions. Due to differences in limiting conditions, the VDB indices

that satisfy the minimum value in the three papers also varies.

Inspired by these, we further investigate the extremal problems for

c-circlic graphs. In Section 2, we present an important lemma that a

new mathematical formula for T If are provided. From this formula, in

Section 3, we obtained the minimum values of such VDB topological indices

among Gn,c (CGn,c), and characterized the extremal graphs. In Section 4,

as an application, we show that sixteen VDB topological indices gain the

minimum values. Specifically, these results are not exactly the same as

those in the previously reported. In Section 5, as another application, we

ordered six VDB topological indices for bicyclic and tricyclic graphs.
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2 Crucial lemma

Let G ∈ Gn,c, and c ∈ {1, 2, · · · , n}. Assume that P = {(x, y) ∈ N × N :

1 ≤ x ≤ y ≤ n−1}−{(1, 1), (2, 2), (2, 3), (3, 3)}, Pc = {(x, y) ∈ P : x+y ≤
n+ c}, and P ′

c = Pc ∪ {(2, 2), (2, 3), (3, 3)}. Let

g(x, y) = f(x, y)+ f(3, 3)− 2f(2, 3)+6
(
f(3, 3)− f(2, 3)

)
(
x+ y

xy
− 1). (2)

Clearly, g(2, 3) = g(3, 3) = 0.

Here is the important lemma that will be used in the proof of our main

results.

Lemma 1. Let c ∈ {1, 2, · · · , n}, and G ∈ Gn,c. Then

TIf (G) =
(
2f(2, 3)− f(3, 3)

)
n+

(
5f(3, 3)− 4f(2, 3)

)
(c− 1)

+g(2, 2)m2,2 +
∑

(x,y)∈Pc

g(x, y)mx,y, (3)

where g(x, y) is defined in (2) and Pc = {(x, y) ∈ P : x+ y ≤ n+ c}.

Proof. For G ∈ Gn,c, the following relations hold

∑
(x,y)∈P ′

c

x+ y

xy
mx,y = n,

∑
(x,y)∈P ′

c

mx,y = n+ c− 1.

They can be rewritten as

5m2,3 + 4m3,3 = 6n− 6m2,2 − 6
∑

(x,y)∈Pc

x+ y

xy
mx,y,

m2,3 +m3,3 = n+ c− 1−m2,2 −
∑

(x,y)∈Pc

mx,y,

where Pc = {(x, y) ∈ P : x + y ≤ n + c}. The solutions of the previous

equations are

m2,3 = 2(n− 2c+ 2)− 2m2,2 +
∑

(x,y)∈Pc

(4− 6
x+ y

xy
)mx,y,
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m3,3 = 5c− 5− n+m2,2 −
∑

(x,y)∈Pc

(5− 6
x+ y

xy
)mx,y.

Therefore, according to (1), we obtain

TIf (G) = f(2, 3)m2,3 + f(3, 3)m3,3 + f(2, 2)m2,2 +
∑

(x,y)∈Pc

f(x, y)mx,y

= f(2, 3)
(
2(n− 2c+ 2)− 2m2,2 +

∑
(x,y)∈Pc

(4− 6
x+ y

xy
)mx,y

)
+ f(3, 3)

(
5c− 5− n+m2,2 −

∑
(x,y)∈Pc

(5− 6
x+ y

xy
)mx,y

)
+ f(2, 2)m2,2 +

∑
(x,y)∈Pc

g(x, y)mx,y

= 2f(2, 3)(n− 2c+ 2)− f(3, 3)(n− 5c+ 5) +
(
f(2, 2) + f(3, 3)

− 2f(2, 3)
)
m2,2 +

∑
(x,y)∈Pc

[
f(x, y) + 6

(
f(3, 3)− f(2, 3)

)x+ y

xy

−
(
5f(3, 3)− 4f(2, 3)

)]
mx,y

=
(
2f(2, 3)− f(3, 3)

)
n+

(
5f(3, 3)− 4f(2, 3)

)
(c− 1)

+
(
f(2, 2) + f(3, 3)− 2f(2, 3)

)
m2,2 +

∑
(x,y)∈Pc

(
f(x, y)

+ 6
(
f(3, 3)− f(2, 3)

)x+ y

xy
−
(
5f(3, 3)− 4f(2, 3)

)
mx,y

=
(
2f(2, 3)− f(3, 3)

)
n+

(
5f(3, 3)− 4f(2, 3)

)
(c− 1)

+ g(2, 2)m2,2 +
∑

(x,y)∈Pc

g(x, y)mx,y.

This completes the proof.

3 Minimal VDB topological indices among

Gn,c (CGn,c)

In this section, we determine the minimal VDB topological indices over

Gn,c (CGn,c), and characterize those graphs that achieve the minimal val-
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ues. Recall that g(x, y) = f(x, y) + f(3, 3)− 2f(2, 3) + 6
(
f(3, 3)− f(2, 3)

)
(x+y

xy − 1), and thus,

g(2, 2) = f(2, 2) + f(3, 3)− 2f(2, 3), (4)

g(x, y)− g(2, 2) = f(x, y)− f(2, 2) + 6
(
f(3, 3)− f(2, 3)

)
(
x+ y

xy
− 1). (5)

Theorem 1. Let G ∈ Gn,1 with n ≥ 3. If one of the following conditions

hold:

(i) g(2, 2) ≤ 0, and g(x, y) > 0 for any (x, y) ∈ Pc;

(ii) g(2, 2) > 0, and g(x, y)− g(2, 2) > 0 for any (x, y) ∈ Pc.

Then TIf (G) ≥ nf(2, 2), the equality occurs if and only if G ∼= Cn.

Proof. Since G ∈ Gn,1, m2,2 ≤ n, the equality holds if and only if G ∼= Cn.

By condition (i) and (3) of Lemma 1, we deduced that

TIf (G) ≥ (2f(2, 3)− f(3, 3))n+ n(f(2, 2) + f(3, 3)− 2f(2, 3))

= nf(2, 2),

the equality holds if and only if G ∼= Cn.

(ii) Assume m2,2 = x. By condition (ii) and (3) of Lemma 1, we have

TIf (G) = (2f(2, 3)− f(3, 3))n+ x(f(2, 2) + f(3, 3)− 2f(2, 3))

= xf(2, 2) + (2n− 2x)f(2, 3) + (x− n)f(3, 3)

= x
(
f(2, 2) + f(3, 3)− 2f(2, 3)

)
+ 2nf(2, 3)− nf(3, 3).

Clearly, x − n ≥ 0 implies that x ≥ n. This together with g(2, 2) =

f(2, 2) + f(3, 3)− 2f(2, 3) > 0, the immediate consequence is that

TIf (G) ≥ nf(2, 2),

the equality holds if and only if x = m2,2 = n, i.e., G ∼= Cn.

Theorem 2. Let G ∈ Gn,2 (or G ∈ CGn,2) with n ≥ 6.

(i) If g(2, 2) < 0, and g(x, y) > 0 for any (x, y) ∈ Pc, then

TIf (G) ≥ (n− 4)f(2, 2) + 4f(2, 3) + f(3, 3).
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the equality holds if and only if m2,2 = n− 4, m2,3 = 4, and m3,3 = 1.

(ii) If g(2, 2) = 0, and g(x, y) > 0 for any (x, y) ∈ Pc, then

TIf (G) ≥ (n− 5)f(2, 2) + 6f(2, 3).

the equality holds if and only if m2,2 = n−5, and m2,3 = 6; or m2,2 = n−4,

m2,3 = 4, and m3,3 = 1.

(iii) If g(2, 2) > 0, and g(x, y)− g(2, 2) > 0 for any (x, y) ∈ Pc, then

TIf (G) ≥ (n− 5)f(2, 2) + 6f(2, 3).

the equality holds if and only if m2,2 = n− 5, and m2,3 = 6.

Proof. Since G ∈ Gn,2, m2,2 ≤ n − 3, the equality holds if and only if

m2,2 = n− 3, and m2,4 = 4.

Because of the condition (i), we have (n − 3)g(2, 2) + 4g(2, 4) > (n −
4)g(2, 2). Furthermore, by m2,2 = n− 4 and (3) of Lemma 1, we obtain

TIf (G) ≥ (2f(2, 3)− f(3, 3))n+ (5f(3, 3)− 4f(2, 3))

+ (n− 4)(f(2, 2) + f(3, 3)− 2f(2, 3))

= (n− 4)f(2, 2) + 4f(2, 3) + f(3, 3),

the equality holds if and only if m2,2 = n− 4, m2,3 = 4, and m3,3 = 1.

(ii) Similar to the proof of (i), it can be concluded by condition (ii)

that if TIf (G) takes the minimal value, then m2,2 ≤ n − 4, and m2,2 +

m2,3 +m3,3 = n+ 1. By (3) of Lemma 1, we deduced

TIf (G) ≥ (2f(2, 3)− f(3, 3))n+ (5f(3, 3)− 4f(2, 3))

= (2n− 4)f(2, 2)− (n− 5)f(3, 3), (6)

If m2,2 = n−4, by substituting f(2, 2)+f(3, 3)−2f(2, 3) = 0 into (6),

we obtain

TIf (G) ≥ (n− 4)f(2, 2) + 4f(2, 3) + f(3, 3),

the equality holds if and only if m2,2 = n− 4, m2,3 = 4, and m3,3 = 1.
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If m2,2 = n− 5, we deduced by (6) that

TIf (G) ≥ (n− 5)f(2, 2) + 6f(2, 3),

the equality holds if and only if m2,2 = n− 5, and m2,3 = 6.

If m2,2 ≤ n−6, by substituting f(2, 2)+f(3, 3)−2f(2, 3) = 0 into (6),

we deduced m3,3 ≤ −1, which is a contradiction. Therefore, the conclusion

(ii) of Theorem 2 holds.

(iii) Assume m2,2 = x. Since the condition g(2, 2) > 0, and g(x, y) >

g(2, 2) for any (x, y) ∈ Pc, it can be deduced by (3) of Lemma 1 that

TIf (G) = (2f(2, 3)− f(3, 3))n+ 5f(3, 3)− 4f(2, 3)

+ x(f(2, 2) + f(3, 3)− 2f(2, 3))

= xf(2, 2) + (2n− 4− 2x)f(2, 3) + (5− n+ x)f(3, 3)

= x(f(2, 2) + f(3, 3)− 2f(2, 3)) + (2n− 4)f(2, 3) + (5− n)f(3, 3).

Clearly, 5 − n + x ≥ 0 implies that x ≥ n − 5. This together with

g(2, 2) = f(2, 2) + f(3, 3)− 2f(2, 3) > 0, immediately, we have

TIf (G) ≥ (n− 5)f(2, 2) + 6f(2, 3),

the equality holds if and only if x = m2,2 = n − 5, and m2,3 = 6. This

completes the proof.

Theorem 3. Let G ∈ Gn,c, where c ≥ 3, and n ≥ 5c− 5.

(i) If g(2, 2) < 0, and g(x, y) > 0 for any (x, y) ∈ Pc, then

TIf (G) ≥ (n− 2c+ 1)f(2, 2) + 2f(2, 3) + (3c− 4)f(3, 3),

the equality holds if and only if m2,2 = n − 2c + 1, m2,3 = 2, and m3,3 =

3c− 4.

(ii) If g(2, 2) = 0, and g(x, y) > 0 for (x, y) ∈ Pc, then

TIf (G) ≥ (n−5c+5+m3,3)f(2, 2)+(6c−6−2m3,3)f(2, 3)+m3,3f(3, 3),

the equality holds if and only if m2,2 = n− 5c+ 5+m3,3, m2,3 = 6c− 6−
2m3,3, and 0 ≤ m3,3 ≤ 3c− 4.
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(iii) If g(2, 2) > 0, and g(x, y)− g(2, 2) > 0 for any (x, y) ∈ Pc, then

TIf (G) ≥ (n− 5c+ 5)f(2, 2) + (6c− 6)f(2, 3),

the equality holds if and only if m2,2 = n− 5c+ 5, and m2,3 = 6c− 6.

Proof. (i) Assume m2,2 = x. By the condition (i) and (3) of Lemma 1, we

obtain

TIf (G) = (2f(2, 3)− f(3, 3))n+ (5f(3, 3)− 4f(2, 3))(c− 1)

+ x(f(2, 2) + f(3, 3)− 2f(2, 3))

= x(f(2, 2) + f(3, 3)− 2f(2, 3)) + (2n− 4c+ 4)f(2, 3)

+ (5c− 5− n)f(3, 3).

Clearly, m2,3 = 2n − 4c + 4 − 2x ≥ 2 implies that x ≥ n − 2c + 1. As

f(2, 2) + f(3, 3)− 2f(2, 3) < 0, then we have

TIf (G) ≥ (n− 2c+ 1)f(2, 2) + 2f(2, 3) + (3c− 4)f(3, 3),

the equality holds if and only if x = m2,2 = n − 2c + 1, m2,3 = 2, and

m3,3 = 3c− 4.

(ii) By the condition (ii) and (3) of Lemma 1, we have

TIf (G) = (2f(2, 3)− f(3, 3))n+ (5f(3, 3)− 4f(2, 3))(c− 1) + 0

= (2n− 4c+ 4)f(2, 3) + (5c− 5− n)f(3, 3).

Assume m3,3 = y, we deduced by f(2, 2) + f(3, 3)− 2f(2, 3) = 0 that

TIf (G) ≥ ((2n− 4c+ 4) + 2(5c− 5− n− y))f(2, 3)

+ yf(3, 3)− (5c− 5− n− y)f(2, 2)

= (n− 5c+ 5 + y)f(2, 2) + (6c− 6− 2y)f(2, 3) + yf(3, 3).

The fact m2,3 = 6c − 6 − 2y ≥ 2 implies that y ≤ 3c − 4. Therefore, the

equality holds if and only if m2,2 = n−5c+5+m3,3, m2,3 = 6c−6−2m3,3,

and 0 ≤ m3,3 ≤ 3c− 4.

(iii) Assume m2,2 = x. Similar to the proof of (i), we deduced by
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condition (iii) that

TIf (G) = (2f(2, 3)− f(3, 3))n+ (5f(3, 3)− 4f(2, 3))(c− 1)

+ x(f(2, 2) + f(3, 3)− 2f(2, 3))

= x(f(2, 2) + f(3, 3)− 2f(2, 3)) + (2n− 4c+ 4)f(2, 3)

+ (5c− 5− n)f(3, 3).

Clearly, (5c − 5 − n + x) ≥ 0 implies that x ≥ n − 5c + 5. Consequently,

we have

TIf (G) ≥ (n− 5c+ 5)f(2, 2) + (6c− 6)f(2, 3),

the equality holds if and only if x = m2,2 = n− 5c+ 5, m2,3 = 6c− 6.

4 Applications in minimal

c-cyclic graphs (CGn,c)

In this section, we consider the VDB topological indices in Table 1. It is

not difficult to verify the following conclusions.

(i) The VDB topological indices from No.1 to No.6 in Table 1 satisfy the

condition f(2, 2)+ f(3, 3)− 2f(2, 3) < 0, and f(x, y)+ f(3, 3)− 2f(2, 3)+

6
(
f(3, 3)− f(2, 3)

)
(x+y

xy − 1) > 0 for any (x, y) ∈ Pc;

(ii) The VDB topological indices from No.7 to No.10 in Table 1 satisfy

the condition f(2, 2)+f(3, 3)−2f(2, 3) = 0, and f(x, y)+f(3, 3)−2f(2, 3)+

6
(
f(3, 3)− f(2, 3)

)
(x+y

xy − 1) > 0 for any (x, y) ∈ Pc;

(iii) The VDB topological indices from No.11 to No.16 in Table 1 sat-

isfy the condition f(2, 2) + f(3, 3) − 2f(2, 3) > 0, and f(x, y) − f(2, 2) +

6
(
f(3, 3)− f(2, 3)

)
(x+y

xy − 1) > 0 for any (x, y) ∈ Pc.

Consequently, by Theorems 1, 2, and 3, we deduce the following theo-

rems immediately.

Theorem 4. Let G ∈ Gn,1 (or G ∈ CGn,1) with n ≥ 3. For all VDB

topological indices in Table 1,

TIf (G) ≥ nf(2, 2),
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Table 1. Some VDB topological indices

No. Indices f(x, y)

1 Reciprocal sum-connectivity index
√
x+ y

2 Sombor index
√
x2 + y2

3 Reduced Sombor index
√
(x− 1)2 + (y − 1)2

4 Euler Sombor index
√
x2 + y2 + xy

5 Third Sombor index
√
2π x2+y2

x+y

6 Fourth Sombor index π
2 (

x2+y2

x+y )2

7 First Zagreb index x+ y
8 Forgotten index x2 + y2

9 Inverse degree index 1
x2 + 1

y2

10 Modified first Zagreb index 1
x3 + 1

y3

11 Reciprocal Randic̆ index
√
xy

12 First hyper-Zagreb index (x+ y)2

13 First Gourava index x+ y + xy

14 Product-connectivity Gourava index
√

(x+ y)xy

15 Exp. reciprocal sum-connectivity index e
√
x+y

16 Exp. inverse degree index e
1
x2 + 1

y2

the equality occurs if and only if G ∼= Cn.

Theorem 5. Let G ∈ Gn,2 (or G ∈ CGn,2) with n ≥ 6.

(i) For VDB topological indices from No.1 to No.6 in Table 1,

TIf (G) ≥ (n− 4)f(2, 2) + 4f(2, 3) + f(3, 3),

the equality holds if and only if m2,2 = n− 4, m2,3 = 4, and m3,3 = 1.

(ii) For VDB topological indices from No.1 to No.7 in Table 10,

TIf (G) ≥ (n− 5)f(2, 2) + 6f(2, 3),

the equality holds if and only if m2,2 = n− 5, m2,3 = 6; or m2,2 = n− 4,

m2,3 = 4, and m3,3 = 1.

(iii) For VDB topological indices from No.11 to No.16 in Table 1,

TIf (G) ≥ (n− 5)f(2, 2) + 6f(2, 3).
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the equality holds if and only if m2,2 = n− 5, and m2,3 = 6.

Theorem 6. Let G ∈ Gn,c (or G ∈ CGn,c) with c ≥ 3 and n ≥ 5c− 5.

(i) For VDB topological indices from No.1 to No.6 in Table 1,

TIf (G) ≥ (n− 2c+ 1)f(2, 2) + 2f(2, 3) + (3c− 4)f(3, 3),

the equality holds if and only if m2,2 = n − 2c + 1, m2,3 = 2, and m3,3 =

3c− 4.

(ii) For VDB topological indices from No.1 to No.7 in Table 10,

TIf (G) ≥ (n−5c+5+m3,3)f(2, 2)+(6c−6−2m3,3)f(2, 3)+m3,3f(3, 3),

the equality holds if and only if m2,2 = n− 5c+ 5+m3,3, m2,3 = 6c− 6−
2m3,3, and 0 ≤ m3,3 ≤ 3c− 4.

(iii) For VDB topological indices from No.11 to No.16 in Table 1,

TIf (G) ≥ (n− 5c+ 5)f(2, 2) + (6c− 6)f(2, 3),

the equality holds if and only if m2,2 = n− 5c+ 5, and m2,3 = 6c− 6.

5 Applications in ordering bicyclic and tri-

cyclic graphs (chemical graphs)

In this section, as another application of Lemma 1, we determine more ex-

tremal bicyclic and tricyclic graphs (chemical graphs) for VDB topological

indices from No.1 to No.6 in Table 1.

Theorem 7. Let G,G1, G2 ∈ Gn,2 (or CGn,2) with n ≥ 6. If G1 ∈ α1,

G2 ∈ α2 in Table 2, and Γ ∈ Gn,2\{G1, G2}. Then, for VDB topological

indices from No.1 to No.6 in Table 1,

TIf (G1) < TIf (G2) < TIf (Γ).

Proof. By Section 4, we verified that g(2, 2) < 0, and g(x, y) > 0 for any

(x, y) ∈ Pc for VDB topological indices from No.1 to No.6 in Table 1. Since
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Table 2. Bicyclic graphs αi and tricyclic graphs βj

Graphs m2,2 m2,3 m3,3

α1 n− 4 4 1
α2 n− 5 6 0
β1 n− 5 5 2
β2 n− 6 4 4
β3 n− 7 6 3
β4 n− 8 8 2
β5 n− 9 10 1
β6 n− 10 12 0

G ∈ Gn,2, m2,3 ≤ n− 3, the equality holds if and only if m2,3 = n− 3, and

m2,4 = 4.

By Theorem 5, TIf (G1) ≤ TIf (G), the equality holds if and only if

m2,2 = n − 4, m2,3 = 4, and m3,3 = 1. Let m2,2 = x, where x ≤ n − 5.

Using (3) of Lemma 1, we obtain

TIf (G) = (2f(2, 3)− f(3, 3))n+
(
5f(3, 3)− 4f(2, 3)

)
+ x(f(2, 2) + f(3, 3)− 2f(2, 3))

= xf(2, 2) + (2n− 2x− 4)f(2, 3) + (x− n+ 5)f(3, 3),

If m2,2 = n− 5, then TIf (G) = (n− 5)f(2, 2) + 6f(2, 3) = TIf (G2).

If m2,2 ≤ n− 6, then m3,3 ≤ −1, a contradiction.

On the other hand, as (n − 3)g(2, 2) + 4g(2, 4) > (n − 5)g(2, 2) >

(n− 4)g(2, 2), then

TIf (G1) < TIf (G2) < TIf (Γ).

This completes the proof.

Theorem 8. Let G,G1, G2, · · · , G6 ∈ Gn,3 (or CGn,3) with n ≥ 6. If

Gj ∈ βj for 1 ≤ j ≤ 6 in Table 2, and Γ ∈ Gn,3\{G1, G2, · · · , G6}. Then,

for VDB topological indices from No.1 to No.6 in Table 1,

TIf (G1) < TIf (G2) < TIf (G3) < TIf (G4) < TIf (G5) < TIf (G6) < TIf (Γ).
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Proof. By Section 4, we verified that g(2, 2) < 0, and g(x, y) > 0 for any

(x, y) ∈ Pc for VDB topological indices from No.1 to No.6 in Table 1. Since

G ∈ Gn,3, m2,3 ≤ n− 4, the equality holds if and only if m2,3 = n− 4, and

m2,6 = 6.

By Theorem 6, TIf (G1) ≤ TIf (G), the equality holds if and only if

m2,2 = n − 5, m2,3 = 2, and m3,3 = 5. Let m2,2 = x, where x ≤ n − 6.

Using (3) of Lemma 1, we obtain

TIf (G) = (2f(2, 3)− f(3, 3))n+ 2
(
5f(3, 3)− 4f(2, 3)

)
+ x(f(2, 2) + f(3, 3)− 2f(2, 3))

= xf(2, 2) + (2n− 2x− 8)f(2, 3) + (x− n+ 10)f(3, 3),

If m2,2 = n − 6, then TIf (G) = (n − 6)f(2, 2) + 4f(2, 3) + 4f(2, 3) =

TIf (G2).

If m2,2 = n − 7, then TIf (G) = (n − 7)f(2, 2) + 6f(2, 3) + 3f(2, 3) =

TIf (G3).

If m2,2 = n − 8, then TIf (G) = (n − 8)f(2, 2) + 8f(2, 3) + 2f(2, 3) =

TIf (G4).

If m2,2 = n − 9, then TIf (G) = (n − 9)f(2, 2) + 10f(2, 3) + f(2, 3) =

TIf (G5).

If m2,2 = n−10, then TIf (G) = (n−10)f(2, 2)+12f(2, 3) = TIf (G6).

If m2,2 ≤ n− 11, then m3,3 ≤ −1, a contradiction.

On the other hand, as g(2, 2) < 0 and g(2, 4) > 0, thus

(n− 4)g(2, 2) + 6g(2, 4) > (n− 10)g(2, 2) > (n− 9)g(2, 2)

> (n− 8)g(2, 2) > (n− 7)g(2, 2) > (n− 6)g(2, 2) > (n− 5)g(2, 2).

Consequently,

TIf (G1) < TIf (G2) < TIf (G3) < TIf (G4) < TIf (G5) < TIf (G6) < TIf (Γ).

This completes the proof.



177

Acknowledgment : This work was supported by Hunan Province Natural
Science Foundation (2025JJ70485).

References
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