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Abstract

Let n be a positive integer and f a real function defined on
integers in the interval [1,n — 1]. Given a graph G with vertex set
V and mn non-isolated vertices, the degree-function index of G is
defined as Hy (G) = >_ .y f (du). Tt is our main objective in this
paper to introduce the local value of a degree-function index Hy of a
graph G at a vertex u, which we denote by f¢ (u). Intutively, fo (u)
measures the contribution of vertex u in Hy (G). In this paper we
initiate the study of its mathematical properties and address the
problem of vertices with extremal local values in the zeroth-order
general Randi¢ index. In particular, for the first Zagreb index and
the forgotten index, the problem of vertices with extremal local
values is completely solved.

1 Introduction

Let G be a simple graph with vertex set V = V (G) and edge set F =
E (G). We denote by dg (u) the degree of the vertex w € V. If it is clear
from the context, we simply write d, = dg (u). The set Ng (u) denotes
the set of neighbors of vertex u € V.

Let n be a positive integer and let f : [1,m —1]NN — R be a real

function. Instead of using Hy, we use the same letter f to denote the
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vertex-degree function index f: G, — R as

veEV(G)

where G, is the set of all graphs with n vertices and G € G,,. This concept
was originally introduced by N. Linial and E. Rozenman in 2002 [9], and
recently there has been intensive research activity in this direction, as we
can see in the papers [2,3,10-13], just to mention a few.

One significative type of vertex-degree function indices were introduced
by Li and Zheng in 2005 [8], the so called zeroth-order general Randié
index, induced by the function Ry, : [1,n — 1]NN — R defined as R, (z) =

z®, where a € R. So given a graph G with n non-isolated vertices,

Ra (G) = Z Ra (du) = Z (du)a~

weV(G) uweV (G)

Particularly important is the case o = 2, which corresponds to the first
Zagreb index [6]

Ro (@)= di= " (dy+du),
ueV vwek
and the case @ = 3, which was called by Furtula and Gutman [5] the
forgotten index, but first appeared in [6],

Ry (G) = di= Y (d2+d2).

ueV vweE

In recent papers [1,4], the concept of local energy at a vertex was intro-
duced with the intention to give a measure of the contribution of a vertex
in the total energy of the graph. Our main objective in this paper is to
introduce the local value of a degree-function index f at a vertex u of a
graph G, which we will denote by fg (u). Intuitively, fg (u) is the contri-

bution of the vertex u in f (G). Moreover, the definition of local value of a
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degree-function index at a vertex is such that the following formula holds:

> fa(u)=[(G).

uevV
In Section 2 we compute the local values of a degree-function index in
well-known graphs, and then we initiate the study of its mathematical
properties. Later, in Section 3, we address the problem of vertices with
extremal values in the zeroth-order general Randi¢ index. In the particular
cases of the first Zagreb index and the forgotten index, the problem of

vertices with extremal local values is completely solved.

2 Local value of a vertex-degree function in-

dex of a graph

Throughout this paper, n is a positive integer and f : [1,n — 1]NN — R is
a function. Given a graph G with n non-isolated vertices, clearly dg (u) €
[1,n —1]NNfor all u € V (G), so that f (G) =" oy f (dy) is well defined
in (1).

Definition 1. Let G be a graph with n non-isolated vertices. We define
the local value of f at u € V (G), denoted by fa (u), as

fow)=(—=dy) f(d)+ > f(duw). (2)

weEN (u)

The value fg (u) can be interpreted as the contribution of vertex w in

f(G).

Example 1. Let S, be the star tree with n vertices. We can easily

compute fg, (u), for any vertex u € V (S,,). There are two possibilities:
1. If u is the center vertex of S,,, then

fo, (w)=[1=n=D]f(n=1)+n—-1)f(1)
=2-n)fn-1)+m-1)f(1).
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2. If v is a pendent vertex of S;,, then
fso, ) =A-1)fM)+f(n-1)=f(n—-1).
Note that in the previous example

> fs. (W)= fs, (W) + (n—1) fs, (v) = f(Sn)-

weV (Sy)

We next show that this is true for all graphs. First we need a preliminary

result.

Lemma 1. Let G be a graph with n non-isolated vertices. Then,

Yoo flw)= Y duf(du). (3)

ueV (G) weNs (u) ueV(G)

Proof. For each u € V (G), the term f (d,,) appears d, times in the sum
on the left side of (3). |

Theorem 1. Let G be a graph with n non-isolated vertices. Then,

> felw)=f(G).

ueV(G)

Proof. Let uw € V (G) . Then by (2)

fa(u) = f(d) —duf (d)+ Y f(dw). (4)

weNg (u)

Now taking sums on both sides of (4) over all u € V (G), and using Lemma

1, we deduce

Yoo fe)=f(G) = > duf(d)+ D, Y, fldw) (5)

ueV(QG) ueV(Q) ueV(G) weNg(u)
=@ = > duf(d)+ D duf(d) (6)
ueV(G) ueV(G)

= f(G). ]
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Example 2. Let us consider some examples of local values of a vertex-

degree function index of well known graphs.

1. Let K, be the complete graph with n vertices. Then for any u €
V (K,),

fr, (W) =0=(m-1))f(r-D+0m-1)f(n-1)=f(n-1).

2. Let C,, be the cycle with n vertices. Then for any u € V (C,,),

fo, (W) =(1=2)f(2)+2f(2)=f(2).

3. Let P, be the path with n vertices. If v; is a pendent vertex of P,
then

fr, () =1 -1)f1)+f(2)=[(2).
If vy is a vertex of P, adjacent to a pendent vertex, then
fr, (2)=(1=2)fQ2)+f()+f(2)=f().
Finally, if vs is a vertex of P, with both neighbors of degree 2, then
fr, (vs)=(1=2)f2)+f(2)+f(2)=1(2).

4. Let K, , the complete bipartite graph. If u € V (K, ) is such that
dr, , (u) = q, then

Jr,, (W) =(1-q)f(q)+qf (p)
= f(q)+qlf(p)— f ()]

Similarly, if v € V (K, q) is such that dg, , (v) = p, then

Ik, (V) —p) f(p)+pf(q)
p

:(1
=f)+plf(e—fW].
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Note that the local value of f in K,, and C), is constant for all vertices.

More generally, we have the following result.

Proposition 2. Let G be a regular graph of degree k. Then for any u €
VI(G),

Proof. Let uw € V (G). Then

fa)=Q =k fF®R)+ Y fldw)=0—k) f(E) +Ef(k)=F(k).

weNG(u)

The converse of Proposition 2 does not hold.

Example 3. Consider the vertex-degree function index induced by f (z) =
22 — 3x. Note that f (1) = f(2) = —2. Hence, every vertex in P, has

constant local value —2 (see Example 2).

When computing the local value of a vertex-degree function index f at
a vertex u in a graph G, we can restrict our attention to the component

of G which contains the vertex u.

Proposition 3. Let G = H U K be the disjoint union of graphs H and
K. Letu eV (H). Then fc(u) = fu (u).

Proof. Clearly, dg (u) = dy (u) and dg (w) = dy (w), for all w € Ng (u) =
Ny (u). Hence

fo (u) =1 —da W) f(de W)+ > f(dg(w))

weNg (u)
=(L—du () f(du @)+ D f(dy(w))
weN g (u)
= fu (u). u

Several questions arise when considering the local value of a vertex-

degree function index f at a vertex u in a graph G:
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1. If H is an induced subgraph of a graph G and v € V (H), is there a

relation between fg (u) and fi (u)?

2. Let u € V(G). If v € V (G) is such that d, > d,, is there a relation
between fg (u) and fg (v)?

Example 4. Let us consider the forgotten index induced by the function
Rs (x) = 23, and let H be the induced subgraph of K33 shown in Figure
1. Then,

(Rs)k, , (v1) = (R3), , (vs) = —2R3 (3) + 3R3 (3) = R3 (3) = 27.
However, the local value at v increases:
(R3) g (v1) = (1 =2)R3 (2) + 2R3 (3) = 46,
while the value at vs decreases:
(R3)p (v5) = (1 —3)R3 (3) + Rz (2) + 2R3 (3) = 8.

So in general, if H is a induced subgraph of G and v € V (H), then

fu (u) can increase or decrease the value of fg (u).

V2

Vs

Figure 1. Induced subgraph H of K3 3 used in Example 4.

Example 5. Consider the first Zagreb index induced by the function
Ra (z) = 22, and let T be the tree depicted in Figure 2. Note that



118

Figure 2. Tree T used in Example 5.

and
(R2)7 (a) = —R2(2) + 2R (2) = 4,

(R2)p () = —2R2(3) +2R2 (1) + R2 (2) = —12,
(Ra)p (y) = —2R4 (3) + Rz (2) + 2Ro (4) = 18.

Hence, in general, if u,v € V (G) and d,, > d,,, then fg (v) can increase

or decrease the value of fg (u).

3 Local values of the zeroth-order general

Randié¢ index

Let n be a positive number and let R, : [1,n — 1]NN — R be the function
defined as R, (x) = %, where @ € R. Given a graph G with n vertices,

recall that the function index

Ra (G) = Z Ra (du) = Z (du)aa

ueV(G) ueV(G)

is the zeroth-order Randié¢ index of G. In this particular case, the local
value of R, at u € V (G) is

(Ra)g (u) = (1 —du) dy + Z diy-
weNg (u)
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Lemma 2. The function g : [1,n — 1NN — R defined as
g(@) =1 —z)a" +u (7)

is strictly decreasing (resp. strictly increasing) if @ > 0 (resp. a < 0) in
[1,n—1]NN.

Proof. This can be proved using standard differential calculus. |

Theorem 4. Let G be a graph with n non-isolated vertices, u € V (G)
and o > 0. Then

(Ra)g () = (2=n)(n—1)%+(n—1). (8)

Equality in (8) holds if and only if u is the center of a star tree with n

vertices.

Proof. Since o > 0 it is clear that d2 > 1 for all w € Ng (u). Also, we
know from Lemma 2 that g is strictly decreasing on [1,n — 1] NN, so that
g (dy) > g(n—1). Hence

(Ra)g (u) = (1 —du) dy + Z dyy

weNg(u)
Z (1_du)d5+du :g(du)
>gn—1)=02-n)(n-1)"+(n-1). (9)

If w is the center vertex of a star tree with n vertices, then it follows from
Example 1 that equality occurs in (8). Conversely, assume that equality
in (8) holds. Then by inequality (9), g (d,) = g(n—1) and d% = 1, for
all w € Ng (u). Since g is strictly decreasing, d, = n — 1 and d,, = 1 for
all w € Ng (u). Equivalently, G is a star tree with n vertices with center

vertex u. ]
Dually we have the following result.

Theorem 5. Let G be a graph with n non-isolated vertices, u € V (G)
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and o < 0. Then
(Ra)g (u) < (2—n)(n—1)"+ (n—1). (10)

Equality in (10) holds if and only if u is the center of a star tree with n

vertices.
Proof. Similar to the proof of Theorem 4. |

Given a graph G and a vertex u € V (G), the problem of finding an
upper bound for (Rqa) (u) when o > 0 is much more complicated. With

this objective in mind we begin with a technical result.

Lemma 3. Let n be a positive integer and o > 1. Consider the function
h:[l,n—1NN — R defined as

h(m):(l—x)mo‘—kx(n;l)a. (11)

Then h is strictly decreasing in [1,n — 1] NN.
Proof. This is an easy application of standard differential calculus. |

Theorem 6. Let G be a graph with n non-isolated vertices, u € V (G)
and o« > 1. Then

(Ra)g (u) < (n—=1)%. (12)

Equality in (12) occurs if and only if u is a pendent vertex of a star tree

with n vertices.

Proof. Let Ng (u) = {w1,...,wq, }. Set Zf;l dy;, =p <n—1. Since o >

0, using Lagrange multipliers we deduce that the function F' (x1,...,24,) =
Zjll x$, subject to the condition Zf;l x; = p, attains its maximal value
at (- oo %). Consequently, by Lemma 3,

(Ra)g (u) = (1 —du)dy + Z d
weNg (u)
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<-ddi+ (1)

s(l—du)d%du(”_l)
d.

=h(dy) <h(1)=(n-1)". (13)

By Example 1, we know that equality holds in (12) when w is a pendent
vertex of a star tree with n vertices. Conversely, assume equality holds in
(12). Then by inequality (13), h(d,) = h(1) (which implies d,, = 1 by
Lemma 3), p = n — 1, and d = p®* = (n — 1)*, where w is the unique
neighbor of u (which implies d,, = n — 1). In other words, u is a pendent

vertex of a star tree with n vertices. [ |

In particular, for the first Zagreb index and the forgotten index, the

problem of vertices with extremal local values is completely solved.
Corollary 1. Let G be a graph with n non-isolated vertices andu € V (G).
Then

@-m) -1+ (-1 < (R)g () < (-1 (14)

Equality on the left side of (14) occurs if and only if u is the center of a
star tree. Equality on the right of (14) occurs if and only if u is a pendent

vertex of a star tree.
Corollary 2. Let G be a graph with n non-isolated vertices andu € V (G).
Then

2-n)(n=1)*+(n—-1) < (Ry)g (u) < (n = 1)°. (15)

Equality on the left side of (15) occurs if and only if u is the center of a
star tree. Equality on the right of (15) occurs if and only if u is a pendent

vertex of a star tree.

When a € (0,1), the upper bound of (Rq); (u) depends on the number

of vertices of GG, as we can see in our next example.

Example 6. Let G be a graph with n vertices.
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Figure 3. Vertices v, w used in Example 6.

1. If n <12, then h(z) = (1 —2) Vo + 2/t < h(1) = V/n—1 for

all z € [1,n — 1] N N. Therefore, as in the proof of Theorem 6,

(R%)G(u) <h(dy) <h(1)=vn—1.

Hence if n < 12, then (’R%)G (u) attains its maximal value when u
is a pendent vertex of a star tree with n vertices. However, when
n > 13, this is no longer true. In fact, consider the vertices v, w

depicted in Figure 3. Then

(R;)G(v)z—\/ﬁr\/LR;?’J+1+\/[TL;31+1
>Vn—1=(R;) (),

for all n > 13. In particular, a pendent vertex of a star tree is not

maximal.

. Similarly, when a < 0, the minimal value of (R.)q (u) depends

on the number of vertices. For instance, consider the zeroth-order
Randi¢ index R_, . In this case, h (z) = (1 — ) ﬁ—ka:, /55 > h(1)
for all z € [1,n — 1] NN when n < 7. Hence,

2

(Roy), (@ =h(d)>h@)=Va—1,

so that (’R7 1 )G (u) attains its minimal value when u is a pendent

vertex of a star tree with n vertices. However, for the vertices v, w in

Figure 3, (R_%) (v) < (R_%) (w), for all n > 8, which implies
G G

that a pendent vertex of a star is not minimal.
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So the following problem arises naturally:

1. Find vertices with maximal local value of the zeroth-order general

Randi¢ index R, when 0 < a < 1;

2. Find vertices with minimal local value of the zeroth-order general

Randi¢ index R, when o < 0.

References

[1]

2]

[7]

8]

O. Arizmendi, J. Fernandez-Hidalgo, O. Juarez-Romero, Energy of a
vertex, Lin. Algebra Appl. 557 (2018) 464-495.

S. Bermudo, R. Cruz, J. Rada, Vertex-degree function index on tour-
naments, Commun. Comb. Optim. 10 (2025) 443-452.

X. Cheng, X. Li, Some bounds for the vertex-degree function in-
dex of connected graphs with given minimum and maximum degrees,
MATCH Commun. Math. Comput. Chem. 90 (2023) 175-186.

C. Espinal, J. Rada, Graph energy change due to vertex deletion,
MATCH Commun. Math. Comput. Chem. 92 (2024) 89-103.

B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem.
53 (2015) 1184-1190.

[. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals. Total
m-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17
(1972) 535-538.

D. He, Z. Ji, C. Yang, K. C. Das, Extremal graphs to vertex degree
function index for convex functions, Azioms 12 (2023) #31.

X. Li, J. Zheng, An unified approach to the extremal trees for different
indices, MATCH Commun. Math. Comput. Chem. 51 (2005) 195-208.

N. Linial, E. Rozenman, An extremal problem on degree sequences of
graphs, Graphs Comb. 18 (2002) 573-582.

I. Tomescu, Extremal vertex-degree function index for trees and uni-
cyclic graphs with given independence number, Discr. Appl. Math.
306 (2022) 83-88.



124

[11]

[12]

[13]

T. Vetrik, Degree-based function index of trees and unicyclic graphs,
J. Appl. Math. Comput. (2024), in press. https://doi.org/10.1007/
s12190-024-02307-w.

S. Xu, B. Wu, (n,m)-Graphs with maximum vertex—degree func-
tion—index for convex functions, MATCH Commun. Math. Comput.
Chem. 91 (2024) 197-234.

J. Yang, H. Liu, Y. Wang, Vertex-degree function index for concave
functions of graphs with a given clique number, J. Appl. Math. Com-
put. 70 (2024) 2197-2208.


https://doi.org/10.1007/s12190-024-02307-w
https://doi.org/10.1007/s12190-024-02307-w

	Introduction
	Local value of a vertex-degree function index of a graph
	Local values of the zeroth-order general Randić index

