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Abstract

In this paper, we discuss the influence of mathematical computa-
tions i.e. codimension one and codimension two bifurcations on an
autocatalytic chemical system. In the past, it was shown that the
considered dynamical system exhibits Hopf bifurcation on the posi-
tive equilibria, but in current study we have symbolically identified
that the study of bifurcation in this dynamical system is not limited
to Hopf bifurcation. For this purpose, a complete chart of eigen-
values for the stability of autocatalytic reaction system is provided
that shows that equilibrium points E3 and P have the possibility
of other type of bifurcations. Mathematically, the first Lyapunov
coefficient is used to determine the type of Hopf bifurcation and is
extended to second Lyapunov coefficient for the possibility of Bautin
bifurcation, whereas the provided analytical results are theoretical
analyzed and physical interpreted to further explore the dynamics of
autocatalytic chemical reaction dynamical system in various para-
metric regions. It is shown that how the balancing of two reactions
behave between steady and oscillatory states. Similarly, the Bautin
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bifurcation identify severe sensitive transition in various oscillatory
regimes, where their corresponding unfolding parameters scales the
transition between different oscillatory states. Finally, MATLAB is
used to simulate not only the analytical results for the qualitative
analysis of trajectories around equilibrium points but also to easily
understand the discussed physical meaning of provided mathemati-
cal results.

Introduction

The reactions taking place in chemistry follows several rules including bal-

ancing that in response can follow the rule of dynamics. Recent years have

seen growing interest in studying the unpredictable dynamics of nonlinear

systems using theoretical analysis and computational modeling. Beyond

the fundamental question of how molecular-scale interactions give rise to

organized large-scale behavior, these methods allow researchers to evalu-

ate conceptual models against real-world observations. Furthermore, such

studies can guide experimental work by identifying measurable phenomena

worth exploring.

Chaotic phenomena in a well-stirred chemical systems [1] provide a

way to generate chaos in intrinsic nonlinearities instead of spatial degrees

of freedom and elaborate a way to provide a bridging passage between mi-

croscopic and macroscopic behaviors. The process in which the balancing

of equations are transformed into a chemical mechanism is considered as a

suitable choice for the investigation of dynamical attitude at microscopic

aspect in systems demonstrating bifurcation and chaos.

In 2018, a discrete system showing the dioxide-iodine-malonic acid

chemical reactions was considered to study Neimark-Sacker bifurcation

and its control using feedback and hybrid control methods [2]. An auto-

catalator chemical reaction system is converted into fractional order using

Caputo derivative, and its codimension-one and codimension-two bifurca-

tions are discussed using bifurcation diagram and normal form theory [3].

Chen provided deep analysis of a modified Brusselator system in 2023

by studying Hopf bifurcation along with its type using the first Lyapunov

coefficient and self-organization patterns [4]. Recently, Khan et al [5] inves-
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tigated the dynamics of a modified Brusselator system using codimension-

one and codimension-two bifurcations linked with strong resonances.

Several dynamical systems of ordinary differential equations (ODEs)

have been designed and studied on the bases of chemical reactions in-

cluding two-species model [6], smallest chemical reaction system [7], auto-

catalytic glycolysis [8], Belousov-Zhabotinsky [9], cubic autocatalator [10]

oregonator [11], enzyme-catalyzed [12], Degn-Harrison reaction [13] but the

system that we have considered in this paper is an autocatalytic chemi-

cal reaction-based, well-stirred chemicals, and is famous as Williamowski

Rossler (WR) [1]; 
ẋ = ax− bx2 − xy − xz,

ẏ = xy − cy,

ż = dz − xz − αz2,

(1)

where (x, y, z) are state variables of system (1) and (a, b, c, d, α) ∈ R5

are parameter values. System (1) is obtained by non-dimensionalizng the

parameters, a = k1 [A1], b = k1̄, c = k5 [A5], d = k4 [A4], and α = k5̄ given

in the following chemical reactions†

A1 +X
k1

⇌
k1̄

2X, X + Y
k2

⇌
k2̄

2Y,

A5 + Y
k3

⇌
k3̄

A2, X + Z
k4

⇌
k4̄

A3,

A4 + Z
k5

⇌
k5̄

2Z,

(2)

that rely on double auto-catalytic steps by coupling the ingredients X

and Z with three other steps including the third constitute Y . Moreover,

(A1, A4, A5) the initials and (A2, A3) final product concentrations are

kept fixed. The constants k±i, i = 1, . . . , 5 are additional points that are

parameterized to obtain the parameters given in the system (1) and need

to be specified accordingly for the desired study.

The mathematical literature related to the WR system is traced back

from the work of Gysermans and Nicolis [14], where this system was an-

†It is important to mention that, k1̄ = k−1 and similarly other as well.
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alyzed with the help of stochastic theory. In 2005, Huang and Yan [15]

discussed the existence of chaos in it along with some other properties. Xu

and Wu added the time delayed term in WR system to not only discuss its

bifurcation phenomenon but also discussed its stability in trajectories [16].

Gaspard [17] used stochastic analysis, where entropy is used as a tool to

enhance the study of limit cycles in the considered system. Apart from

this, the WR system was transformed into fractional order [18], where

a synchronization technique was employed to visualize its importance in

secure communication, whereas the same system using Caputo fractional

derivatives and its control using adaptive-sliding technique [19] and PID

controller [20] in 2022. The study related to its bounds using Lyapunov

functions and oscillatory solutions, without considering eigenvalues, is dis-

cussed in the work of Din [1]. In 2022, the dynamics of WR system is

classified according to local and global asymptotic stability of the solu-

tions [22]. Moreover, the study related to its numerical bifurcation analysis

and anti-control in a fractional order form is elaborated by Liu [23], while

its complex dynamics along with synchronization techniques is analyzed

in 2023 [24].

The qualitative study in which an equilibrium point can be created,

vanished or changed its nature of stability with the changing in its pa-

rameter value is called bifurcation, whereas the parameter due to which

such type of changes occur is called bifurcation parameter. Although,

there are several types of well-known bifurcations [33, 34] but Hopf bifur-

cation [36,37] has got much importance among them due to the existence

of first limit cycle. In 1982, Hassard et al. [38] developed a technique for

Hopf bifurcation that latter on got fame as normal form (NF) technique.

In 2012, Wu et al. [39] derived normal form of Hopf bifurcation in rössler

system, whereas recently Li et al. adopted the same technique for finding

Hopf bifurcation along with its periodic limit cycle in a mechanical dynam-

ical system [40]. The application of Hopf bifurcation with other dynamical

properties such as Spatiotemporal oscillations and pattern formation in an

Enzyme-Catalyzed reaction system are discussed by Chen et al. [31] and

Zhao et al. [32].

Similarly, an analytical technique, the first Lyapunov coefficient, de-
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veloped by Kuznetsov [41] got fame due to ease in finding type of Hopf

bifurcation. Since then, several researchers used it in variety of real-life-

based application models [42–44]. Apart from the usage of first Lyapunov

coefficient in determining type of Hopf bifurcation, it plays vital role in

the investigation of Bautin bifurcation at their critical points. Yang et

al. [45] in 2008 worked on the two neuron-based systems by deriving its

normal form to study bautin bifurcation. In the field of engineering, In-

ozemtsev et al. [46] considered a railway wheel-set system to explore con-

ditions for bautin bifurcation with the aid of first Lyapunov coefficient. In

2012, a complete study of codimension two bifurcations including bautin

bifurcation was provided in a two-dimensional Hindmarsh-rose model [47].

This bifurcation is not only limited to mathematical perspectives but had

showed a glimpse of importance in ecology [48] as well.

The cited work in our paper discusses the importance of system (1),

highlighting its applications in dynamical systems. However, the following

points demonstrate the novelty of the current manuscript

(1) New stability and bifurcation regimes are explored in autocatalytic

chemical reaction system to expand its dynamical analysis.

(2) Hopf bifurcation and its type are discussed for the equilibrium points

E3 and P using the first Lyapunov coefficient in system (1).

(3) Analytical criteria for the Bautin (generalized Hopf) bifurcation are

derived using the second Lyapunov coefficient, revealing sensitive

transitions between stable and unstable oscillatory regimes.

(4) Detailed bifurcation diagrams and their corresponding Lyapunov co-

efficients are shown, providing deeper insights into the system’s dy-

namical behavior near critical bifurcation thresholds.

Mathematically, the first Lyapunov coefficient technique [41] is used for

the computation of supercritical Hopf and Bautin bifurcations, whereas

for chemical relevance, we linked the bifurcation parameters to reaction

kinetics, showing how changing into parameter values can induce large-

scale behavioral shifts such as chaos to limit cycles.
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The subsequent sections are structured as follows. In section (1), a

quick description about the equilibrium points, dynamics of trajectories

around their equilibrium points and its chaotic attitude is given. A detailed

analytical and qualitative analysis of the considered chemical system at E3

and the positive equilibria in subsections (2.1) and (2.2) respectively are

discussed. Finally, the concluding remarks are given in section (3).

1 Equilibrium points, local dynamics and

chaos in autocatalytic chemical reaction

system

The considered system (1) based on chemical reactions (2) has six equilib-

rium points: O(0, 0, 0), E1(0, 0,
d
α ), E2(

a
b , 0, 0), E3(c, a−bc, 0), E4(

d−aα
1−bα , 0,

a−bd
1−bα ), and P (c, a− bc+ c−d

α , d−c
α ). In [21], it was calculated that the Hopf

bifurcation in this system occur only at the positive equilibria, whereas

around all other remaining equilibrium points trajectories show local dy-

namical behavior. It was further discussed that origin O is unstable node,

EP Eigenvalues Stability

O a,−b, d Unstable

E1 a− d
α
,−c,−d Stable if αa < d, Unstable if αa > d

E2 −a, a−bc
b

, bd−a
b

Stable if bd < a < bc, Unstable if a > bc or bd > a

E3 - Stable if d < c, Unstable if d > c

E4 - Stable if d−aα
1−bα

< c, Unstable if d−aα
1−bα

> c

Table 1. Stability of equilibrium points based on eigenvalues [21]

while E1 is stable (unstable) for aα < (>)d. Similarly, E2, E3 and E4 were

shown stable and unstable respectively for their corresponding parametric

adjustments given in Table 1.

Authors in [21] have also discussed the possibility of Hopf bifurcation

for the unique positive equilibria; P without using their eigenvalues. Figure

1 is the bifurcation diagram and their corresponding Lyapunov exponents

of system (1) in which the parameters a, b, c, d are kept fixed, whereas

the topological dynamics of the considered system for different values of

α are observed. For convenience, the phase portraits for various values
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Figure 1. Bifurcation diagram and Lyapunov exponents of system (1)
showing chaos for the variations in α.

Figure 2. The three-dimensional phase portrait and various two-
dimensional projections of the well-stirred chaotic system:
(a) the x1 − x2 − x3 space (b) the x1 − x2 plane (c) the
x2 − x3 plane (d) the x1 − x3 plane.

of the parameter α are plotted. The Lyapunov exponents at the chaotic

region (CR) are positive, zero and negative are illustrated in Fig. 1 at

which the 3D phase portrait and 2D projections are shown in Fig. 2. The

chaotic attitude in the trajectories of system (1) are observed at macro-

scopic level for the parameter values a = 30, b = 0.415, c = 10, d = 16.5,

and α = 0.5 with initial conditions (x0, y0, z0)=(4, 5, 6), whereas the

phase portraits for α in other regions are observed in Fig. 3. In the first

region for α = 0.53, high oscillations are seen that showed reduction in

the second, third and fourth region for α = 0.57, α = 0.65 and α = 0.75,
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respectively. Furthermore, each equilibrium point shows different topol-

Figure 3. Phase portraits of system (1) for α ∈ [0.47, 0.8].

ogy in each region given in Fig. 1. The complete information for each

eigenvalue at different values of α is given in Table 2, where origin and

E2 show the unchanging attitude in their trajectories in all regions, the

trajectories around E1 shows stability in the region α ∈ [0.5, 0.55] and

saddle for α ∈ (0.55, 0.8). The interesting dynamics has been observed in

the equilibrium points E3 and P , where saddle focus can be seen with a

single real and a pair of complex conjugate eigenvalues. Therefore, Ta-

ble 2 shows that E3 and P have the best chances of exhibiting Hopf and

codimension-two bifurcations. The study of existence of chaos in system

(1) is further extended by plotting two-parameter bifurcation diagram and

its corresponding Lyapunov exponent in Fig. 4. The region enclosed in a

rectangular region with α = 0.5 and c = 10 shows chaotic region, whereas

the other colored regions show periodic solutions.
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Figure 4. The complete dynamics of system (1) for α ∈ [0, 0.8] and
c ∈ [9, 11] by plotting its (a) Bifurcation diagram and (b)
maximum Lyapunov exponent.

2 Bifurcation analysis in autocatalytic chem-

ical reaction system

In this section, we have used the method derived by Kuznetsov [41] to

determine Hopf bifurcation, its type around E3 and P and extended to

generalized Hopf (Bautin) bifurcation. Moreover, the considered system is

physically interpreted by showing the impact of Hopf and Bautin bifurca-

tions on it.

2.1 Hopf and Bautin bifurcations at E3(c, a − bc, 0)

We begin with shifting E3 to origin O
Ẋ = −((c+X)(bX + Y + Z)),

Ẏ = X(a− bc+ Y ),

Ż = −Z(c− d+X + αZ).

(3)
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The characteristic equation of system (3) at O(0, 0, 0) is

h1(λ) = −λ3 + φ2λ
2 + φ1λ+ φ0, (4)

where φ0 = −ac2+acd+bc3−bc2d, φ1 = (bcd−ac), φ2 = d−bc−c. Assume

that Eq. (4) has a pair of pure imaginary roots λ1,2 = ±iω (ω > 0), then ω3 + (bcd− ac)ω = 0,

(bc+ c− d)ω2 − ac2 + acd+ bc3 − bc2d = 0,
(5)

yielding the bifurcation surface

bc
(
ac− (b+ 2)cd+ c2 + d2

)
= 0 (6)

and

ω =
√
ac− bcd, where (a− bd)c > 0. (7)

For convenience, we further considered a = c, b = 0, d = 2c, (c > 0) to get

ω = c and simplified bifurcation surface (6). As a result of these changing,

the Jacobian matrix at the origin become

A =

 0 −c −c

c 0 0

0 0 d− c

 . (8)

The four vectors, satisfying orthogonality condition‡

q =

 1

−2i

i

 , q =

 1

2i

−i

 ,

p =

 − (c(1+i)−di)i
σ1

− c(1+i)−di
σ1

− c(−3d+c(3+2i))
13c2−18cd+9d2

 , p =


(c(1−i)+di)i

σ1

− c(1−i)+di
σ1

− c(−3d+c(3−2i))
13c2−18cd+9d2

 ,

‡Orthogonality condition: ⟨p, q⟩ = 1
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where σ1 = −3d+ c(3 + 2i), are derived using Aq=iωq, Aq̄=−iwq̄, AT p=

−iwp and AT p̄=iwp̄ [41, Eq. (5.26), page 196]. There is only a bilinear

term in the system (3). Therefore the bilinear B(ξ, η), defined for two

vectors ξ = (ξ1, ξ2, ξ3)
T ∈ R3 and η = (η1, η2, η3)

T ∈ R3, can be expressed

as

B(ξ, η) =

 −ξ1η2 − ξ2η1 − ξ1η3 − ξ3η1

ξ1η2 + ξ2η1

−ξ1η3 − ξ3η1 − 2αξ3y3

 . (9)

Our target is to obtain the value of the first Lyapunov coefficient to deter-

mine type of Hopf bifurcation, therefore we compute

A−1 =

 0 1
c 0

− 1
c 0 1

c−d

0 0 − 1
c−d

 , B(q, q) =

 2i

−4i

2α− 2i

 ,

B(q, q)

 0

0

−2α

 . (10)

The inverse of matrix (2iωE −A) at ω = c gives

(2iωE −A)−1|ω=c =


− 2i

3c
1
3c

2
3(c(2−i)+di)

− 1
3c − 2i

3c
1

3(−d+c(1+2i))

0 0 1
−d+c(1+2i)

 . (11)

Substituting Eqs. (8-11) into the first Lyapunov coefficient

ℓ1(0) =
1

2ω
Re

[
⟨p, C(q, q, q̄)⟩ − 2⟨p,B(q, A−1B(q, q̄))⟩ (12)

+⟨p,B(q̄, (2iωE −A)−1B(q, q))⟩
]
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yields

ℓ1(0) =
168c5α2 + 160c5α+ 113c5 − 144c4dα2 − 270c4dα− 255c4d

−195c7 + 543c6d− 630c5d2 + 390c4d3 − 135c3d4 + 27c2d5

+
72c3d2α2 + 170c3d2α+ 210c3d2 − 66c2d3α

−195c7 + 543c6d− 630c5d2 + 390c4d3 − 135c3d4 + 27c2d5

+
−94c2d3 + 6cd4α+ 29cd4 − 3d5

−195c7 + 543c6d− 630c5d2 + 390c4d3 − 135c3d4 + 27c2d5
. (13)

Proposition 1. If ℓ1(0) < 0, then Hopf bifurcation at the equilibrium E3 is

non-degenerate and supercritical, while ℓ1(0) > 0 gives the non-degenerate

subcritical Hopf bifurcation at E3.

Proposition 2. For d = 3.2, g = 2.2, Eq. (13) is reduced into a quadratic

equation −1.2234b2 + 0.9971b − 0.1621 with critical points bc={0.590723,
0.224301}. The points in the set bc exhibits Bautin bifurcation with the

second Lyapunov coefficient ℓ2(0) = −0.0610, using analytical formula

given in [41, Eq. 8.24, p. 344], for b = 0.590723 and ℓ2(0) = 0.1384

for b = 0.224301.

Figure 5. Bifurcation diagram of system (1) showing Hopf bifurcation
at the equilibria E3 for the variations in a.

Moreover, in Proposition 1 the conditions for various signs of Lyapunov

coefficient are possible mathematically but the existence of unstable limit

cycle in a chemical reaction system can cause unbounded growth or nega-

tive concentrations as the reasons for violating physical constraints. Hence,
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(a) (b) (c)

Figure 6. Hopf bifurcation in system (1) at the equilibria E3 for (a)
less than (b) equals to and (c) greater than Hopf bifurcation
parameter; a

consequently the physical interpretation shows impossibility of the bifur-

cation to be subcritical Hopf bifurcation. In Fig. 5, the Hopf bifurcation

parameter is selected in the range of a ∈ [0.5, 4] which is further explored

in Fig. 6, where our considered system is plotted by tuning bifurcation

parameter. It has been observed that the trajectories shows convergence

describing focus changes into center and two negligible limit cycles elabo-

rating the supercritical case.

Figure 7. Complete dynamical analysis of system (1) around Hopf bi-
furcation parameter for a ∈ [0, 8.2.4] and d ∈ [1.2, 3.9] by
plotting its (a) bifurcation diagram and (b) maximum Lya-
punov exponent.

Figure 7 shows the bifurcation diagram and maximum Lyapunov ex-

ponent for a ∈ [0.5, 2.5] and d ∈ [1.2, 3.9]. These two figures give complete
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dynamics of system around these two parameter values to explore the ex-

istence of Bautin bifurcation.

For the physical interpretation of Hopf bifurcation of system (1) at E3,

the real parameter are given in Sect. (1) where a = k1 [A1] depends on the

reaction rate k1 and the concentration of species A1, whereas d = k4 [A4]

shows dependency on the reaction rate k4 and the concentration of species

A4. Therefore, the Hopf bifurcation indicates a balance between two key

reaction processes i.e. autocatalytic production of X from A1 such that;

A1 +X ⇌ 2X and depletion of X through reaction with Z; X + Z ⇌ A3

dictates the rate at which X is removed.

Finally, at the Hopf bifurcation point a = d, these opposing processes

are in a delicate balance, leading to the onset of oscillatory behavior. When

a < d, depletion dominates, and the system remains at a stable steady

state. However, as a increases and reaches d, a supercritical Hopf bifurca-

tion occurs, resulting in small-amplitude oscillations that grow as a > d,

leading to sustained periodic variations in X,Y, and Z. In industrial reac-

tors, controlling [A1] and [A4] near a = d is essential to maintain stability

for catalytic processes. Thus, this bifurcation highlights the transition be-

tween steady-state and dynamic chemical behavior, offering insights into

reaction kinetics and pattern formation.

2.2 Hopf and Bautin bifurcations at P (c, a − bc +
c−d
α

, d−c
α

)

To analyze the Hopf bifurcation of system (1) at the equilibria P , we have

to compute the first Lyapunov coefficient ℓ1(0). For this, first we translate

P to origin O using the change of variables
x(t) = X(t) + c,

y(t) = Y (t) + a− bc+
c− d

α
,

z(t) = Z(t) +
d− c

α
.

(14)
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In view of Eq. (14), we get the following equivalent system
Ẋ = −((c+X)(bX + Y + Z)),

Ẏ = X(α(a+Y )−αbc+c−d)
α ,

Ż = (X+αZ)(c−d−αZ)
α ,

(15)

where X, Y and Z are state variables of the transformed system. The

characteristic equation of system (15) at the point O(0, 0, 0) is

h(λ) = −λ3 +Υ2λ
2 +Υ1λ+Υ0, (16)

where

Υ0 = ac2 − acd− bc3 + bc2d+
c3

α
− 2c2d

α
+

cd2

α
,

Υ1 =

(
2bc2 − ac− bcd− 2c2

α
+

2cd

α

)
,

Υ2 = c− bc− d.

Assume that Eq. (16) has a pair of pure imaginary roots λ1,2 = ±iω

(ω > 0), which leads to the bifurcation surface

c
(
abcα+ cd

(
b2α− 2b(α+ 1) + 2

)
(17)

−
(
(2b− 1)c2(bα− 1)

)
+ d2(bα− 1)

)
= 0

and

ω =

√
c

(
a+ b(d− 2c) +

2(c− d)

α

)
, (18)

such that c
(
a+ b(d− 2c) + 2(c−d)

α

)
> 0. The bifurcation surface (17)

seems complex in the presence of a lot of parameters, therefore we consider

a special case: a = 2c
α + c, b = 1

2c , d = 2c, α = c, (c > 0). Substituting

these values into Eq. (18) and the Jacobian matrix at the origin to obtain
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ω = c and

A =

 − 1
2 −c −c

c+ 1
2 0 0

−1 0 −c

 .

The four generalized vectors

q =

 c2(1− i)

−c
(
c+ 1

2

)
(1 + i)

ci

 , q =

 c2(1 + i)

c
(
c+ 1

2

)
(−1 + i)

−ci

 , (19)

and

p =


1+i

c(4ci−1+i)
1−i

c(4ci−1+i)

− i
c(4ci−1+i)

 , p =


−1+i

c(4ci+1+i)
−1−i

c(4ci+1+i)

− i
c(4ci+1+i)

 (20)

are obtained using Aq=iωq, Aq̄=−iwq̄, AT p=−iwp and AT p̄=iwp̄ [41,

Figure 8. Bifurcation diagram and Lyapunov exponents of system (1)
showing Hopf bifurcation at the equilibria P for the varia-
tions in α.

Eq. (5.26), page 196] and satisfying orthogonality condition in a complex
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field. Moreover, the following matrix is calculated

(2iωE −A)−1|ω=c =


8
3
− 4

3
i

1+σ2

2
3
+ 4

3
i

1+σ2

4
3(c(4−2i)−i)

−σ2+1+2i
σ1

c(8−4i)+1−2i
σ1

2c+1
σ1

4i
σ1

− 2
σ1

6c−1−2i
σ1

 , (21)

where σ1=3
(
c2(2 + 4i) + c

)
, σ2=c (2 + 4i) and

A−1 =

 0 2
2c+1 0

− 1
c

1
c(2c+1)

1
c

0 − 2
c(2c+1) − 1

c

 (22)

to achieve the first Lyapunov coefficient using Eq. (12)

ℓ1(0) = −
6c3

(
12c2 + 8c+ 1

)
160c4 + 112c3 + 44c2 + 8c+ 1

< 0. (23)

Eq. (23) shows that the Hopf bifurcation of system (1) at the positive

(a) (b) (c)

Figure 9. Hopf bifurcation in system (1) at the positive equilibria at
various bifurcation parameter values showing (a) stable fo-
cus changes into (b) center leading to (c) unstable focus sur-
rounded by limit cycle.

equilibria P is non-degenerate and supercritical. As α = k5 represents the

reverse reaction rate for A4 + Z ⇌ 2Z and c = k5 [A5] shows the rate

of depletion in Y due to A5 + Y ⇌ A2. Hence, the Hopf bifurcation at

α = c suggests that the balancing between these two reaction processes

elaborates whether the system remains at a steady state or undergoes

sustained oscillations. In Hopf bifurcation, the dynamical system passes

from three phases, first at α < c (before the bifurcation point): system

(1) has stable focus, meaning that the concentrations of X,Y, Z remain
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constant over time and corresponds to a region where the autocatalysis

in Z is weaker than the depletion of Y . Moving to the bifurcation point

α = c, the system undergoes a supercritical Hopf bifurcation, leading

to the emergence of stable periodic oscillations in the concentrations of

X,Y , and Z meaning that the competition between autocatalysis in Z and

depletion of Y has reached a threshold where sustained oscillations become

energetically favorable. Finally, after the bifurcation point; α > c, stable

oscillations changes their nature, meaning that the species X,Y, Z will

no longer settle down at the equilibria but will instead cycle periodically

over time. The increasing effect of autocatalysis in Z dominates over the

depletion process c, allowing self-sustained chemical oscillations.

Figure 10. Complete dynamical analysis of system (1) around Hopf
bifurcation parameter for α ∈ [0, 47.1.6] and c ∈ [1, 2] by
plotting its (a) bifurcation diagram and (b) maximum Lya-
punov exponent.

Figure 10 shows the bifurcation diagram and Lyapunov exponent that

is plotted for the variation in two parameters at a time. For α=c=1.3, there

exist Hopf bifurcation and other colors represents various other types of

bifurcation around the equilibria P . Hence, Fig. 10 shows a glimpse of

other type of bifurcations. Therefore, we extend our study to the point at



882

which Eq. (23) equals to zero i.e. ℓ1(0) = 0. Hence, computing ℓ1(0) = 0

gives c = 0, c = − 1
2 and c = − 1

6 in which all the three cases are physi-

cally impossible in system (1) due to the reason that c = k5 [ A5], where

k5 > 0 and [A5] > 0 that implies c must be positive in any realistic chem-

ical system. But mathematically, the bautin bifurcation is possible for

c = − 1
6 leading to a region where both stable and unstable limit cycles

exist, whereas the other two gives that the Jacobian matrix of the con-

sidered system is singular. In bautin bifurcation, the analytical formulas

given by Kuznetsov et al. [41] are user friendly and easy to use except the

computation of h21. The term

h21 = (iωI3 −A)−1[B(q̄, h̄20) + 2B(qh11)− 2c1q] (24)

satisfies the orthogonality condition ⟨p, h21⟩ = 0 and hence can be solved

analytically. Now, using Eqs. (17-23) along with Eq. (24) and the formulas

given in [41, pp. 343-344] into the second Lyapunov coefficient [41, Eq.

8.24, p. 344] gives ℓ2(0) = −0.4589. The sign(ℓ2) = −1, therefore, the

truncated normal form for bautin bifurcation of system (1) at the unfolding

parameters Φ1 = c and Φ2 = ℓ1(0)
0.6774 is

Ψ̇ = Ψ
(
Φ1 +Φ2Ψ

2 −Ψ4
)
, Θ̇ = 1. (25)

These unfolding parameters scales the transition between different oscilla-

tory states, meaning that small perturbations in reaction rates can induce

large qualitative changes. The Bautin bifurcation in our chemical system

indicates a highly sensitive transition between different oscillatory regimes.

The coexistence of multiple oscillatory states implies that small parame-

ter changes (e.g., reaction rates k5 and k5 [A5] ) could shift the system

between different dynamic behaviors. This has significant implications for

reaction stability, biochemical regulation, and chemical pattern formation.

In Fig. 8, the bifurcation diagram along with its corresponding Lyapunov

exponents, by bringing changing in the bifurcation parameter; α, are given

to show the existence of Hopf bifurcation at α = 1.3, whereas in Fig. 9,

the analytical results given in subsection (2.2) are verified qualitatively.

Starting from the parameter value; a less than bifurcation parameter gives
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a stable focus with all negative Lyapunov exponents that changes into a

center with double zero Lyapunov exponents exactly at the bifurcation

parameter. Moreover, exceeding the value further a deep and dense black

area, with single zero and other negative Lyapunov exponents, is observed

that by zooming can illustrate a negligible limit cycle.

Figure 11. Bautin bifurcation diagram of system (25) with a negative
second Lyapunov coefficient i.e. sign(ℓ2) = −1

Figure 11 is the bifurcation diagram of system (25) illustrating bautin

bifurcation, where H is for the Hopf bifurcation such that H = {(Φ1,Φ2),

Φ1 = 0} and P = {(Φ1,Φ2), Φ2
2 + 4Φ1 = 0} shows the semi-parabolic

curve. Starting from the point O, a stable spiral emerges where the chem-

ical concentrations of the system decay to steady values with respect to

time that changes into a stable limit cycle in the region of H indicating

supercritical Hopf bifurcation. Moving further into the region bounded by

H and P (Φ1 > 0,Φ2 > 0), the considered system remains oscillatory with

a single stable limit cycle and the oscillation amplitude gradually increases

as parameters change. Finally, the limit cycle disappears as approaches to

the region P with the aid of fold bifurcation.

In a chemical reactor, adjusting Φ1 and Φ2, that depend on reac-

tion rates and concentrations can be shifted to the system between stable
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steady-state and oscillatory reaction dynamics. Moreover, the existence of

fold bifurcation of limit cycles identifies that system (1) can switch back

to steady behavior even after oscillations. Finally, the appearance and

vanishing attitude of limit cycles relate to the spatiotemporal patterns in

such systems.

3 Conclusion

Chemical reactions are the fundamental source of combining several ob-

jects to create a new one. In some cases, the chemical reactions show

unpredictability with a negligible change in experiment pattern. Bifur-

cations are considered as mini-chaos for such sensitive dynamical models.

Therefore, in the current paper some chemical reactions (2) have been

combined to create the Williamowski-Rossler system. In the past, it was

shown that the considered system has local dynamical behavior for five

equilibrium points, whereas the positive equilibria undergoes a numerical

Hopf bifurcation. However, in the current paper, some new parametric

conditions have been presented for the positive equilibria and E3 that not

only verified Hopf bifurcation but also determined its type and Bautin

bifurcation using the first Lyapunov coefficient. In both cases, the bifur-

cations have been calculated as supercritical and discussed qualitatively in

Figs. 9 and 6.

Physically, the Hopf bifurcations at their corresponding bifurcation

points mark a critical transition point where the trajectories of a chemical

system shifted from a steady to unsteady state oscillations. The balanc-

ing between auto-catalysis and depletion were noted important factors to

this behavior. Moreover, the Bautin bifurcation in chemical system (1)

indicated a highly sensitive transition between various oscillatory regimes.

The coexistence of multiple oscillatory states implied that small parame-

ter changes shifted the system between different dynamic behaviors. The

adjustment of unfolding parameters in Bautin bifurcation had elaborated

a shifting attitude in the considered system between stable steady-state

and oscillatory reaction dynamics. In Fig. 11, the complete cycle was

described that how the emergence and vanishing of limit cycle can affect
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the dynamics of our considered dynamical system.
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