Proof of a Conjecture on Sombor Index and the Least Sombor Eigenvalue of Graphs

Kinkar Chandra Das^{*}, Chunlei Xu

^aDepartment of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

^bCollege of Mathematics Science, Inner Mongolia Minzu University, Tongliao 028000, P. R. China

kinkardas2003@gmail.com, xuchunlei1981@sina.cn

(Received December 28, 2024)

Abstract

Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G), where |V(G)| = n and |E(G)| = m. Molecular descriptors play a significant role in quantitative studies of structureproperty and structure-activity relationships. One of the popular degree-based topological indices, the Sombor index (SO), is a chemically useful descriptor. The Sombor index of a graph G is defined as

$$SO(G) = \sum_{v_i v_j \in E(G)} \sqrt{d_i^2 + d_j^2},$$

where d_i is the degree of the vertex $v_i \in V(G)$. The Sombor matrix of G, denoted by SM(G), is defined as the $n \times n$ matrix whose (i, j)-entry is $\sqrt{d_i^2 + d_j^2}$ if $v_i v_j \in E(G)$, and 0 otherwise. Let the eigenvalues of the Sombor matrix SM(G) be $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$. Very recently, Rabizadeh, Habibi and Gutman [Some notes on Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 93 (2025) 853–859] proposed a conjecture about the Sombor index of graphs, stated as follows: (a)

 $m|\sigma_n| = -m\sigma_n \ge SO(G).$

(b) If G is connected, then the equality in (a) holds if and only if G is a complete graph. In the general case, equality holds if and only

if G consists of mutually isomorphic complete graphs and some (or no) isolated vertices. In this paper, we provide a complete solution to the above conjecture.

1 Introduction

In this paper we only consider simple graphs. Let G be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G), where |V(G)| = n and |E(G)| = m. For any vertex $v_i \in V(G)$, let $N_G(v_i)$ be the set of neighbors of v_i in G. The *degree* of a vertex v_i , denoted by d_i , is the cardinality of $N_G(v_i)$. We write $v_i v_j \in E(G)$ when the vertices v_i and v_j are adjacent. Any additional notations and terminology related to graph theory used in this paper can be found in [2].

A topological descriptor is a numerical measure that captures the topology of a molecule. These descriptors are widely used to predict the physicochemical and biological properties of molecules in quantitative structureproperty relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies [22,23]. Over time, numerous degree-based topological descriptors have been proposed and extensively studied by researchers [3,4,14,15]. Recently, a new degree-based molecular structure descriptor, known as the Sombor index, was introduced. Denoted by SO(G), it is defined as [17]:

$$SO = SO(G) = \sum_{v_i v_j \in E(G)} \sqrt{d_i^2 + d_j^2},$$
 (1)

where d_i is the degree of vertex v_i . Fundamental mathematical properties of the Sombor index, such as lower and upper bounds, have been studied extensively (see, [1, 5, 6, 8–11, 13, 14, 17, 24]). This index was inspired by the geometric interpretation of the degree radius of an edge $v_i v_j$, which represents the distance from the origin to the ordered pair (d_i, d_j) .

The adjacency matrix A(G) of a graph G is a (0, 1)-square matrix of order $n \times n$, where the (i, j)-entry is 1 if $v_i v_j \in E(G)$, and 0 otherwise. The multi-set of eigenvalues of A(G) is known as the spectrum of G. Since A(G) is real and symmetric, its eigenvalues are real and can be ordered as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. The mathematical properties, particularly the extremal problems and bounds, of the eigenvalues of the adjacency matrix have been studied, see [7,12,19]. The Sombor matrix of a graph G, denoted by $SM(G) = (s_{ij})_{n \times n}$, is defined as:

$$s_{ij} = \begin{cases} \sqrt{d_i^2 + d_j^2} & \text{if } v_i v_j \in E(G), \\ 0 & \text{otherwise,} \end{cases}$$

where d_i is the degree of vertex v_i . Evidently, this matrix is also real and symmetric. We denote its eigenvalues by σ_i 's and order them as $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$. The largest eigenvalue σ_1 of SM(G) is called the "Sombor spectral radius" of G, and σ_n is the least eigenvalue of SM(G). Various paper on spectral properties of Sombor matrix, like properties of Sombor eigenvalues, Sombor spectral radius and others can be found in [16, 18, 20].

The complete graphs of order n is denoted by K_n . Denote by $H_1 \cup H_2$, the **union** of two graphs $H_1 = (V_1, E_1)$ and $H_2 = (V_2, E_2)$. The union is a graph H = (V, E), where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$.

Very recently, Rabizadeh, Habibi and Gutman [19] proposed a conjecture about the Sombor index of graphs, stated as follows:

Conjecture 1. [19]

(a)

$$m|\sigma_n| = -m\sigma_n \ge SO(G).$$

(b) If G is connected, then the equality in (a) holds if and only if G is a complete graph. In the general case, equality holds if and only if G consists of mutually isomorphic complete graphs and some (or no) isolated vertices.

In this paper, we provide a complete solution to the above conjecture.

2 Main Result

In this section, we confirm **Conjecture 1**. To achieve this, we first establish the following result:

Lemma 1. [21] Let B be a $p \times p$ symmetric matrix and let B_k be its leading $k \times k$ submatrix. Then, for i = 1, 2, ..., k,

$$\rho_{p-i+1}(B) \le \rho_{k-i+1}(B_k) \le \rho_{k-i+1}(B) \tag{2}$$

where $\rho_i(B)$ is the *i*-th greatest eigenvalue of *B*.

Theorem 1. Let G be a graph of order n with m edges. Then

$$m |\sigma_n(G)| = -m \,\sigma_n(G) \ge SO(G) \tag{3}$$

with equality holding if and only if $G \cong r K_s \cup (n-rs) K_1$, where $r (\geq 1)$ and $s (\geq 1)$ are positive integers.

Proof. If m = 0, then $G \cong n K_1$, $\sigma_n(G) = 0$ and m = 0 = SO(G). Hence the equality holds in (3). Otherwise, m > 0. Let v_1 and v_2 be vertices in G such that $v_1v_2 \in E(G)$ and

$$\sqrt{d_1^2 + d_2^2} = \max_{v_k v_\ell \in E(G)} \sqrt{d_k^2 + d_\ell^2}.$$

Then we have

$$\sqrt{d_k^2 + d_\ell^2} \le \sqrt{d_1^2 + d_2^2}$$

for any edge $v_k v_\ell \in E(G)$, that is,

$$SO(G) = \sum_{v_k v_\ell \in E(G)} \sqrt{d_k^2 + d_\ell^2} \le m \sqrt{d_1^2 + d_2^2}$$
(4)

with equality if and only if $\sqrt{d_k^2 + d_\ell^2} = \sqrt{d_1^2 + d_2^2}$ for any edge $v_k v_\ell \in E(G)$.

Setting p = n, i = 1 and k = 2 in Lemma 1, we obtain

$$\sigma_n(G) = \rho_n(SM(G)) \le \rho_2(SM_2),$$

where SM_2 is the leading 2×2 submatrix of SM(G) and $\rho_2(SM_2)$ is the smallest eigenvalue of SM_2 . Since $v_1v_2 \in E(G)$, the smallest eigenvalue $\rho_2(SM_2)$ satisfies

$$\begin{vmatrix} -\rho & \sqrt{d_1^2 + d_2^2} \\ \sqrt{d_1^2 + d_2^2} & -\rho \end{vmatrix} = 0.$$

that is,

$$\rho_2(SM_2) = -\sqrt{d_1^2 + d_2^2}.$$

Thus we have

$$\sigma_n(G) \le -\sqrt{d_1^2 + d_2^2} \le -\frac{SO(G)}{m},$$

that is, $m |\sigma_n(G)| = -m \sigma_n(G) \ge SO(G).$ (5)

The first part of the proof is done.

Suppose that equality holds in (3) with m > 0. Then all inequalities in the above argument must be equalities. In particular, from the equality in (4), we get

$$\sqrt{d_k^2 + d_\ell^2} = \sqrt{d_1^2 + d_2^2}$$
 for any edge $v_k v_\ell \in E(G)$.

Therefore $SM(G) = \sqrt{d_1^2 + d_2^2} A(G)$ and hence $\sigma_n(G) = \lambda_n(G) \sqrt{d_1^2 + d_2^2}$. From the equality in (5), we obtain

$$\sigma_n(G) = -\sqrt{d_1^2 + d_2^2}.$$

From the above results, we get $\lambda_n(G) = -1$.

First we assume that G is a connected graph. If $G \cong K_n$, then $\sigma_n(G) = -(n-1)\sqrt{2}$, $SO(G) = \frac{n(n-1)^2}{\sqrt{2}}$ and hence the equality holds in (3). Otherwise, $G \ncong K_n$. Then P_3 is an induced subgraph of G. Setting i = 1 and k = 3 in Lemma 1, we obtain

$$\lambda_n(G) = \lambda_n(A(G)) \le \lambda_3(P_3) = -\sqrt{2} < -1 = \lambda_n(G),$$

a contradiction.

Next we assume that G is disconnected. Let H_i $(1 \le i \le r)$ be the *i*-th connected component in G with n_i vertices and $m_i (> 0)$ edges such that $m_1 \ge m_2 \ge \cdots \ge m_r > 0$. Thus we have

$$G \cong H_1 \cup H_2 \cup \cdots \cup H_r \cup (n - n_1 - n_2 - \cdots - n_r) K_1.$$

Since $m_i > 0$ $(1 \le i \le r)$, by Lemma 1, one can easily see that $\lambda_n(H_i) \le -1$. Thus we have

$$-1 = \lambda_n(G) = \min_{1 \le i \le r} \lambda_{n_i}(H_i) \le -1.$$

Hence $\lambda_{n_i}(H_i) = -1$ for $1 \leq i \leq r$. Since $H_i (1 \leq i \leq r)$ is connected, from the above, we have $H_i \cong K_{n_i}$. For $1 \leq i \leq r$, we have

$$(n_i - 1)\sqrt{2} = \sqrt{d_1^2 + d_2^2}$$
 for any edge $v_k v_\ell \in E(H_i)$,

that is, $n_1 = n_2 = \cdots = n_r = s$, (say). Hence $G \cong r K_s \cup (n - rs) K_1$, where $r (\geq 1)$ and $s (\geq 2)$ are positive integers.

Conversely, let $G \cong r K_s \cup (n - rs) K_1$, where $r (\geq 1)$ and $s (\geq 2)$ are positive integers. Then $\sigma_n(G) = -\sqrt{2} (s-1)$, $m = \frac{rs(s-1)}{2}$ and $SO(G) = \frac{rs(s-1)^2}{\sqrt{2}}$. Then $m |\sigma_n(G)| = -m \sigma_n(G) = SO(G)$. This completes the proof of the theorem.

Acknowledgment: C. Xu is supported by the Doctoral Scientific Research Funds of Inner Mongolia Minzu University (BSZ013, BSZ014, BS643) and the Natural Science Foundation of Inner Mongolia Autonomous Regions (2022LHMS01006).

References

 S. Ahmad, R. Farooq, K. C. Das, The general Sombor index of extremal trees with a given maximum degree, *MATCH Commun. Math. Comput. Chem.*, in press.

- [2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, MacMillan, London, 1976.
- [3] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and extremal graphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
- [4] L. Buyantogtokh, B. Horoldagva, K. C. Das, On reduced second Zagreb index, J. Comb. Opt. 39 (2020) 776–791.
- [5] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 339 (2021) #126018.
- [6] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021) 1098–1116.
- [7] D. M. Cvetković, P. Rowlison, S. Simić, An Introduction to Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
- [8] K. C. Das, Open problems on Sombor index of unicyclic and bicyclic graphs, Appl. Math. Comput. 473 (2024) #128647.
- [9] K. C. Das, A. S. Çevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry 13 (2021) #140.
- [10] K. C. Das, A. Ghalavand, A. R. Ashrafi, On a conjecture about the Sombor index of graphs, *Symmetry* 13 (2021) #1830.
- [11] K. C. Das, I. Gutman, On Sombor index of trees, Appl. Math. Comput. 412 (2022) #126575.
- [12] K. C. Das, P. Kumar, Some new bounds on the spectral radius of graphs, *Discr. Math.* 281 (2004) 149–161.
- [13] K. C. Das, M. Imran, T. Vetrík, General Sombor index of graphs and trees, J. Discr. Math. Sci. Crypt., in press.
- [14] K. C. Das, Y. Shang, Some extremal graphs with respect to Sombor index, *Mathematics* 9 (2021) #1202.
- [15] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem. 11 (2021) #e26622.
- [16] N. Ghanbari, On the Sombor characteristic polynomial and Sombor energy of a graph, *Comput. Appl. Math.* **41** (2022) #242.
- [17] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.

- [18] S. Pirzada, B. A. Rather, K. C. Das, Y. Shang, On spectrum of Sombor matrix and Sombor energy of graphs, *Georgian Math. J.*, in press.
- [19] S. Rabizadeh, M. Habibi, I. Gutman, Some notes on Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 93 (2025) 853–859.
- [20] B. A. Rather, M. Imran, Sharp bounds on the Sombor energy of graphs, MATCH Commun. Math. Comput. Chem. 88 (2022) 605– 624.
- [21] J. R. Schott, *Matrix Analysis for Statistics*, Wiley, New York, 1997.
- [22] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- [23] N. Trinajstic, *Chemical Graph Theory*, CRC Press, Boca Raton, 1983.
- [24] C. Yang, M. Ji, K. C. Das, Y. Mao, Extreme graphs on the Sombor indices, AIMS Mathematics 7 (2022) 19126–19146.