Local Value of a Vertex-Degree Function Index of a Graph

Juan Rada

Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia pablo.rada@udea.edu.co

(Received December 21, 2024)

Abstract

Let n be a positive integer and f a real function defined on integers in the interval [1, n - 1]. Given a graph G with vertex set V and n non-isolated vertices, the degree-function index of G is defined as $H_f(G) = \sum_{u \in V} f(d_u)$. It is our main objective in this paper to introduce the local value of a degree-function index H_f of a graph G at a vertex u, which we denote by $f_G(u)$. Intuively, $f_G(u)$ measures the contribution of vertex u in $H_f(G)$. In this paper we initiate the study of its mathematical properties and address the problem of vertices with extremal local values in the zeroth-order general Randić index. In particular, for the first Zagreb index and the forgotten index, the problem of vertices with extremal local values is completely solved.

1 Introduction

Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). We denote by $d_G(u)$ the degree of the vertex $u \in V$. If it is clear from the context, we simply write $d_u = d_G(u)$. The set $\mathcal{N}_G(u)$ denotes the set of neighbors of vertex $u \in V$.

Let n be a positive integer and let $f : [1, n-1] \cap \mathbb{N} \to \mathbb{R}$ be a real function. Instead of using H_f , we use the same letter f to denote the

vertex-degree function index $f: \mathcal{G}_n \to \mathbb{R}$ as

$$f(G) = \sum_{v \in V(G)} f(d_v), \qquad (1)$$

where \mathcal{G}_n is the set of all graphs with *n* vertices and $G \in \mathcal{G}_n$. This concept was originally introduced by N. Linial and E. Rozenman in 2002 [9], and recently there has been intensive research activity in this direction, as we can see in the papers [2,3,10–13], just to mention a few.

One significative type of vertex-degree function indices were introduced by Li and Zheng in 2005 [8], the so called zeroth-order general Randić index, induced by the function $\mathcal{R}_{\alpha} : [1, n-1] \cap \mathbb{N} \to \mathbb{R}$ defined as $\mathcal{R}_{\alpha}(x) = x^{\alpha}$, where $\alpha \in \mathbb{R}$. So given a graph G with n non-isolated vertices,

$$\mathcal{R}_{\alpha}(G) = \sum_{u \in V(G)} \mathcal{R}_{\alpha}(d_u) = \sum_{u \in V(G)} (d_u)^{\alpha}.$$

Particularly important is the case $\alpha = 2$, which corresponds to the first Zagreb index [6]

$$\mathcal{R}_{2}(G) = \sum_{u \in V} d_{u}^{2} = \sum_{vw \in E} \left(d_{v} + d_{w} \right),$$

and the case $\alpha = 3$, which was called by Furtula and Gutman [5] the forgotten index, but first appeared in [6],

$$\mathcal{R}_{3}(G) = \sum_{u \in V} d_{u}^{3} = \sum_{vw \in E} \left(d_{v}^{2} + d_{w}^{2} \right).$$

In recent papers [1,4], the concept of local energy at a vertex was introduced with the intention to give a measure of the contribution of a vertex in the total energy of the graph. Our main objective in this paper is to introduce the local value of a degree-function index f at a vertex u of a graph G, which we will denote by $f_G(u)$. Intuitively, $f_G(u)$ is the contribution of the vertex u in f(G). Moreover, the definition of local value of a degree-function index at a vertex is such that the following formula holds:

$$\sum_{u \in V} f_G(u) = f(G).$$

In Section 2 we compute the local values of a degree-function index in well-known graphs, and then we initiate the study of its mathematical properties. Later, in Section 3, we address the problem of vertices with extremal values in the zeroth-order general Randić index. In the particular cases of the first Zagreb index and the forgotten index, the problem of vertices with extremal local values is completely solved.

2 Local value of a vertex-degree function index of a graph

Throughout this paper, n is a positive integer and $f : [1, n-1] \cap \mathbb{N} \to \mathbb{R}$ is a function. Given a graph G with n non-isolated vertices, clearly $d_G(u) \in$ $[1, n-1] \cap \mathbb{N}$ for all $u \in V(G)$, so that $f(G) = \sum_{u \in V} f(d_u)$ is well defined in (1).

Definition 1. Let G be a graph with n non-isolated vertices. We define the local value of f at $u \in V(G)$, denoted by $f_G(u)$, as

$$f_G(u) = (1 - d_u) f(d_u) + \sum_{w \in \mathcal{N}(u)} f(d_w).$$
 (2)

The value $f_G(u)$ can be interpreted as the contribution of vertex u in f(G).

Example 1. Let S_n be the star tree with n vertices. We can easily compute $f_{S_n}(u)$, for any vertex $u \in V(S_n)$. There are two possibilities:

1. If u is the center vertex of S_n , then

$$f_{S_n}(u) = [1 - (n-1)] f(n-1) + (n-1) f(1)$$
$$= (2 - n) f(n-1) + (n-1) f(1).$$

2. If v is a pendent vertex of S_n , then

$$f_{S_n}(v) = (1-1) f(1) + f(n-1) = f(n-1).$$

Note that in the previous example

$$\sum_{w \in V(S_n)} f_{S_n}(w) = f_{S_n}(u) + (n-1) f_{S_n}(v) = f(S_n).$$

We next show that this is true for all graphs. First we need a preliminary result.

Lemma 1. Let G be a graph with n non-isolated vertices. Then,

$$\sum_{u \in V(G)} \sum_{w \in \mathcal{N}_G(u)} f(d_w) = \sum_{u \in V(G)} d_u f(d_u).$$
(3)

Proof. For each $u \in V(G)$, the term $f(d_u)$ appears d_u times in the sum on the left side of (3).

Theorem 1. Let G be a graph with n non-isolated vertices. Then,

$$\sum_{u \in V(G)} f_G(u) = f(G)$$

Proof. Let $u \in V(G)$. Then by (2)

$$f_G(u) = f(d_u) - d_u f(d_u) + \sum_{w \in \mathcal{N}_G(u)} f(d_w).$$
(4)

Now taking sums on both sides of (4) over all $u \in V(G)$, and using Lemma 1, we deduce

$$\sum_{u \in V(G)} f_G(u) = f(G) - \sum_{u \in V(G)} d_u f(d_u) + \sum_{u \in V(G)} \sum_{w \in \mathcal{N}_G(u)} f(d_w)$$
(5)

$$= f(G) - \sum_{u \in V(G)} d_u f(d_u) + \sum_{u \in V(G)} d_u f(d_u)$$
(6)

Example 2. Let us consider some examples of local values of a vertexdegree function index of well known graphs.

1. Let K_n be the complete graph with n vertices. Then for any $u \in V(K_n)$,

$$f_{K_n}(u) = (1 - (n - 1)) f(n - 1) + (n - 1) f(n - 1) = f(n - 1).$$

2. Let C_n be the cycle with *n* vertices. Then for any $u \in V(C_n)$,

$$f_{C_n}(u) = (1-2) f(2) + 2f(2) = f(2).$$

3. Let P_n be the path with *n* vertices. If v_1 is a pendent vertex of P_n , then

$$f_{P_n}(v_1) = (1-1)f(1) + f(2) = f(2).$$

If v_2 is a vertex of P_n adjacent to a pendent vertex, then

$$f_{P_n}(v_2) = (1-2) f(2) + f(1) + f(2) = f(1).$$

Finally, if v_3 is a vertex of P_n with both neighbors of degree 2, then

$$f_{P_n}(v_3) = (1-2) f(2) + f(2) + f(2) = f(2).$$

4. Let $K_{p,q}$ the complete bipartite graph. If $u \in V(K_{p,q})$ is such that $d_{K_{p,q}}(u) = q$, then

$$f_{K_{p,q}}(u) = (1 - q) f(q) + qf(p)$$

= $f(q) + q [f(p) - f(q)]$.

Similarly, if $v \in V(K_{p,q})$ is such that $d_{K_{p,q}}(v) = p$, then

$$f_{K_{p,q}}(v) = (1-p) f(p) + pf(q)$$

= $f(p) + p [f(q) - f(p)].$

Note that the local value of f in K_n and C_n is constant for all vertices. More generally, we have the following result.

Proposition 2. Let G be a regular graph of degree k. Then for any $u \in V(G)$,

$$f_G(u) = f(k).$$

Proof. Let $u \in V(G)$. Then

$$f_G(u) = (1-k) f(k) + \sum_{w \in \mathcal{N}_G(u)} f(d_w) = (1-k) f(k) + kf(k) = f(k).$$

The converse of Proposition 2 does not hold.

Example 3. Consider the vertex-degree function index induced by $f(x) = x^2 - 3x$. Note that f(1) = f(2) = -2. Hence, every vertex in P_n has constant local value -2 (see Example 2).

When computing the local value of a vertex-degree function index f at a vertex u in a graph G, we can restrict our attention to the component of G which contains the vertex u.

Proposition 3. Let $G = H \cup K$ be the disjoint union of graphs H and K. Let $u \in V(H)$. Then $f_G(u) = f_H(u)$.

Proof. Clearly, $d_G(u) = d_H(u)$ and $d_G(w) = d_H(w)$, for all $w \in \mathcal{N}_G(u) = \mathcal{N}_H(u)$. Hence

$$f_{G}(u) = (1 - d_{G}(u)) f(d_{G}(u)) + \sum_{w \in \mathcal{N}_{G}(u)} f(d_{G}(w))$$
$$= (1 - d_{H}(u)) f(d_{H}(u)) + \sum_{w \in \mathcal{N}_{H}(u)} f(d_{H}(w))$$
$$= f_{H}(u).$$

Several questions arise when considering the local value of a vertexdegree function index f at a vertex u in a graph G:

- 1. If *H* is an induced subgraph of a graph *G* and $u \in V(H)$, is there a relation between $f_G(u)$ and $f_H(u)$?
- 2. Let $u \in V(G)$. If $v \in V(G)$ is such that $d_v > d_u$, is there a relation between $f_G(u)$ and $f_G(v)$?

Example 4. Let us consider the forgotten index induced by the function $\mathcal{R}_3(x) = x^3$, and let *H* be the induced subgraph of $K_{3,3}$ shown in Figure 1. Then,

$$(\mathcal{R}_3)_{K_{3,3}}(v_1) = (\mathcal{R}_3)_{K_{3,3}}(v_5) = -2\mathcal{R}_3(3) + 3\mathcal{R}_3(3) = \mathcal{R}_3(3) = 27.$$

However, the local value at v_1 increases:

$$(\mathcal{R}_3)_H(v_1) = (1-2)\mathcal{R}_3(2) + 2\mathcal{R}_3(3) = 46,$$

while the value at v_5 decreases:

$$(\mathcal{R}_3)_H(v_5) = (1-3)\mathcal{R}_3(3) + \mathcal{R}_3(2) + 2\mathcal{R}_3(3) = 8.$$

So in general, if H is a induced subgraph of G and $u \in V(H)$, then $f_H(u)$ can increase or decrease the value of $f_G(u)$.

Figure 1. Induced subgraph H of $K_{3,3}$ used in Example 4.

Example 5. Consider the first Zagreb index induced by the function $\mathcal{R}_2(x) = x^2$, and let T be the tree depicted in Figure 2. Note that

$$2 = d_a < d_x = d_y = 3,$$

Figure 2. Tree T used in Example 5.

and

$$(\mathcal{R}_2)_T (a) = -\mathcal{R}_2 (2) + 2\mathcal{R}_2 (2) = 4,$$

$$(\mathcal{R}_2)_T (x) = -2\mathcal{R}_2 (3) + 2\mathcal{R}_2 (1) + \mathcal{R}_2 (2) = -12,$$

$$(\mathcal{R}_2)_T (y) = -2\mathcal{R}_2 (3) + \mathcal{R}_2 (2) + 2\mathcal{R}_2 (4) = 18.$$

Hence, in general, if $u, v \in V(G)$ and $d_v > d_u$, then $f_G(v)$ can increase or decrease the value of $f_G(u)$.

3 Local values of the zeroth-order general Randić index

Let *n* be a positive number and let $\mathcal{R}_{\alpha} : [1, n-1] \cap \mathbb{N} \to \mathbb{R}$ be the function defined as $\mathcal{R}_{\alpha}(x) = x^{\alpha}$, where $\alpha \in \mathbb{R}$. Given a graph *G* with *n* vertices, recall that the function index

$$\mathcal{R}_{\alpha}(G) = \sum_{u \in V(G)} \mathcal{R}_{\alpha}(d_u) = \sum_{u \in V(G)} (d_u)^{\alpha},$$

is the zeroth-order Randić index of G. In this particular case, the local value of \mathcal{R}_{α} at $u \in V(G)$ is

$$(\mathcal{R}_{\alpha})_{G}(u) = (1 - d_{u}) d_{u}^{\alpha} + \sum_{w \in \mathcal{N}_{G}(u)} d_{w}^{\alpha}$$

Lemma 2. The function $g: [1, n-1] \cap \mathbb{N} \to \mathbb{R}$ defined as

$$g(x) = (1-x)x^{\alpha} + x$$
 (7)

is strictly decreasing (resp. strictly increasing) if $\alpha > 0$ (resp. $\alpha < 0$) in $[1, n-1] \cap \mathbb{N}$.

Proof. This can be proved using standard differential calculus.

Theorem 4. Let G be a graph with n non-isolated vertices, $u \in V(G)$ and $\alpha > 0$. Then

$$(\mathcal{R}_{\alpha})_{G}(u) \ge (2-n)(n-1)^{\alpha} + (n-1).$$
 (8)

Equality in (8) holds if and only if u is the center of a star tree with n vertices.

Proof. Since $\alpha > 0$ it is clear that $d_w^{\alpha} \ge 1$ for all $w \in \mathcal{N}_G(u)$. Also, we know from Lemma 2 that g is strictly decreasing on $[1, n-1] \cap \mathbb{N}$, so that $g(d_u) \ge g(n-1)$. Hence

$$(\mathcal{R}_{\alpha})_{G}(u) = (1 - d_{u}) d_{u}^{\alpha} + \sum_{w \in \mathcal{N}_{G}(u)} d_{w}^{\alpha}$$

$$\geq (1 - d_{u}) d_{u}^{\alpha} + d_{u} = g(d_{u})$$

$$\geq g(n - 1) = (2 - n) (n - 1)^{\alpha} + (n - 1).$$
(9)

If u is the center vertex of a star tree with n vertices, then it follows from Example 1 that equality occurs in (8). Conversely, assume that equality in (8) holds. Then by inequality (9), $g(d_u) = g(n-1)$ and $d_w^{\alpha} = 1$, for all $w \in \mathcal{N}_G(u)$. Since g is strictly decreasing, $d_u = n - 1$ and $d_w = 1$ for all $w \in \mathcal{N}_G(u)$. Equivalently, G is a star tree with n vertices with center vertex u.

Dually we have the following result.

Theorem 5. Let G be a graph with n non-isolated vertices, $u \in V(G)$

and $\alpha < 0$. Then

$$(\mathcal{R}_{\alpha})_{G}(u) \leq (2-n)(n-1)^{\alpha} + (n-1).$$
 (10)

Equality in (10) holds if and only if u is the center of a star tree with n vertices.

Proof. Similar to the proof of Theorem 4.

Given a graph G and a vertex $u \in V(G)$, the problem of finding an upper bound for $(\mathcal{R}_{\alpha})_{G}(u)$ when $\alpha > 0$ is much more complicated. With this objective in mind we begin with a technical result.

Lemma 3. Let n be a positive integer and $\alpha \ge 1$. Consider the function $h: [1, n-1] \cap \mathbb{N} \to \mathbb{R}$ defined as

$$h(x) = (1-x)x^{\alpha} + x\left(\frac{n-1}{x}\right)^{\alpha}.$$
(11)

Then h is strictly decreasing in $[1, n-1] \cap \mathbb{N}$.

Proof. This is an easy application of standard differential calculus.

Theorem 6. Let G be a graph with n non-isolated vertices, $u \in V(G)$ and $\alpha \geq 1$. Then

$$\left(\mathcal{R}_{\alpha}\right)_{G}(u) \le \left(n-1\right)^{\alpha}.$$
(12)

Equality in (12) occurs if and only if u is a pendent vertex of a star tree with n vertices.

Proof. Let $\mathcal{N}_G(u) = \{w_1, \ldots, w_{d_u}\}$. Set $\sum_{i=1}^{d_u} d_{w_i} = p \leq n-1$. Since $\alpha > 0$, using Lagrange multipliers we deduce that the function $F(x_1, \ldots, x_{d_u}) = \sum_{i=1}^{d_u} x_i^{\alpha}$, subject to the condition $\sum_{i=1}^{d_u} x_i = p$, attains its maximal value at $\left(\frac{p}{d_u}, \frac{p}{d_u}, \ldots, \frac{p}{d_u}\right)$. Consequently, by Lemma 3,

$$\left(\mathcal{R}_{\alpha}\right)_{G}\left(u\right) = \left(1 - d_{u}\right)d_{u}^{\alpha} + \sum_{w \in \mathcal{N}_{G}\left(u\right)} d_{w}^{\alpha}$$

$$\leq (1 - d_u) d_u^{\alpha} + d_u \left(\frac{p}{d_u}\right)^{\alpha}$$

$$\leq (1 - d_u) d_u^{\alpha} + d_u \left(\frac{n - 1}{d_u}\right)^{\alpha}$$

$$= h (d_u) \leq h (1) = (n - 1)^{\alpha}.$$
(13)

By Example 1, we know that equality holds in (12) when u is a pendent vertex of a star tree with n vertices. Conversely, assume equality holds in (12). Then by inequality (13), $h(d_u) = h(1)$ (which implies $d_u = 1$ by Lemma 3), p = n - 1, and $d_w^{\alpha} = p^{\alpha} = (n - 1)^{\alpha}$, where w is the unique neighbor of u (which implies $d_w = n - 1$). In other words, u is a pendent vertex of a star tree with n vertices.

In particular, for the first Zagreb index and the forgotten index, the problem of vertices with extremal local values is completely solved.

Corollary 1. Let G be a graph with n non-isolated vertices and $u \in V(G)$. Then

$$(2-n)(n-1)^{2} + (n-1) \le (\mathcal{R}_{2})_{G}(u) \le (n-1)^{2}.$$
(14)

Equality on the left side of (14) occurs if and only if u is the center of a star tree. Equality on the right of (14) occurs if and only if u is a pendent vertex of a star tree.

Corollary 2. Let G be a graph with n non-isolated vertices and $u \in V(G)$. Then

$$(2-n)(n-1)^{3} + (n-1) \le (\mathcal{R}_{3})_{G}(u) \le (n-1)^{3}.$$
 (15)

Equality on the left side of (15) occurs if and only if u is the center of a star tree. Equality on the right of (15) occurs if and only if u is a pendent vertex of a star tree.

When $\alpha \in (0, 1)$, the upper bound of $(\mathcal{R}_{\alpha})_{G}(u)$ depends on the number of vertices of G, as we can see in our next example.

Example 6. Let G be a graph with n vertices.

Figure 3. Vertices v, w used in Example 6.

1. If $n \leq 12$, then $h(x) = (1-x)\sqrt{x} + x\sqrt{\frac{n-1}{x}} \leq h(1) = \sqrt{n-1}$ for all $x \in [1, n-1] \cap \mathbb{N}$. Therefore, as in the proof of Theorem 6,

$$\left(\mathcal{R}_{\frac{1}{2}}\right)_{G}(u) \le h\left(d_{u}\right) \le h\left(1\right) = \sqrt{n-1}.$$

Hence if $n \leq 12$, then $\left(\mathcal{R}_{\frac{1}{2}}\right)_G(u)$ attains its maximal value when u is a pendent vertex of a star tree with n vertices. However, when $n \geq 13$, this is no longer true. In fact, consider the vertices v, w depicted in Figure 3. Then

$$\begin{split} \left(\mathcal{R}_{\frac{1}{2}}\right)_{G}(v) &= -\sqrt{2} + \sqrt{\lfloor \frac{n-3}{2} \rfloor + 1} + \sqrt{\lceil \frac{n-3}{2} \rceil + 1} \\ &> \sqrt{n-1} = \left(\mathcal{R}_{\frac{1}{2}}\right)_{G}(w) \,, \end{split}$$

for all $n \ge 13$. In particular, a pendent vertex of a star tree is not maximal.

2. Similarly, when $\alpha < 0$, the minimal value of $(\mathcal{R}_{\alpha})_{G}(u)$ depends on the number of vertices. For instance, consider the zeroth-order Randić index $\mathcal{R}_{-\frac{1}{2}}$. In this case, $h(x) = (1-x)\frac{1}{\sqrt{x}} + x\sqrt{\frac{x}{n-1}} \ge h(1)$ for all $x \in [1, n-1] \cap \mathbb{N}$ when $n \le 7$. Hence,

$$\left(\mathcal{R}_{-\frac{1}{2}}\right)_{G}(u) \ge h\left(d_{u}\right) \ge h\left(1\right) = \sqrt{n-1},$$

so that $\left(\mathcal{R}_{-\frac{1}{2}}\right)_{G}(u)$ attains its minimal value when u is a pendent vertex of a star tree with n vertices. However, for the vertices v, w in Figure 3, $\left(\mathcal{R}_{-\frac{1}{2}}\right)_{G}(v) < \left(\mathcal{R}_{-\frac{1}{2}}\right)_{G}(w)$, for all $n \geq 8$, which implies that a pendent vertex of a star is not minimal.

So the following problem arises naturally:

- 1. Find vertices with maximal local value of the zeroth-order general Randić index \mathcal{R}_{α} when $0 < \alpha < 1$;
- 2. Find vertices with minimal local value of the zeroth-order general Randić index \mathcal{R}_{α} when $\alpha < 0$.

References

- O. Arizmendi, J. Fernandez-Hidalgo, O. Juarez-Romero, Energy of a vertex, *Lin. Algebra Appl.* 557 (2018) 464–495.
- [2] S. Bermudo, R. Cruz, J. Rada, Vertex-degree function index on tournaments, Commun. Comb. Optim. 10 (2025) 443–452.
- [3] X. Cheng, X. Li, Some bounds for the vertex-degree function index of connected graphs with given minimum and maximum degrees, *MATCH Commun. Math. Comput. Chem.* **90** (2023) 175–186.
- [4] C. Espinal, J. Rada, Graph energy change due to vertex deletion, MATCH Commun. Math. Comput. Chem. 92 (2024) 89–103.
- [5] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190.
- [6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- [7] D. He, Z. Ji, C. Yang, K. C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (2023) #31.
- [8] X. Li, J. Zheng, An unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 51 (2005) 195-208.
- [9] N. Linial, E. Rozenman, An extremal problem on degree sequences of graphs, *Graphs Comb.* 18 (2002) 573–582.
- [10] I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, *Discr. Appl. Math.* **306** (2022) 83–88.

- [11] T. Vetrík, Degree-based function index of trees and unicyclic graphs, J. Appl. Math. Comput. (2024), in press. https://doi.org/10.1007/ s12190-024-02307-w.
- [12] S. Xu, B. Wu, (n,m)-Graphs with maximum vertex-degree function-index for convex functions, MATCH Commun. Math. Comput. Chem. 91 (2024) 197–234.
- [13] J. Yang, H. Liu, Y. Wang, Vertex-degree function index for concave functions of graphs with a given clique number, J. Appl. Math. Comput. 70 (2024) 2197–2208.