
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 94 (2025) 825–853

ISSN: 0340–6253

doi: 10.46793/match.94-3.21724

The General Sombor Index of Extremal

Trees with a Given Maximum Degree

Sultan Ahmada,b, Rashid Farooqa, Kinkar Chandra
Dasb,∗

aSchool of Natural Sciences, National University of Sciences and

Technology, H-12, Islamabad, Pakistan
bDepartment of Mathematics, Sungkyunkwan University, Suwon 16419,

Republic of Korea

raosultan58@gmail.com, farook.ra@gmail.com, kinkardas2003@gmail.com

(Received September 26, 2024)

Abstract

The general Sombor index of a graph G, denoted by SOα(G), is
recently defined as:

SOα(G) =
∑

vivj∈E(G)

(
dG(vi)

2 + dG(vj)
2
)α

,

where dG(vi) represents the degree of vertex vi, and α is an arbitrary
real number. This study focuses on identifying extremal trees for
the general Sombor index within the class of n-vertex trees with
maximum degree ∆. We analyze the general Sombor index across
various intervals of α. Specifically, for α > 1 and α ∈ [−1, 0),
we determine the trees that maximize the general Sombor index.
Moreover, for α < 0 and α > 0, we identify the trees that minimize
the general Sombor index SOα. Finally, the characterization of
extremal trees for SOα in the remaining intervals of α remains an
open problem and presents a promising direction for future research.
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1 Introduction

Let G = (V, E) be a simple undirected graph, where V (G) and E(G)

represent the vertex set and edge set of the graph G, respectively. The

order and size of the graph, denoted by n(G) (or simply n) and m(G) (or

simply m), correspond to the number of vertices and edges in G. For a

vertex vi ∈ V (G), the degree of vi is denoted by dG(vi) (or simply di),

and the set of vertices adjacent to vi is denoted by NG(vi) (or simply Ni).

The maximum degree of a vertex in G is denoted by ∆(G) (or ∆). A

tree is a connected acyclic graph of order n, commonly referred to as an

n-vertex tree. Additionally, the path graph and star graph of order n are

denoted by Pn and Sn, respectively. Denote by T (n,∆) the collection of

all n-vertex trees with maximum degree ∆. The path Pn is the unique

element of T (n, 2), and the star Sn is the unique element of T (n, n− 1).

Molecular descriptors play a crucial role in mathematical chemistry,

particularly in QSPR /QSAR studies. Among these, the degree-based

topological indices hold a special place. Recently, Gutman [17] introduced

a new degree-based topological index grounded in geometric principles,

known as the Sombor index, defined as:

SO(G) =
∑

vivj∈E(G)

√
dG(vi)2 + dG(vj)2,

where dG(vi) is the degree of the vertex vi in G. This index has gained sig-

nificant attention, sparking extensive research into its mathematical prop-

erties [3–12, 18, 19, 22, 24, 26, 27, 29, 30, 36, 38–41] and its applications in

chemistry [14,23,26,35].

In the literature, the Randić index [2] and the sum-connectivity in-

dex [42] are widely popular in mathematical chemistry. Building on these

indices, researchers have introduced the general Randić index and the gen-

eral sum-connectivity index for graphs, offering a more versatile approach

to studying graph structures and their chemical applications. Motivated

by the above, Zhong and Hu [20] proposed the general Sombor index,
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defined as:

SOα(G) =
∑

vivj∈E(G)

(
dG(vi)

2 + dG(vj)
2
)α

,

where α is a real number. For α = 0, SO0(G) equals the number of

edges m in graph G. For a tree T with n vertices, SO0(T ) is given by

n− 1. Consequently, it is customary to require that α be non-zero. When

α = 1
2 , SO 1

2
represents the standard Sombor index, while for α = 1, SO1

corresponds to the forgotten index, denoted as F [15].

Very recently, Dehgardi and Azari [13] studied on the lower bounds of

geometric Sombor index for trees and unicyclic graphs, and also the ex-

tremal trees and unicyclic graphs that achieve the lower bound are charac-

terized. Zhong and Hu [20] explored the maximum general Sombor index

of unicyclic graphs with a specified diameter for the range 0 < α < 1.

Maiteryi et al. [28] identified both the maximum and minimum general

Sombor index among trees with a fixed number of pendant vertices when

0 < α < 1. This line of inquiry highlights a significant research focus:

characterizing extremal graphs for degree-based topological indices under

various parameters. A particular emphasis has been placed on trees within

the class T (n,∆), where extensive studies have characterized these struc-

tures for various indices. Notably, the general sum-connectivity index and

the general Randić index have been investigated across different intervals

of α; see [1,21,32–34,37] and [25,37], respectively. Inspired by these works,

this paper addresses the following extremal problem:

Problem 1. Characterize the extremal trees within T (n,∆) for the gen-

eral Sombor index SOα. Specifically:

• For α > 1 and α ∈ [−1, 0), identify the trees that maximize the SOα

index.

• For α < 0 and α > 0, determine the trees that minimize the SOα

index.

Zhou et al. [41] solved Problem 1 for α = 1
2 , focusing on minimizing

the SOα index. We address Problem 1 by analyzing α across different
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intervals, each exhibiting distinct behavior.

The structure of the paper is as follows: Section 2 introduces key con-

cepts and relevant lemmas, Section 3 presents the main results pertaining

to Problem 1, and Section 4 concludes the paper.

2 Preliminaries and supporting lemmas

This section introduces the key terms, notation, and lemmas used through-

out the paper. A d-vertex of a graph G is a vertex with degree d. Specif-

ically, a 1-vertex is called a pendant vertex (or a leaf) and the edge

incident to a 1-vertex is referred to as a pendant edge. If vivj ∈ E(G),

then G − vivj denotes the subgraph of G obtained by deleting the edge

vivj ; similarly, G + vivj denotes the graph obtained from G by adding

the edge vivj if it is not already in E(G). If vi ∈ V (G), then G − vi (or

G\{vi}) denotes the subgraph of G obtained by deleting the vertex vi and

all edges incident to it. A pendant path in a graph G is a path where one

end vertex has degree 1, the other end vertex has degree at least 3, and

all internal vertices (if any) have degree 2. The length of a pendant path

is the number of edges it contains. The distance between vertices vi and

vj in G, denoted by dG(vi, vj), is the length of the shortest path connect-

ing them. The degree sequence of a graph G, denoted by D(G), is the

sequence of vertex degrees in G listed in non-increasing order. Formally,

D(G) = (d1, d2, . . . , dn), where di represents the degree of the i-th vertex

and d1 ≥ d2 ≥ · · · ≥ dn.

Let ni(G) (or ni) be the number of vertices of degree i and eij(G) (or

eij) the number of edges between vertices of degrees i and j. The following

system of equations holds for any graph G:

i · ni(G) = 2 · eii(G) +

∆∑
j=1
j ̸=i

eij(G) (1)

for each i, where i ∈ {1, 2, . . . ,∆}. For additional notations and termi-

nologies, we refer to [16].

A tree is said to be starlike if exactly one of its vertices has degree
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greater than two. By S(a1, a2, . . . , a∆) we denote the starlike tree which

has a vertex v1 of degree ∆ ≥ 3 and which has the property

S(a1, a2, . . . , a∆)− v1 = Pa1
∪ Pa2

∪ . . . ∪ Pa∆
.

This tree has a1 + a2 + · · ·+ a∆ + 1 = n vertices and assumed that a1 ≥
a2 ≥ · · · ≥ a∆ ≥ 1. We say that the starlike tree S(a1, a2, . . . , a∆) has ∆

branches, the lengths of which are a1, a2, . . . , a∆ respectively. In particular,

for ∆ = n− 1, S(a1, a2, . . . , a∆) ∼= Sn. To formulate our results, we define

the following four trees:

• S∆,n−∆: The double star graph formed by attaching ∆− 1 pendant

vertices to one vertex of the path P2 and n−∆− 1 pendant vertices

to the other vertex of P2 (see, Fig. 1 (a)).

• Bn,∆: The broom graph constructed from S(a1, a2, . . . , a∆) by at-

taching ∆− 1 pendant vertices to one end of the path Pn−∆+1 (see,

Fig. 1 (b)).

• Tn,∆ (for n ≤ 2∆): A tree derived from S(a1, a2, . . . , a∆) by attach-

ing a pendant vertex to each of the n−∆−1 pendant vertices of the

star S∆+1 (see, Fig. 1 (c)).

• T∆: A tree formed from S(a1, a2, . . . , a∆) by attaching ∆ pendant

paths to a single vertex, with each pendant path having a length of

at least 2 (see, Fig. 1 (d)).













n−∆− 1∆− 1

(a) S∆,n−∆






∆− 1

︸ ︷︷ ︸

Pn−∆+1

(b) Bn,∆













n−∆− 12∆− n+ 1

(c) Tn,∆







∆

(d) T∆

Figure 1. The Trees S∆,n−∆, Bn,∆, Tn,∆ and T∆.
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We now present several lemmas that will be frequently applied in the

subsequent section. The following lemma is straightforward and can be

easily derived.

Lemma 1. For any x > 0, c > d ≥ 0 and real number α, consider the

function

Φ(x) = (x2 + c2)α − (x2 + d2)α.

(i) If α < 0 or α > 1, then Φ(x) strictly increases.

(ii) If 0 < α < 1, then Φ(x) strictly decreases.

Lemma 2. If x ≥ 0 and α ≥ 1, then the function

f(x) = x
[(

(x+ 1)2 + 1
)α

− (x2 + 1)α
]
+ (x2 + 1)α

strictly increases.

Proof. We obtain

f ′(x) =
(
(x+ 1)2 + 1

)α

− (x2 + 1)α + 2xα
[(

(x+ 1)2 + 1
)α−1

(x+ 1)

− x(x2 + 1)α−1
]
+ 2xα(x2 + 1)α−1.

Since α ≥ 1, it follows that
(
(x + 1)2 + 1

)α

> (x2 + 1)α, (x + 1)
(
(x +

1)2 + 1
)α−1

> x(x2 + 1)α−1 and 2xα(x2 + 1)α−1 ≥ 0. Thus f ′(x) > 0

and hence f(x) is strictly increasing on x ≥ 0 and α ≥ 1.

Lemma 3. If p > 0, t ≥ 2 and x > 1, then

(i)
(
(t+ 1)2 + p2

)x

+
(
(t− 1)2 + p2

)x

> 2 (t2 + p2)x,

(ii) t
(
(t+ 1)2 + 1

)x

+ (t− 2)
(
(t− 1)2 + 1

)x

> 2(t− 1) (t2 + 1)x.

Proof. (i) Let us consider a function

g(x) =

(
(t+ 1)2 + p2

t2 + p2

)x

+

(
(t− 1)2 + p2

t2 + p2

)x

, t ≥ 2, p > 0 and x > 1.
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Then we have

g′(x) =

(
(t+ 1)2 + p2

t2 + p2

)x

ln

(
(t+ 1)2 + p2

t2 + p2

)
+

(
(t− 1)2 + p2

t2 + p2

)x

× ln

(
(t− 1)2 + p2

t2 + p2

)
.

and

g′′(x) =

(
(t+ 1)2 + p2

t2 + p2

)x (
ln

(
(t+ 1)2 + p2

t2 + p2

))2

+

(
(t− 1)2 + p2

t2 + p2

)x

×
(
ln

(
(t− 1)2 + p2

t2 + p2

))2

> 0.

Thus g(x) is strictly convex for t ≥ 2, p > 0 and x > 1. We have g(0) = 2

and g(1) = 2
(
1 + 1

t2+p2

)
> 2. Hence g(x) > 2 for t ≥ 2, p > 0 and x > 1,

that is,
(
(t+ 1)2 + p2

)x

+
(
(t− 1)2 + p2

)x

> 2(t2 + p2)x.

(ii) Similarly, we consider

h(x) =
t

t− 1

(
(t+ 1)2 + 1

t2 + 1

)x

+
t− 2

t− 1

(
(t− 1)2 + 1

t2 + 1

)x

, t ≥ 2 and x > 1.

Then

h′′(x) =
t

t− 1

(
(t+ 1)2 + 1

t2 + 1

)x (
ln

(
(t+ 1)2 + 1

t2 + 1

))2

+
t− 2

t− 1

×
(
(t− 1)2 + 1

t2 + 1

)x (
ln

(
(t− 1)2 + 1

t2 + 1

))2

> 0.

Thus h(x) is strictly convex for t ≥ 2 and x > 1. We have h(0) = 2

and h(1) = 1
(t−1)(t2+1) [2t

2(t − 1) + 4(2t − 1)]. One can easily check that

h(1) > 2, that is,

2t2(t− 1) + 4(2t− 1) > 2(t− 1)(t2 + 1),

that is, t ≥ 2, which is always true. Thus h(x) > 2 for x > 1. So



832

t
(
(t+ 1)2 + 1

)x

+ (t− 2)
(
(t− 1)2 + 1

)x

> 2(t− 1)(t2 + 1)x.

This completes the proof.

Lemma 4. If x is any real number, then

(i) 3 · 8x − 2 · 13x − 5x < 0 for x > 0,

(ii) 2 · 8x − 5x − 20x < 0 for x > 0,

(iii) 3 · 8x − 2 · 13x − 5x > 0 for −1.5 ≤ x < 0,

(iv) 2 · 8x − 5x − 20x ≥ 0 for −1 ≤ x < 0.

Proof. Let us consider a function

f(x) = 2

(
13

8

)x

+

(
5

8

)x

, x ≥ −1.5.

Then we have

f ′(x) = 2

(
13

8

)x

ln

(
13

8

)
+

(
5

8

)x

ln

(
5

8

)
and

f ′′(x) = 2

(
13

8

)x (
ln

(
13

8

))2

+

(
5

8

)x (
ln

(
5

8

))2

> 0.

Thus f(x) is strictly convex for any real number x. We have f(−1) < 3 and

f(0) = 3. Hence f(x) > f(0) = 3 for any x > 0, that is, 3·8x−2·13x−5x <

0 for x > 0, which gives (i). Moreover, we have f(−1.5) < 3 and f(0) = 3.

Since f(x) is strictly convex, we obtain f(x) < 3 for −1.5 ≤ x < 0. This

gives 3 · 8x − 2 · 13x − 5x > 0 for −1.5 ≤ x < 0 and we obtain the result in

(iii).

Similarly, we consider

g(x) =

(
5

8

)x

+

(
5

2

)x

, x ≥ −1.



833

Then

g′′(x) =

(
5

8

)x (
ln

(
5

8

))2

+

(
5

2

)x (
ln

(
5

2

))2

> 0.

Thus g(x) is strictly convex for any real number x. We have g(−1) = 2 =

g(0). Hence g(x) > g(0) = 2 for any x > 0, that is, 2 · 8x − 5x − 20x < 0

for x > 0, which gives (ii). Moreover, we obtain g(x) ≤ 2 for −1 ≤ x < 0.

Thus, it holds 2 · 8x − 5x − 20x ≥ 0 for −1 ≤ x < 0. Hence we obtain the

result in (iv). This completes the proof.

We now discuss certain graph transformations that can either increase

or decrease the generalized Sombor index of a graph. When the graph

under consideration is clear, we will use dvi and Nvi in place of dG(vi)

and NG(vi), respectively. In diagrams, a dotted circle around a vertex

vi ∈ V (G) indicates that dvi ≥ 1.

Lemma 5. For a graph G, let w, u ∈ V (G) with dG(w) > dG(u) ≥ 2. Sup-

pose ww0, uu0 ∈ E(G), where w0 is a 1-vertex, NG(u0)\{u} = {u1, . . . , uℓ}
(ℓ ≥ 1) and u0 is not on the w − u path (see, Fig. 2). Define G1 as the

graph obtained from G by removing the edges {u0u1, . . . , u0uℓ} and adding

the edges {w0u1, . . . , w0uℓ}.

(i) If α < 0 or α > 1, then SOα(G1) > SOα(G),

(ii) If 0 < α < 1, then SOα(G1) < SOα(G).

w0 w

G

u u0

u1

uℓ

w0
w u u0

u1

uℓ

G1

Figure 2. Two graphs G and G1.

Proof. Note that w0 and u0 are the only vertices whose degrees are dif-

ferent in G and G1. We have dG1
(u0) = dG(u0) − ℓ = 1 and dG1

(w0) =

dG(w0) + ℓ = ℓ+ 1. Therefore
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SOα(G1)− SOα(G) =
(
(ℓ+ 1)2 + d2w

)α

− (1 + d2w)
α + (1 + d2u)

α

−
(
(ℓ+ 1)2 + d2u

)α

.
(2)

(i) If α < 0 or α > 1, then using Lemma 1 (i) with dw > du, (2) becomes

SOα(G1)− SOα(G) > 0.

(ii) Similarly, for 0 < α < 1, using Lemma 1 (ii) with dw > du, (2)

becomes

SOα(G1)− SOα(G) < 0.

This completes the proof of the lemma.

Lemma 6. For a graph G, let w, u ∈ V (G) with dG(w) > dG(u) ≥
2. Suppose ww0, uu0 ∈ E(G), where u0 is a 1-vertex, NG(w0)\{w} =

{w1, . . . , wℓ} (ℓ ≥ 1) and w0 is not on the w−u path (see, Fig. 3). Define

G2 as the graph obtained from G by removing the edges {w0w1, . . . , w0wℓ}
and adding the edges {u0w1, . . . , u0wℓ}.

(i) If α < 0 or α > 1, then SOα(G2) < SOα(G).

(ii) If 0 < α < 1, then SOα(G2) > SOα(G).

w0w

G

uu0 w0wuu0

w1

wℓ

w1

wℓ

G2

Figure 3. Two graphs G and G2.

Proof. Note that dG2
(w0) = 1, dG2

(u0) = ℓ+1 and dG2
(v) = dG(v) for all

v ∈ V (G)\{w0, u0}. Thus

SOα(G2)− SOα(G) =
(
(ℓ+ 1)2 + d2u

)α

− (1 + d2u)
α + (1 + d2w)

α

−
(
(ℓ+ 1)2 + d2w

)α

.
(3)
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(i) If α < 0 or α > 1, then using Lemma 1 (i) (with dw > du), we obtain

SOα(G2)− SOα(G) < 0.

(ii) For 0 < α < 1, using Lemma 1 (ii) (with dw > du), (3) becomes

SOα(G2)− SOα(G) > 0.

This completes the proof of the result.

Lemma 7. Consider the graph Qs,t with s ≥ t ≥ 2, as illustrated in Fig.

4. If α ≥ 1, then we have SOα(Qs,t) < SOα(Qs+1,t−1).













w w1wp

s− 1 t− 1

Qs,t

Figure 4. The graph Qs,t.

Proof. Let w be a p-vertex in Qs,t. Then we obtain:

SOα(Qs+1,t−1)− SOα(Qs,t)

=s
(
(s+ 1)2 + 1

)α

− (s− 1)(s2 + 1)α +
(
(s+ 1)2 + p2

)α

− (s2 + p2)α

+ (t− 2)
(
(t− 1)2 + 1

)α

− (t− 1)(t2 + 1)α +
(
(t− 1)2 + p2

)α

− (t2 + p2)α.

To begin with, note that for α = 1, the expression SOα(Qs+1,t−1) −
SOα(Qs,t) simplifies to 3(s2 − t2) + 3(s + t) (with s ≥ t ≥ 2) and is

positive. Moving on to α > 1, while keeping in mind s ≥ t ≥ 2, we have:

SOα(Qs+1,t−1)− SOα(Qs,t)

=s
[(

(s+ 1)2 + 1
)α

− (s2 + 1)α
]
+ (s2 + 1)α +

(
(s+ 1)2 + p2

)α

− (s2 + p2)α − (t− 1)(t2 + 1)α + (t− 2)
(
(t− 1)2 + 1

)α
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+
(
(t− 1)2 + p2

)α

− (t2 + p2)α.

Utilizing Lemmas 1 (i), 2 and 3, it follows that

SOα(Qs+1,t−1)− SOα(Qs,t)

≥t
(
(t+ 1)2 + 1

)α

− (t− 1)(t2 + 1)α − (t2 + p2)α +
(
(t+ 1)2 + p2

)α

+(t− 2)
(
(t− 1)2 + 1

)α

− (t− 1)(t2 + 1)α +
(
(t− 1)2 + p2

)α

− (t2 + p2)α

=t
(
(t+ 1)2 + 1

)α

+ (t− 2)
(
(t− 1)2 + 1

)α

− 2(t− 1)(t2 + 1)α

+
(
(t+ 1)2 + p2

)α

+
(
(t− 1)2 + p2

)α

− 2(t2 + p2)α > 0.

Thus the proof is done.

3 Main results

In this section we focus on the extremal graphs of SOα(T ) in the class of

T (n,∆) for ∆ ≥ 3.

Theorem 1. Let T ∈ T (n,∆) be a tree of order n and ∆ ≥ 3. Then

(i) for α > 0,

SOα(T ) ≥ SOα

(
S(a1, a2, . . . , a∆)

)
(4)

with equality if and only if T ∼= S(a1, a2, . . . , a∆),

(ii) for −1 ≤ α < 0,

SOα(T ) ≤ SOα

(
S(a1, a2, . . . , a∆)

)
(5)

with equality if and only if T ∼= S(a1, a2, . . . , a∆).

Proof. If T ∼= S(a1, a2, . . . , a∆), then the equalities in (4) and (5) hold.

Otherwise, T ≇ S(a1, a2, . . . , a∆). Then T contains at least two vertices of

degree greater than 2. Without loss of generality, we can assume that w

is a ∆-vertex, and u is the farthest vertex from w with degree p ≥ 3. Let

NT (u) = {u1, u2, . . . , up}, where up is a vertex adjacent to u lies on the

u − w path (the vertices up and w may coincide). Since u is the furthest
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vertex from w with degree p (≥ 3), the vertex u has p − 1 pendant paths

with dT (uj) ∈ {1, 2} for j = 1, 2, . . . , p− 1. Without loss of generality, we

can assume that dT (u1) ≤ dT (u2) ≤ · · · ≤ dT (up−1) ≤ dT (up). We now

distinguish three cases in (i) and (ii):

(i) Case 1: dT (u1) = dT (u2) = · · · = dT (up−1) = 1.

Then we can obtain a tree T1 ∈ T (n,∆) from T by deleting the edges

uu2, . . . , uup−1 and adding the new edges u1u2, u2u3, . . . , up−2up−1, that

is,

T1 = T − {uu2, uu3, . . . , uup−1}+ {u1u2, u2u3, . . . , up−2up−1}.

Now we have dT (u) = p, dT (uj) = 1 for j ∈ {1, . . . , p − 2}, dT1
(u) = 2,

dT1
(uj) = 2 for j ∈ {1, . . . , p − 2}, dT (up) = dT1

(up) = dup
and the

degrees of other vertices remain the same in T and T1. One can easily see

that E(T1 − {uu1, u1u2, u2u3, . . . , up−2up−1, uup}) = E(T\{u}). Thus we

obtain

SOα(T1) =
∑

xy∈E(T\{u})

(
dT1

(x)2 + dT1
(y)2

)α

+ (dT1
(up)

2 + 4)α

+

p−2∑
j=1

(
dT1(uj)

2 + dT1(uj+1)
2
)α

+
(
dT1(u)

2 + dT1(u1)
2
)α

=
∑

xy∈E(T\{u})

(
dT (x)

2 + dT (y)
2
)α

+ (p− 2) 8α + 5α

+ (dT1
(up)

2 + 4)α

and

SOα(T )

=
∑

xy∈E(T\{u})

(
dT (x)

2 + dT (y)
2
)α

+
∑

uj∈NT (u)

(
dT (u)

2 + dT (uj)
2
)α

=
∑

xy∈E(T\{u})

(
dT (x)

2 + dT (y)
2
)α

+ (p− 1)(p2 + 1)α +
(
p2 + d2up

)α

.
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From the above two results, we obtain

SOα(T1)− SOα(T ) = (4 + d2up
)α − (p2 + d2up

)α + (p− 2)[8α − (p2 + 1)α]

+ 5α − (p2 + 1)α.

Since p ≥ 3 and α > 0, it follows that

SOα(T1)− SOα(T ) < 0, that is, SOα(T ) > SOα(T1).

Case 2: When u is adjacent to at least one pendant vertex but not more

than p− 2 pendant vertices.

Without loss of generality, we can assume that u1 is a pendant vertex

and u2 is a vertex of degree 2, both of which are adjacent to u in T . Let

v1 (̸= u1) be a pendant vertex connected to u on a pendant path that

includes u2, and let v2 be adjacent to v1 (where v2 may coincide with u2).

Define T2 ∈ T (n,∆) as the graph obtained from T by deleting the edge uu1

and adding the new edge v1u1. Thus we have dT2(v1) = 2, dT2(u) = p− 1,

and the degrees of other vertices remain the same in T and T2. Then

SOα(T2)− SOα(T ) = 5α − (1 + p2)α + 8α − 5α

+

p∑
j=2

[(
(p− 1)2 + d2uj

)α

− (p2 + d2uj
)α
]
.

Since p ≥ 3 and α > 0, it follows that

SOα(T2)− SOα(T ) < 0, that is, SOα(T ) > SOα(T2).

Case 3: dT (u1) = dT (u2) = · · · = dT (up−1) = 2.

In this case we transform the tree T into T3 ∈ T (n,∆) by replacing

the p− 1 pendant paths of length at least 2 from u with a single pendant

path of length at least 2(p− 1). Thus we have dT (u) = p, dT3
(u) = 2, the

degrees of p−2 pendant vertices that are connected to u on pendant paths

in T becomes 2 in T3, and the degrees of other vertices remain the same
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in T and T3. Thus we obtain

SOα(T3)− SOα(T ) = (4 + d2up
)α − (p2 + d2up

)α + (2p− 3)8α

− (p− 1)(p2 + 4)α − (p− 2)5α

< (2p− 3)8α − (p− 1)(p2 + 4)α − (p− 2)5α (6)

as p ≥ 3. For p = 3 and α > 0, by Lemma 4 (i), from the above, we obtain

SOα(T3)− SOα(T ) < 3 · 8α − 2 · 13α − 5α < 0.

Otherwise, p ≥ 4 and α > 0, from (6), we obtain

SOα(T3)− SOα(T ) < (p− 1)[2 · 8α − 5α − (p2 + 4)α]

< (p− 1)[2 · 8α − 5α − 20α] < 0

as 8α > 5α, and by Lemma 4 (ii). Thus SOα(T ) > SOα(T3).

After applying the Cases 1−3, we obtain a tree T ′ ∈ T (n,∆). If T ′ ∼=
S(a1, a2, . . . , a∆), then we are done. Otherwise, T ′ ≇ S(a1, a2, . . . , a∆).

Then T ′ contains two vertices of degree greater than 2. Using the above

three cases we obtain T ′′ ∈ T (n,∆) from T ′. If T ′′ ∼= S(a1, a2, . . . , a∆),

then we are done. Otherwise, continuing the same procedure, finally, we

obtain

SOα(T ) > SOα(T
′) > SOα(T

′′) > · · · > SOα

(
S(a1, a2, . . . , a∆)

)
.

(ii) Cases 1 and 2 follow similarly from the proof of (i) (and are there-

fore omitted). We now proceed to discuss Case 3. In this case we have

dT (u1) = dT (u2) = · · · = dT (up−1) = 2. Using the same transformation

mentioned in Case 3 of (i), we obtain

SOα(T3)− SOα(T ) = (4 + d2up
)α − (p2 + d2up

)α + (2p− 3)8α

− (p− 1)(p2 + 4)α − (p− 2)5α

> (2p− 3)8α − (p− 1)(p2 + 4)α − (p− 2)5α (7)
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as p ≥ 3. For p = 3 and −1 ≤ α < 0, by Lemma 4 (iii), (7) becomes

SOα(T3)− SOα(T ) > 3 · 8α − 2 · 13α − 5α > 0.

Otherwise, p ≥ 4 and −1 ≤ α < 0, from (7), we obtain

SOα(T3)− SOα(T ) > (p− 1)[2 · 8α − 5α − (p2 + 4)α]

> (p− 1)[2 · 8α − 5α − 20α] ≥ 0

as 5α > 8α, and by Lemma 4 (iv). Thus SOα(T ) < SOα(T3).

By using the same arguments as given in (i), we obtain

SOα(T ) < SOα(T
′) < SOα(T

′′) < · · · < SOα

(
S(a1, a2, . . . , a∆)

)
.

This completes the proof of the theorem.

Proposition 2. Let S(a1, a2, . . . , a∆) ∈ T (n,∆) be a star-like tree of order

n and ∆ ≥ 3.

(i) If 0 < α < 1, then

SOα

(
S(a1, a2, . . . , a∆)

)

≥


(n−∆− 1)

[
5α + (∆2 + 4)α

]
+ (2∆− n+ 1)(∆2 + 1)α

if ∆ ≥ ⌊n+1
2 ⌋,

∆
[
(∆2 + 4)α + 5α

]
+ (n− 2∆− 1)8α if 3 ≤ ∆ ≤ ⌊n−1

2 ⌋

with equality if and only if S(a1, a2, . . . , a∆) ∼= Tn,∆ for ∆ ≥ ⌊n+1
2 ⌋, and

S(a1, a2, . . . , a∆) ∼= T∆ for 3 ≤ ∆ ≤
⌊
n−1
2

⌋
.
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(ii) If −1 ≤ α < 0, then

SOα

(
S(a1, a2, . . . , a∆)

)

≤


(n−∆− 1)

[
5α + (∆2 + 4)α

]
+ (2∆− n+ 1)(∆2 + 1)α

if ∆ ≥ ⌊n+1
2 ⌋,

∆
[
(∆2 + 4)α + 5α

]
+ (n− 2∆− 1)8α if 3 ≤ ∆ ≤ ⌊n−1

2 ⌋

with equality if and only if S(a1, a2, . . . , a∆) ∼= Tn,∆ for ∆ ≥ ⌊n+1
2 ⌋, and

S(a1, a2, . . . , a∆) ∼= T∆ for 3 ≤ ∆ ≤
⌊
n−1
2

⌋
.

Proof. If S(a1, a2, . . . , a∆) ∼= Tn,∆ or S(a1, a2, . . . , a∆) ∼= T∆, then the

equality holds in (i) and (ii). Otherwise, Tn,∆ ≇ S(a1, a2, . . . , a∆) ≇
T∆. Then S(a1, a2, . . . , a∆) has a pendant path of length at least 3 and a

pendant vertex adjacent to the maximum degree vertex.

Transformation I: S(a1, a2, . . . , a∆) → T1,

where T1 is a star-like tree obtained from S(a1, a2, . . . , a∆) by replacing the

pendant path of length 1 with a pendant path of length 2, and a pendant

path of length ℓ (≥ 3) with a pendant path of length ℓ−1. Then we obtain

SOα(T 1)− SOα

(
S(a1, a2, . . . , a∆)

)
= (∆2 + 4)α − (∆2 + 1)α + 5α − 8α.

(8)

(i) Setting c = 2, d = 1 in Lemma 1 (ii), it follows that Φ(∆) = (∆2 +

4)α − (∆2 + 1)α < 8α − 5α = Φ(2) as 0 < α < 1. Using this result in (8),

we obtain SOα

(
S(a1, a2, . . . , a∆)

)
> SOα(T 1).

First we assume that ∆ ≥ ⌊n+1
2 ⌋. Thus we have n ≤ 2∆, that is,

n1 + n2 + 1 ≤ 2∆ = 2n1 as T1 is a star-like tree of order n. Thus we have

n2 < n1. From this, we conclude that star-like tree T1 contains a pendant

vertex adjacent to the maximum degree vertex. If T1
∼= Tn,∆, then we are

done. Otherwise, T1 ≇ Tn,∆. Then T1 contains a pendant path of length

ℓ ≥ 3. Using the same Transformation I, we obtain star-like tree T2

from star-like tree T1. Similarly, we get SOα(T1) > SOα(T 2). Continuing
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the same procedure, finally, we obtain

SOα

(
S(a1, a2, . . . , a∆)

)
> SOα(T 1) > SOα(T 2) > · · · > SOα(Tn,∆),

where

SOα(Tn,∆) = (n−∆− 1)
[
5α + (∆2 + 4)α

]
+ (2∆− n+ 1)(∆2 + 1)α.

Next we assume that 3 ≤ ∆ ≤
⌊
n−1
2

⌋
. Thus we have n1 + n2 + 1 =

n ≥ 2∆ + 1 = 2n1 + 1, that is, n2 ≥ n1. If n2 = n1, then T1
∼= T∆.

Otherwise, n2 ≥ n1 + 1. Then star-like tree T1 has a path of length at

least 3. For T1
∼= T∆, we are done. Now we suppose that T1 ≇ T∆. Then

T1 has a pendant vertex adjacent to the maximum degree vertex. Using

the same Transformation I, we obtain star-like tree T ′
2 from star-like

tree T1. Similarly, we get SOα(T1) > SOα(T
′
2). Continuing the same

procedure, finally, we obtain

SOα

(
S(a1, a2, . . . , a∆)

)
> SOα(T 1) > SOα(T

′
2) > · · · > SOα(T∆),

where

SOα(T∆) = ∆
[
(∆2 + 4)α + 5α

]
+ (n− 2∆− 1)8α.

(ii) Setting c = 2, d = 1 in Lemma 1 (i), it follows that Φ(∆) = (∆2 +

4)α− (∆2+1)α > 8α− 5α = Φ(2) as −1 ≤ α < 0. Using this result in (8),

we obtain SOα

(
S(a1, a2, . . . , a∆)

)
< SOα(T 1).

For ∆ ≥ ⌊n+1
2 ⌋, by using the same arguments as given in the proof of

(i), we obtain

SOα

(
S(a1, a2, . . . , a∆)

)
< SOα(T 1) < SOα(T 2) < · · · < SOα(Tn,∆).

For 3 ≤ ∆ ≤
⌊
n−1
2

⌋
, by using the same arguments as given in the proof

of (i), we obtain

SOα

(
S(a1, a2, . . . , a∆)

)
< SOα(T 1) < SOα(T 2) < · · · < SOα(T∆).
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Thus the proof is complete.

Corollary 1. Let S(a1, a2, . . . , a∆) ∈ T (n,∆) be a star-like tree of order

n and ∆ ≥ 3.

(i) If S(a1, a2, . . . , a∆) with minimum SOα for 0 < α < 1 contains a

pendant path of length 1, then it does not contain a pendant path longer

than 2.

(ii) If S(a1, a2, . . . , a∆) with maximum SOα for −1 ≤ α < 0 contains a

pendant path of length 1, then it does not contain a pendant path longer

than 2.

The next theorem directly follows from Theorem 1 and Proposition 2.

Theorem 3. Let T ∈ T (n,∆) be a tree of order n and ∆ ≥ 3.

(i) If 0 < α < 1, then

SOα(T ) ≥


(n−∆− 1)

[
5α + (∆2 + 4)α

]
+ (2∆− n+ 1)(∆2 + 1)α

if ∆ ≥ ⌊n+1
2 ⌋,

∆
[
(∆2 + 4)α + 5α

]
+ (n− 2∆− 1)8α if 3 ≤ ∆ ≤ ⌊n−1

2 ⌋

with equality if and only if T ∼= Tn,∆ for ∆ ≥ ⌊n+1
2 ⌋, and T ∼= T∆ for

3 ≤ ∆ ≤
⌊
n−1
2

⌋
.

(ii) If −1 ≤ α < 0, then

SOα(T ) ≤


(n−∆− 1)

[
5α + (∆2 + 4)α

]
+ (2∆− n+ 1)(∆2 + 1)α

if ∆ ≥ ⌊n+1
2 ⌋,

∆
[
(∆2 + 4)α + 5α

]
+ (n− 2∆− 1)8α if 3 ≤ ∆ ≤ ⌊n−1

2 ⌋

with equality if and only if T ∼= Tn,∆ for ∆ ≥ ⌊n+1
2 ⌋, and T ∼= T∆ for

3 ≤ ∆ ≤
⌊
n−1
2

⌋
.

Theorem 4. Let T ∈ T (n,∆) be a tree of order n and 3 ≤ ∆ ≤ n− 2. If

α > 1, then

SOα(T ) ≥ (∆− 1)(∆2 + 1)α + (∆2 + 4)α + (n−∆− 2)8α + 5α
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with equality if and only if T ∼= Bn,∆.

Proof. First we prove the following result:

Claim 1.

SOα

(
S(a1, a2, . . . , a∆)

)
≥ (∆− 1)(∆2 + 1)α + (∆2 + 4)α

+ (n−∆− 2)8α + 5α (9)

with equality if and only if S(a1, a2, . . . , a∆) ∼= Bn,∆.

Proof of Claim 1. If S(a1, a2, . . . , a∆) ∼= Bn,∆, then we obtain

SOα(S(a1, a2, . . . , a∆)) = (∆−1)(∆2+1)α+(∆2+4)α+(n−∆−2)8α+5α

and hence the equality holds in (9). Otherwise, S(a1, a2, . . . , a∆) ≇ Bn,∆.

Then S(a1, a2, . . . , a∆) contains at least two pendant paths of length ℓ1 ≥ 2

and ℓ2 ≥ 2, respectively. Let T1 be a star-like tree derived from S(a1, a2,

. . . , a∆) by replacing the pendant path of length ℓ1 ≥ 2 with a pendant

path of length 1, and the pendant path of length ℓ2 ≥ 2 with a pendant

path of length ℓ1 + ℓ2 − 1. Then we obtain

SOα(T 1)− SOα

(
S(a1, a2, . . . , a∆)

)
= (∆2 + 1)α − (∆2 + 4)α

+ 8α − 5α.
(10)

Setting c = 2, d = 1 in Lemma 1 (i), it follows that Φ(∆) = (∆2 + 4)α −
(∆2 +1)α > 8α − 5α = Φ(2) as α > 1. Using this result in (10), we obtain

SOα

(
S(a1, a2, . . . , a∆)

)
> SOα(T 1). If T1

∼= Bn,∆, then the inequality in

(9) holds strictly. Otherwise, T1 ≇ Bn,∆. Then T1 contains at least two

pendant paths of length greater than 1. Using the above transformation

we obtain star-like tree T2 from star-like tree T1. Similarly, we obtain

SOα(T1) > SOα(T 2). By continuing the same procedure for a sufficient

number of times, finally, we obtain

SOα

(
S(a1, a2, . . . , a∆)

)
> SOα(T 1) > SOα(T 2) > · · · > SOα(Bn,∆),
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where

SOα(Bn,∆) = (∆− 1)(∆2 + 1)α + (∆2 + 4)α + (n−∆− 2)8α + 5α,

which gives the Claim 1.

By Theorem 1(i), we obtain SOα(T ) ≥ SOα

(
S(a1, a2, . . . , a∆)

)
with

equality if and only if T ∼= S(a1, a2, . . . , a∆). This result with Claim 1,

we get the lower bound on SOα(T ). Moreover, the equality holds if and

only if T ∼= Bn,∆.

We now focus on establishing the lower and upper bounds for trees in

T (n,∆) with respect to the SOα index for α < 0 and α > 1, respectively.

Note that the following result, which is useful for determining the bounds

we are focusing on:

Proposition 5. Let T ∈ T (n,∆) be a tree. If ∆ ≥
⌈
n
2

⌉
, then the maxi-

mum degree vertex w is adjacent to at least one pendant vertex.

Proof. Assume to the contrary that there is no pendant vertex adjacent

to the maximum degree vertex w. This implies that every neighbor of

w is adjacent to at least one vertex other than w. Consequently, w, its

∆ neighbors, and the vertices adjacent to these ∆ neighbors (excluding

w) account for at least 2∆ + 1 vertices. However, this contradicts the

condition that ∆ ≥
⌈
n
2

⌉
. Therefore, we conclude that w must have at

least one pendant neighbor.

Theorem 6. Let T ∈ T (n,∆) be a tree of order n and 3 ≤
⌈
n
2

⌉
≤ ∆ ≤

n− 2. If α > 1, then

SOα(T ) ≤ (∆− 1)(∆2 + 1)α + (n−∆− 1)
(
(n−∆)2 + 1

)α

+
(
(n−∆)2 +∆2

)α

.

Equality occurs if and only if T ∼= S∆,n−∆.

Proof. Let T ′ ∈ T (n,∆) be a tree with 3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n − 2 such that

SOα(T
′) is maximum for α > 1. Let w ∈ V (T ′) be a ∆-vertex, where
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∆ ≥
⌈
n
2

⌉
≥ 3. According to Proposition 5, let w0 be a pendant vertex

adjacent to w. We now proceed with the following claims:

Claim 2. Each non-pendant neighbor of w has w as its only non-pendant

neighbor.

Proof of Claim 2. Suppose, for the sake of contradiction, that there exists

a non-pendant neighbor u of w which has another non-pendant neighbor

u0 distinct from w in T ′. Let NT ′(u0)\{u} = {u1, . . . , uℓ}, where ℓ ≥ 1.

Since T ′ contains at least ∆ pendant vertices and ∆ ≥
⌈
n
2

⌉
, it follows

that dT ′(u) ≤ n − ∆ − 1 ≤
⌊
n
2

⌋
− 1 < ∆ = dT ′(w). We can construct

a tree T1 ∈ T (n,∆) by deleting the edges u0u1, . . . , u0uℓ and adding the

new edges w0u1, . . . , w0wℓ in T ′. By Lemma 5, it follows that SOα(T1) >

SOα(T
′), which contradicts as SOα(T

′) is maximum. This proves the

Claim 2.

Claim 3. The vertex w has a unique non-pendant neighbor.

Proof of Claim 3. Assume to the contrary that w1 with degree s ≥ 2 and

wp with degree t ≥ 2 are the neighboring vertices of w in T ′. Without loss

of generality, assume that s ≥ t. According to Claim 2, both NT ′(w1)

and NT ′(wp) include only one non-pendant neighbor, which is w. This

implies that T ′ ∼= Qs,t (see, Fig. 4). By Lemma 7, it follows that

SOα(T
′) = SOα(Qs,t) < SOα(Qs+1,t−1) < · · · < SOα(Qs+t−1,1).

Furthermore, taking into account the inequality (s−1)+(t−1)+(∆+1) ≤ n

and the assumption ∆ ≥
⌈
n
2

⌉
, it follows that s+ t−1 ≤ n−∆ ≤

⌊
n
2

⌋
≤ ∆.

Thus Qs+t−1,1 ∈ T (n,∆) with SOα(Qs+t−1,1) > SOα(T
′), contradicting

the maximality of SOα(T
′). Therefore, w must have a unique non-pendant

neighbor. This proves the Claim 3.

Hence the Claims 2 and 3 together imply that T ′ is isomorphic to

S∆,n−∆. By direct calculations, we get

SOα(S∆,n−∆) = (∆− 1)(∆2 + 1)α + (n−∆− 1)
(
(n−∆)2 + 1

)α

+
(
(n−∆)2 +∆2

)α

.
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Thus the result is established.

Theorem 7. Let T ∈ T (n,∆) be a tree with order n and 3 ≤
⌈
n
2

⌉
≤ ∆ ≤

n− 2. If α < 0, then

SOα(T ) ≥ (∆− 1)(∆2 + 1)α + (n−∆− 1)
(
(n−∆)2 + 1

)α

+
(
(n−∆)2 +∆2

)α

with equality if and only if T ∼= S∆,n−∆.

Proof. Let T ′ ∈ T (n,∆) be a tree with 3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n − 2 such that

SOα(T
′) is minimum for α < 0. Let w ∈ V (T ′) be a ∆-vertex, where

∆ ≥ 3. According to Proposition 5, let w′ be a pendant vertex adjacent

to w. We now proceed with the following claims:

Claim 4. The vertex w has a unique non-pendant neighbor.

Proof of Claim 4. Let u be a non-pendant vertex adjacent to a pendant

vertex u0 in T ′. Suppose, contrary to the claim, that w has at least two

non-pendant neighbors. This implies the existence of at least one non-

pendant vertex w0 ∈ NT ′(w) such that w0 does not lie on the w − u path

(the vertices u and w may adjacent). Let NT ′(w0)\{w} = {w1, . . . , wℓ},
where ℓ ≥ 1. Since T ′ contains at least ∆ pendant vertices and ∆ ≥

⌈
n
2

⌉
,

it follows that dT ′(u) ≤ n − ∆ − 1 ≤
⌊
n
2

⌋
− 1 < ∆ = dT ′(w). We can

construct a tree T1 ∈ Tn,∆ by deleting the edges w0w1, . . . , w0wℓ and

adding the new edge u0w1, . . . , u0wℓ in T ′. By applying Lemma 6, we

obtain that SOα(T1) < SOα(T
′). This contradicts the assumption that

SOα(T
′) is minimum. This proves the Claim 4.

From Claim 4, T ′ − w contains only one non-trivial component. We

denote this unique non-trivial component of T ′ − w as X.

Claim 5. The component X of T ′ − w is a star.

Proof of Claim 5. Suppose, for the sake of contradiction, that there exist

at least one non-pendant edge uu′ ∈ E(T ′) (where u and u′ are distinct

from w) such that dT ′(w, u) is as large as possible, and u has only one

non-pendant neighbor u′. Let dT ′(u) = t ≥ 2 and dT ′(u′) = s ≥ 2. Let

u1, u2, . . . , ut−1 be the all pendant neighbors of u. We now define a tree
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T2 ∈ T (n,∆) by removing the edges uu1, . . . , uut−1 and adding the new

edges u′u1, . . . , u
′ut−1 in T ′. Note that dT2

(u) = 1, dT2
(u′) = s+ t−1 and

dT2
(vi) = dT ′(vi) = dvi for all vi ∈ V (T ′)\{u, u′}. Then

SOα(T
′)− SOα(T2)

=(t− 1)
[
(1 + t2)α −

(
1 + (s+ t− 1)2

)α]
−

(
(s+ t− 1)2 + 1

)α

+ (s2 + t2)α

+
∑

vi∈NT ′ (u′)\{u}

[
(d2vi + s2)α −

(
d2vi + (s+ t− 1)2

)α]
.

Since α < 0 and 1 + t2 < 1 + (s + t − 1)2, it follows that (1 + t2)α >(
1 + (s + t − 1)2

)α

. Similarly, (d2v + s2)α > (d2v + (s + t − 1)2)α, and

(s2+t2)α >
(
(s+t−1)2+1

)α (
(s+t−1)2+1 > s2+t2, that is, st+1 > s+t,

which is true as s ≥ 2, t ≥ 2
)
. Therefore SOα(T

′) > SOα(T2), which

contradicts the assumption that SOα(T
′) is minimum. This proves the

Claim 5.

Thus from Claims 4 and 5, it follows that T ′ is isomorphic to S∆,n−∆.

Direct calculations yield

SOα(S∆,n−∆) = (∆− 1)(∆2 + 1)α + (n−∆− 1)
(
(n−∆)2 + 1

)α

+
(
(n−∆)2 +∆2

)α

.

This completes the proof of the theorem.

4 Concluding remarks

Within this work, we identified the trees that maximize the SOα index for

−1 ≤ α < 0 and α > 1, as well as those that minimize the SOα index for

α < 0 and α > 0. We also characterized the pertinent extremal trees.

By Theorem 1, the tree S(a1, a2, . . . , a∆) ∈ T (n,∆) minimizes the SOα

index for α > 0 with degree sequence (∆, 2, . . . , 2︸ ︷︷ ︸
n−∆−1

, 1, . . . , 1︸ ︷︷ ︸
∆

). Specifically,
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for α = 1 we have SO1 = F . So

F
(
S(a1, a2, . . . , a∆)

)
=

∑
vivj∈E(S(a1,a2,...,a∆))

(d2vi + d2vj )

=
∑

vi∈V (S(a1,a2,...,a∆))

d3vi = ∆3 + 8n− 7∆− 8.

To maximize SO1 = F =
∑

vi∈V (T ) d
3
vi(T ), a tree with degrees x and

y (where x ≤ y) yields a smaller SO1 than one with degrees x − 1 and

y + 1. Among trees with given n and
⌈
n
2

⌉
≤ ∆ ≤ n − 2, a tree with

the degree sequence (∆, n−∆, 1, . . . , 1︸ ︷︷ ︸
n−2

) maximizes SO1 = F , represented

uniquely by S∆,n−∆. The following table summarizes our main results.

and highlights key findings for future study.

α Maximizes SOα Minimizes SOα

(−∞, 0)

Tn,∆ if −1 ≤ α < 0 and⌊
n+1
2

⌋
< ∆ ≤ n− 1

T∆ if 3 ≤ ∆ ≤
⌊
n−1
2

⌋
S∆,n−∆ if

3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n− 2

(0, 1) ?
Tn,∆ if

⌊
n+1
2

⌋
< ∆ ≤ n− 1

T∆ if 3 ≤ ∆ ≤
⌊
n−1
2

⌋
{1} S∆,n−∆ if 3 ≤

⌈
n
2

⌉
≤ ∆ ≤ n− 2

S(a1, a2, . . . , a∆) if

3 ≤ ∆ ≤ n− 1

(1,∞) S∆,n−∆ if 3 ≤
⌈
n
2

⌉
≤ ∆ ≤ n− 2 Bn,∆ if 3 ≤ ∆ ≤ n− 2

Table 1. Trees maximize and minimize the SOα index in T (n,∆) for
different intervals of α.

The characterization of extremal trees for SOα index in the remaining

intervals of α remains an open problem and presents a promising direction

for future research.
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