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Abstract

The diminished Sombor index of a graph G is defined as

DSO(G) =
∑ √

d2u + d2v
du + dv

,

where du and dv are the degrees of vertices u and v, and the sum-
mation goes over all pairs of adjacent vertices. Although DSO was
introduced as early as in 2021, its properties were not studied so far.
The present paper is aimed at filling this gap. We obtain bounds on
DSO, characterize the extremal graphs, and establish Nordhaus–
Gaddum-type relations. In addition, we report results of numerical
studies of the structure-dependency of DSO and its chemical appli-
cability.
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1 Introduction

The Sombor index is a vertex-degree-based graph invariant introduced

in 2021 [4], which eventually gained much popularity. Its mathematical

properties and applications in chemistry and other areas were studied in

great detail. It is defined as

SO = SO(G) =
∑

uv∈E(G)

√
d2u + d2v . (1)

As early as in 2021, Rajathagiri [11] considered a variant of Sombor index,

defined as

DSO = DSO(G) =
∑

uv∈E(G)

√
d2u + d2v
du + dv

(2)

which we prefer to be called “diminished Sombor index”. No later publi-

cation (known to the present authors) considers this graph invariant, and

neither in [11] nor in any other place any property of DSO has been es-

tablished. The present paper is aimed at filling this gap.

In Eqs. (1), (2), and later in this paper, G denotes a simple graph

whose vertex and edge sets are V(G) and E(G), respectively. The order of

G (the number of its vertices) is |V(G)| = n and its size of G (the number

of its edges) is |E(G)| = m. The edge connecting the vertices u and v is

denoted by uv.

The degree of a vertex u ∈ V(G), denoted du, is the count of vertices

of the graph G, directly connected to u. Let ∆ = max{du : u ∈ V(G)}
and δ = min{du : u ∈ V(G)}. An edge connecting vertices of degree a and

b is said to be an (a, b)-edge.

The complement of the graph G is denoted by G. As usual, the stan-

dard graphs: cycle, path, star, and complete graph of order n are denoted

by Cn, Pn, Sn, and Kn, respectively. The complete bipartite graph of

order p+ q is denoted by Kp,q. Recall that Sn ≡ Kn−1,1.

The wheel Wn is the graph obtained by connecting all vertices of Cn−1

to a new vertex. The generalized Dutch windmill graph D
(q)
p , (where p ≥ 2

and q ≥ 3), is formed by taking p cycles, each of length q, and joining them

at a single common vertex. Notably, when the cycle length q is equal to 3
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(resulting in triangles), then one has a friendship graph, denoted by Fp.

Graph-theoretical definitions and notions, not specified above, can be

found in the books [7, 13].

2 Preparations

We start by listing expressions for diminished Sombor index of a few simple

graphs. Their proofs are straightforward and therefore omitted.

Proposition 1. Let G be a graph of order n and size m with maximum

and minimum vertex degrees ∆ and δ.

1) For the complete graph Kn, DSO(Kn) =
√
2
4 n(n− 1).

2) For the cycle Cn, DSO(Cn) =
√
2
2 n.

3) For the path Pn, DSO(Pn) =
2
√
5

3 +
√
2
2 (n− 3).

4) For the complete bipartite graph Kp,q, DSO(Kp,q) =
m
n

√
p2 + q2.

5) For the star Sn, DSO(Sn) =
n−1
n

√
(n− 1)2 + 1.

6) If G is the k-dimensional cube Qk, then DSO(Qk) =
√
2 · 2k−2k.

7) For the wheel Wn, DSO(Wn) = (n− 1)
(√

2
2 +

√
n2−2n+10

n+2

)
.

8) If G is the Dutch windmill D
(q)
p , p ≥ 3, q ≥ 2, then

DSO(D(q)
p ) = 2p

[√
p2 + 1

q + 1
+

√
2

4
(q − 2)

]
.

9) For the friendship graph Fp, DSO(Fp) = 2p

[√
p2+1

p+1 +
√
2
4

]
.

From Eq. (2), we see that the term

√
d2
u+d2

v

du+dv
is the contribution of the

edge uv to the diminished Sombor index of the graph G. Bearing this in

mind, we consider the function

γ(x, y) =

√
x2 + y2

x+ y
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recalling that the variables x and y must belong to the interval [1, n − 1]

and, of course, assume integral values.

We first note that whenever y = x, then γ = 1/
√
2, irrespective of the

actual value of x, y.

By direct calculation we get

∂

∂x
γ(x, y) =

y(x− y)

(x+ y)2
√
x2 + y2

and
∂

∂y
γ(x, y) = − x(x− y)

(x+ y)2
√
x2 + y2

.

This implies that for x > y, γ(x, y) is a monotonously increasing function

of x and a monotonously decreasing function of y. Thus, in the interval

[1, n−1], the maximum value of γ(x, y) is attained for x as large as possible

and y as small as possible, i.e.,

γ(x, y)max = γ(n− 1, 1) =
1

n

√
(n− 1)2 + 1 . (3)

It also follows that minimum possible value of γ is

γ(x, y)min = γ(x, x) =
1√
2

for x = 1, 2, . . . , n− 1 . (4)

3 Main results

Theorem 2. Let G be a graph of size m. Then

√
2

2
m ≤ DSO(G) ≤ m.

Equality on the left-hand side holds if and only if G consists of components,

each of which is a regular graph (not necessarily of equal degree). Equality

on the right-hand side holds if and only if m = 0, i.e. if G ∼= Kn.

Proof. In the theory of Sombor index, the inequalities

1√
2
(x+ y) ≤

√
x2 + y2 < x+ y (5)
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were used many times [5, 6, 9]. Equality on the left-hand side holds if and

only if x = y. Equality on the right-hand side would hold only if x = 0 or

y = 0 (or both). Assuming that x, y ∈ [1, n − 1], from (5) it immediately

follows
1√
2
≤
√
d2u + d2v

du + dv
< 1

which after summation over all pairs of adjacent vertices of the graph G

directly implies Theorem 2.

Corollary 1. Among graphs of size m, those consisting of components,

each of which is a regular graph (not necessarily of same degree) have

minimal DSO. Among connected graphs of size m, regular graphs (of any

degree) have minimal DSO.

Proof. All edges of the graphs specified in Corollary 1 satisfy condition (4).

Corollary 2. Among connected regular graphs of order n ≥ 3, the cycle

Cn has minimal DSO. Among disconnected regular graphs of order n ≥ 4

without isolated vertices,

(a) if n is even, then the graph consisting of n/2 isolated edges has min-

imal DSO, and

(b) if n is odd, then the graph consisting of (n− 3)/2 isolated edges and

a triangle has minimal DSO.

Proof. The graphs specified in Corollary 2 are those from Corollary 1 pos-

sessing n vertices and minimum number of edges.

Corollary 3. Let G be a simple graph of order n with maximum vertex

degree ∆ and minimum vertex degree δ. Then

√
2

4
nδ ≤ DSO(G) ≤ n∆

2
.

Proof. By using the handshaking lemma, we have nδ ≤
∑

u∈V du = 2m ≤
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n∆. Therefore, by applying Theorem 2, we get

√
2

2

(
nδ

2

)
≤

√
2

2
m ≤ DSO(G) ≤ m ≤ n∆

2
.

Theorem 3. Let G be a graph of order n. Then

i) DSO(G) > DSO(G− e) + |du−dv|√
2 (2n−2)

, for any edge e = uv ∈ E(G),

ii) DSO(G + e) > DSO(G) + |du−dv|√
2 (2n−2)

, where e = uv such that the

vertices u and v are not adjacent in G.

Proof. It is sufficient to prove case (i). Let e = uv be an edge in the graph

G. By removing it from G, we obtain the subgraph G−e. Now we add the

edge e = uv back to G− e. Then the terms

√
d2
u+d2

v

du+dv
adds to DSO(G− e).

Since
√
d2u + d2v > |du−dv|√

2
, and since du + dv ≤ 2n− 2 holds for any edges

e = uv, it follows that

DSO(G) > DSO(G− e) +

√
d2u + d2v

du + dv

> DSO(G− e) +
|du − dv|√
2(du + dv)

> DSO(G− e) +
|du − dv|√
2 (2n− 2)

.

The proof of case (ii) follows in an analogous manner.

Theorem 4. Let v be a vertex of the graph G. Denote by E(G, v) the set

of edges of G whose one endpoint is v. Then for a graph G of order n,

DSO(G− v) < DSO(G)− 1√
2 (2n− 2)

∑
uv∈E(G,v)

|du − dv| .

Proof. By removing a vertex v ∈ V(G) along with all its incident edges,

we obtain the graph G−v. We now add the vertex v back to G−v together

with all edges that were originally incident to v. From the previous proof

we know that for any edge uv ∈ E(G),
√
d2u + d2v > |du−dv|√

2
and du + dv ≤
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2n− 2 hold. Therefore,

DSO(G) > DSO(G− v) +
∑

uv∈E(G,v)

√
d2u + d2v

du + dv

> DSO(G− v) +
∑

uv∈E(G,v)

|du − dv|√
2(du + dv)

> DSO(G− v) +
1√

2 (2n− 2)

∑
uv∈E(G,v)

|du − dv| .

We add here that if u /∈ V(G), then, DSO(G) ≤ DSO(G + u), with

equality if and only if u is an isolated vertex.

The following theorem is a Nordhaus–Gaddum type relation for the

diminished Sombor index [1].

Theorem 5. Let G be a simple graph of order n. Then

DSO(G) +DSO(G) ≥
√
2

4
n(n− 1).

Equality holds if and only if G ∼= Kn.

Proof. Let G be a simple graph of order n and size m. If du is the degree

of vertex u ∈ V(G), then n − 1 − du is the degree of this vertex in G.

Setting a = (n− 1− du)
2 and b = (n− 1− dv)

2 into the inequality (5), we

get for any uv ∈ E(G),

√
2

2

(√
(n−1−du)2 +

√
(n−1−dv)2

(n−1−du) + (n−1−dv)

)
≤
√
(n−1−du)2 + (n−1−dv)2

(n−1−du) + (n− 1− dv)
.

Therefore,

DSO(G) ≥
√
2

2

∑
uv∈E(G)

1 =

√
2

2
m′

where m′ is the number of edges of G. On the other hand, using Theorem

2, DSO(G) ≥
√
2
2 m. Therefore,

DSO(G) +DSO(G) ≥
√
2

2
(m+m′)
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and Theorem 5 follows by m+m′ = n(n− 1)/2.

Theorem 6. Let G be a graph of order n and size m. Then

DSO(G) ·DSO(G) ≥ 1

2
m

(
n(n− 1)

2
−m

)
.

Proof. This result is easily derived from Theorems 2 and 5.

Theorem 7. Let G be a graph of size m with the maximum degree ∆ and

the minimum degree δ. Then

DSO(G) ≤
√
∆2 + δ2

∆+ δ
m .

Equality holds if and only if G is a regular graph or a complete bipartite

graph.

Proof. Recalling that γ(x, y) is a monotonously increasing function of x

and a monotonously decreasing function of y, we conclude that in our case

the greatest possible contribution of an edge to DSO(G) is γ(∆, δ). Thus

γ(∆, δ) =

√
∆2 + δ2

∆+ δ
≥
√
d2u + d2v

du + dv

holds for all edges uv ∈ E(G).

The following lemma will be used in the next result.

Lemma 1. [10] If F : R+ −→ R+ is a convex function and xi > 0 for

1 ≤ i ≤ m, then

F

(
x1 + · · ·+ xm

m

)
≤ 1

m

(
F (x1) + · · ·+ F (xm)

)
.

Theorem 8. Let G be a simple graph of size m with the maximum degree

∆ and the minimum degree δ. Then for α ≥ 1
2 ,

DSO(G) ≤ m2α
( δ∆

δ2 +∆2

)α
.
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Proof. We begin by proving that for any two vertices u, v ∈ V(G),

2∆ δ

∆2 + δ2
≤ 2 du dv

d2u + d2v
. (6)

Assume that f(x) = 2x
x2+1 where x > 0. We have f ′(x) = 2(1−x2)

x2+1 and con-

sequently, f(x) is an increasing function on [0, 1] and a decreasing function

on [1,∞]. Therefore, the minimum value of f(x) on
[
δ
∆ , ∆

δ

]
occurs at the

end points. Therefore, for any x, y ∈ [δ,∆] where x
y ∈

[
δ
∆ , ∆

δ

]
, we get

f
(

x
y

)
≥ f

(
δ
∆

)
. Hence

2
(

x
y

)
x2

y2 + 1
≥

2
(

δ
∆

)
δ2

∆2 + 1

and we get
2xy

x2 + y2
≥ 2∆ δ

δ2 +∆2

from which inequality (6) follows.

Thus, for any du, dv ∈ [δ,∆] we have ∆δ
∆2+δ2 ≤ dudv

d2
u+d2

v
, with equality if

and only if {du, dv} ∈ [δ,∆]. Since

d2u + d2v
(du + dv)2

≤ d2u + d2v
dudv

≤ δ2 +∆2

δ∆

we get ∑
uv∈E(G)

( d2u + d2v
(du + dv)2

)α
≤

∑
uv∈E(G)

(δ2 +∆2

δ∆

)α
.

For α ≥ 1
2 , the function h(x) = x2α is convex and using Lemma 1 we get

DSO(G)2α = m2α
( ∑

uv∈E(G)

√
d2u + d2v
du + dv

)2α

≤ m2α

 1

m

∑
uv∈E(G)

(
d2u + d2v

(du + dv)2

)α
 ≤ m2α

 1

m

∑
uv∈E(G)

(
δ2 +∆2

δ∆

)α


and Theorem 8 follows.
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Theorem 9. Let G be a connected graph of order n and size m with ϵ

pendent edges. Then

DSO(G) ≥
√
2

[
ϵ

2(n− 1)
+

m− ϵ

(n− 1− ϵ
2 )

2

]
.

Proof. Since 0 < 1
du

≤ 1 for any u ∈ V(G), it holds 1
du

+ 1
dv

≤ 2 and thus,

2

du + dv
≥ 1

du dv
. (7)

For any pendent edge uv ∈ E(G), we have 1
du dv

≥ 1
n−1 . If uv is a non-

pendent edge, then du + dv ≤ 2(n− 1)− ϵ and consequently

du dv ≤
(
du + dv

2

)2

≤
(
n− 1− ϵ

2

)2
.

Therefore, for such a case and by using (7),

2

du + dv
≥ 1

dudv
≥ 1(

n− 1− ϵ
2

)2
and we get

DSO(G) =
∑

uv∈E(G)

√
d2u + d2v

du + dv
=

1

2

∑
uv∈E(G)

√
d2u + d2v

(
2

du + dv

)

≥ 1

2

[
ϵ
√
1 + 1

n− 1
+

(m− ϵ)
√
22 + 22

(n− 1− ϵ
2 )

2

]
=

1

2

[ √
2ϵ

n− 1
+

2
√
2(m− ϵ)

(n− 1− ϵ
2 )

2

]
.

4 Graphs extremal with respect to

diminished Sombor index

In order to avoid trivialities, throughout this section it is assumed that

the graphs are connected. We always consider graphs having a given order
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n. For such graphs we establish those with minimal and maximal DSO.

Some other extremality-related results are given above in Corollaries 1 and

2.

Theorem 10. Among all connected graphs with n ≥ 2 vertices,

DSO(Pn) ≤ DSO(G) ≤ DSO(Kn) .

Equalities holds if and only if G ∼= Pn and G ∼= Kn.

Proof. The upper bound is obtained directly from the definition of DSO

and Theorem 3(ii).

By Theorem 3, by deleting an edge from the graph G, DSO(G) de-

creases. Therefore, the connected graph with minimum DSO-value is a

tree. In a trivial manner, for n = 2, 3, this tree is the path. We thus

suppose that n ≥ 4.

Consider now any other tree T ̸∼= Pn. Then it has at least three pendent

edges. Replacing one of these pendent edges so that it becomes a (2,2)-

edge, we obtain a tree T ′ with no more pendent edges than T . Bearing

in mind the result (4), it must be DSO(T ′) < DSO(T ). Repeating this

transformation, we must arrive at a tree with exactly two pendent edges,

i.e., at the path.

Theorem 11. For any tree T of order n,

DSO(Pn) ≤ DSO(T ) ≤ DSO(Sn) .

Equality holds if and only if T ∼= Pn and T ∼= Sn.

Proof. The left-hand side of Theorem 11 follows from Theorem 10.

Earlier we established that the maximal possible contribution of an

edge to the DSO-value of any graph is γ(n − 1, 1), cf. Eq. (3). Since all

edges of the star Sn are (n−1, 1)-edges, we arrive at the upper bound.

For characterizing cyclic graphs with minimal DSO, we will need an

argument stated in the next proposition. We used it already in the proof

of Theorem 10.
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Proposition 12. For c ≥ 1, c-cyclic graphs with minimal DSO-value

have no pendent edges.

Proof. Let G be a graph and v its vertex. Let a branch (a tree) Θ be

attached to v. Let Θ has t edges of which at least one must be pendent.

Replace one of the pendent edges of Θ into any other part of the graph G,

so that it becomes a (2,2)-edge.

Denote the newly obtained graph by G′. Then the branch attached

to v in G′ has t − 1 edges of which at least one is pendent (except when

t − 1 = 0). The graphs G and G′ have the same number of vertices and

the same number of edges, and therefore equal cyclomatic numbers, i.e.,

equal number of cycle. Bearing in mind (4), DSO(G′) < DSO(G).

Repeating the transformation G ⇒ G′ sufficient number of times, we

completely eliminate the branch Θ, arriving at a graph G∗ without branch

Θ. The graphs G and G∗ have equal number of cycles and DSO(G∗) <

DSO(G).

Denote by Un the unicyclic graph obtained from a star Sn by connecting

two pendent vertices with an edge.

Theorem 13. Among unicyclic graphs of order n,

DSO(Cn) ≤ DSO(G) ≤ DSO(Un) .

Equalities holds if and only if G ∼= Cn and G ∼= Un.

Proof. The lower bound is a special case of Proposition 12. Un is the

unicyclic graph with maximum number of (n − 1, 1)-edges, which implies

the upper bound.

Theorem 14. Among bicyclic graphs of order n, minimal DSO have the

graphs

(a) obtained by inserting an edge into Cn, and

(b) obtained by connecting two disjoint cycles by an edge, both having

DSO equal to

4 γ(3, 2) + γ(3, 3) + (n− 4) γ(2, 2) =
1√
2
n+

(
4

5

√
13− 3

2

√
2

)
.
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Proof. Taking into account Proposition 12, we need to focus our attention

to the graphs of the type A0, A1, and A2 shown in Figure 1

hCk Ck'Ck Ck'
h

Ck Ck'

Figure 1. Bicyclic graphs without branches.

In order to minimize DSO, in A1 and A2 one should choose h = 0,

because then we get a (3,3)-edge. If so, then A0 has four (2,4)-edges,

whereas the rest are (2,2)-edges, A1 has four (2,3)-edges, whereas the rest

are (2,2)- and (3,3)-edges, and A2 has four (2,3)-edges, whereas the rest are

(2,2)- and (3,3)-edges. It can be immediately verified that γ(2, 4) > γ(2, 3).

Therefore, the bicyclic graphs with minimal DSO are A1 and A2, both

with h = 0 and with the same DSO-value.

Figure 2. Bicyclic graphs considered in Theorem 15.

Denote by B1 the bicyclic graph obtained by connecting by two edges

three pendent vertices of the star Sn, see Figure 2.

Theorem 15. Among bicyclic graphs of order n, B1 has maximal DSO-

value.

Proof. Among bicyclic graphs, B1 has the greatest number of (n − 1, 1)-

edges.
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To be on the safe side, we compare the DSO-values of the two graphs

depicted in Figure 2. The fact that the difference

DSO(B1)−DSO(B2) =
[
γ(n− 1, 1) + γ(n− 1, 3)

]
− 2 γ(n− 1, 2)

is positive-valued for all n ≥ 5 can be checked by direct calculation.

We conclude this section by conjecturing that the tricyclic graphs with

minimal DSO are those obtained by connecting two disjoint cycles by two

edges, so that a quadrangle is formed.

5 Numerical work

To assess the features of the diminished Sombor index, we performed a

comparative numerical analysis of this index and its predecessors. In par-

ticular, we compared the diminished Sombor index (DSO) with the Som-

bor index (SO), the reduced Sombor index (RSO), the average Sombor

index (ASO), the Euler Sombor index (EuSO), and the elliptic Sombor

index (ESO). Here, the results on prediction ability, intercorrelations, de-

generacy, and the structure sensitivity of the DSO compared to the other

Sombor indices are presented.

5.1 On prediction ability

Nowadays, it has become a common procedure to assess the prediction

quality of a topological index on the set of physicochemical properties

of octanes. Dataset with physicochemical properties of octanes are taken

from [14]. Among them, we selected the boiling point (TB), the enthalpy of

formation (∆Hf ), the enthalpy of vaporization (∆Hvap), the entropy (S),

and the acentric factor (ω), to be used for an assessment of the predicting

ability of the DSO. These particular properties were selected because the

correlation coefficients obtained with the diminished Sombor index are

higher than 0.8. This value is a limit below which one can consider that

there is no correlation between the index and the property.
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A Python script was used to calculate the values of the Sombor indices

for the octanes, and to compute the correlation coefficients between the

Sombor indices and the physicochemical properties. The results of the

correlation analysis are presented in Table 1.

Correlation coefficients R inscribed into Table 1 reveal that the dimin-

ished Sombor index DSO demonstrated significantly stronger correlations

with the TB , ∆Hf , and the ∆Hvap of octanes than the other Sombor

indices.

Table 1. Correlation coefficients R between the Sombor indices and
physicochemical properties of octanes.

Correlation coefficients R
SO RSO ASO EuSO ESO DSO

TB -0.7497 -0.7579 -0.7333 -0.7332 -0.6844 -0.8265
∆Hf -0.7937 -0.7979 -0.7600 -0.7763 -0.7398 -0.8564
∆Hvap -0.9032 -0.9097 -0.8966 -0.8936 -0.8600 -0.9474

S -0.9465 -0.9446 -0.9460 -0.9514 -0.9576 -0.9114
ω -0.9594 -0.9597 -0.9791 -0.9674 -0.9744 -0.9180

In order to avoid a possibility of specious correlations, these for the

boiling point (TB), the heat of formation (∆Hf ), and the heat of vapor-

ization (∆Hvap) are presented in Figs. 3a, 3b, and 3c, respectively.

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7
99

104

109

114

119

124

(a) Correlation between the diminished Sombor index and the boiling point of oc-
tanes.
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5 5.1 5.2 5.3 5.4 5.5 5.6 5.7
-54

-53.5

-53

-52.5

-52

-51.5

-51

-50.5

-50

-49.5

(b) Correlation between the diminished Sombor index and the heat of formation of
octanes.

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7
64

65

66

67

68

69

70

71

72

73

(c) Correlation between the diminished Sombor index and the heat of vaporization
of octanes.

The diminished Sombor index DSO has passed this preliminary test

and justified its introduction. In other words, in some cases it exhibits

better prediction ability than other well-established Sombor indices.

5.2 On intercorrelations

Assuming a linear relationship among the Sombor indices, we performed

a correlation analysis. The obtained correlation matrix is presented in

Figure 4.
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Figure 4. Correlation matrix.

The first observation is that the Sombor indices are highly correlated

with each other. This is particulary expressed in the group of indices SO,

RSO, ASO, and EuSO. The correlation coefficients between these indices

are higher than 0.99, which indicates that they are very similar to each

other. A slightly lower correlation is observed between the elliptic Som-

bor index ESO and the other Sombor indices, with correlation coefficients

ranging from 0.92 to 0.99. The lowest correlation is observed between the

diminished Sombor index DSO and the other Sombor indices, with corre-

lation coefficients ranging from 0.92 to 0.97. Although, this test reveals a

high correlation between the diminished Sombor index and the other Som-

bor indices, it is still lower than the correlation between the other Sombor

indices themselves. This indicates that the diminished Sombor index cap-

tures some additional information that is not present in the other Sombor

indices.
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5.3 On degeneracy

Degeneracy of a topological index is an indicator of its ability to discrimi-

nate among different graphs. The property was introduced in [8]. We used

this property to compare the diminished Sombor index with the other Som-

bor indices. The results are shown in Figure 5 for the case of all trees with

10 vertices.

SO RSO ASO EuSO ESO DSO
0%

5%

10%

15%

20%

25%

Figure 5. Degeneracy of the Sombor indices.

Figure 5 shows that the degeneracy of the DSO is comparable with

other Sombor indices. In particular, the degeneracy of the diminished

Sombor index is approaching 20% in the case of trees with 10 vertices.

The Sombor and reduced Sombor indices are more degenerate than DSO,

but the average Sombor index, the Euler Sombor index, and the elliptic

Sombor index are less degenerate. The Euler Sombor index is the least

degenerate among all Sombor indices in the case of 10-vertex trees with

the degeneracy equal to 16.98%, while the highest degeneracy is observed

with the reduced Sombor index, reaching the degeneracy of 22.64%. Thus,

the diminished Sombor index DSO, with degeneracy of 19.81%, is placed

in the middle of the Sombor indices in terms of degeneracy.

5.4 On structure sensitivity

The structure sensitivity of a topological index measures its response to

structural changes. It is expected that the value of a topological descriptor



159

will gradually change with a gradual change in the structure of a molecule.

This quality of a topological index is not easy to quantify. To the best

knowledge of the authors, there are two approaches to quantify structure

sensitivity [3,12]. In both of them, two parameters need to be calculated.

One is called structure sensitivity (SS) and the other is abruptness (Abr).

Structure sensitivity measures the response of a topological index to minor

structural changes, while abruptness detects abnormalities in the values of

a topological index when the structure is just a mildly changed (unexpect-

edly high leaps in values for a minor structural modification). Recently, a

third parameter SA was introduced, which is the ratio between structure

sensitivity and abruptness [2].

Both procedures for quantifying structure sensitivity has pros and cons.

Here we chose the second method [12] because of its lower computational

complexity, but its domain is limited to only molecular graphs.

Following closely the procedure described in [12], we performed a struc-

ture sensitivity analysis of the diminished Sombor index DSO and com-

pared it with the other Sombor indices. We used a set of all decanes. The

results of the structure sensitivity analysis are summarized in Table 2 and

Figure 6.

Table 2. Structure sensitivity of the Sombor indices tested on a set of
all decanes.

SS Abr SA
SO 0.19317 0.39619 0.48757
RSO 0.19250 0.39298 0.48983
ASO 0.18231 0.37609 0.48475
EuSO 0.19117 0.38768 0.49311
ESO 0.18798 0.38973 0.48232
DSO 0.20578 0.41723 0.49321

The data in Table 2, as well as Figure 6 show that there is no signifi-

cant difference in structure sensitivity and abruptness among the Sombor

indices. In particular, the lowest value of the SS was obtained for the

average Sombor index, while the highest one is detected in the case of the

diminished Sombor index. The same is obtained in the case of abruptness.

Superficial reasoning would conclude that the diminished Sombor index is
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Figure 6. Structure sensitivity of the Sombor indices tested on a set of
all decanes.

the one with the best structure sensitivity among tested Sombor indices.

However, the high value of the abruptness calls for an attention. Probably,

the most convenient way for comparing these indices in the case of index

sensitivity is by ranking them using the novel SA measure. This measure

shows that the diminished and the Euler Sombor indices are more sensi-

tive on slight structural changes than other Sombor indices. Furthermore,

by inspecting the abruptness of these two indices, the first pick would

certainly be the Euler Sombor index.

6 Conclusion

The diminished Sombor index DSO is a mathematical invariant that was

introduced in the same year as the original Sombor index SO. However,

until now it has not been properly investigated. The aim of this paper was

to fill this gap and to provide a comprehensive study of the diminished

Sombor index. We have shown that the diminished Sombor index has a

number of interesting mathematical properties. Additionally, it exhibits a

good prediction ability and for some properties it supersedes other Sombor

indices. We trust that the diminished Sombor index will find its place in

the family of Sombor indices and that it will be used in future research in

mathematical chemistry.
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