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Abstract

The atom-bond sum-connectivity (ABSC) index of a graph G is

defined as ABSC(G) =
∑

uv∈E(G)

√
du+dv−2
du+dv

, where du and dv rep-

resent the degrees of u and v in G, respectively. In this paper, we
give some sharp bounds for the ABSC index in terms of the first
Zagreb index, the harmonic index, the sum-connectivity index, the
minimum and maximum degrees, the clique number, and the chro-
matic number. We also find a lower bounds for the ABSC index of
trees with given number of vertices and maximum degree.

1 Introduction

In chemical graph theory, vertices correspond to atoms, and edges cor-

respond to bonds in a molecule. Using graphs, one can capture essential

features of molecular structures and explore how they affect various chem-

ical properties and behaviors [5, 8]. In graph-theoretical terms, a number
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represents graph’s structure is called a topological index. To measure the

degree of branching of saturated hydrocarbons, in 1975 Randić introduced

the Randić (R) index [28]. For a graph G the Randić index is defined as:

R(G) :=
∑

uv∈E(G)

1√
dudv

, (1)

where du and dv represent the degrees of u and v in G, respectively.

Estrada et al. [15] modified the Randić index by taking into considera-

tion not only the degrees of the end-vertices of the edges, but also the de-

grees of the edges by introducing the atom-bond connectivity (ABC) index

of graphs. This parameter was studied in the papers [1,6,9,12–14,17,19,22].

The ABC index of a graph G is defined as:

ABC(G) :=
∑

uv∈E(G)

√
du + dv − 2

dudv
. (2)

A probabilistic interpretation of theABC index is given in [14]. It indicates

that the terms defining this index represent the probability of visiting a

nearest neighbor edge from one side or the other of a given edge in a graph.

On the other side, Zhou et al. [31] modified the Randić index by re-

placing dudv with du + dv in the formula (1), and named this new index

the sum-connectivity index. For a graph G, the sum-connectivity (SC)

index is defined as:

SC(G) :=
∑

uv∈E(G)

1√
du + dv

. (3)

By amalgamating the core idea of the atom-bond connectivity index

and sum-connectivity index, Ali et al. [2, 3] proposed the atom-bond sum-

connectivity (ABSC) index of graphs. The ABSC index of a graph G is

defined as:

ABSC(G) :=
∑

uv∈E(G)

√
du + dv − 2

du + dv
. (4)
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The formula (4) can also be written as:

ABSC(G) :=
∑

uv∈E(G)

√
1− 2

du + dv
. (5)

Several authors have been attracted towards the ABSC index in the last

few years for example [4, 10, 11, 21, 23, 25–27, 30]. All these papers are

related to extreme bounds for the ABSC index of graphs.

Let Tn be the set of trees with n vertices and Tn,∆ be the set of trees

with n vertices and maximum degree ∆. Denote by Pn and Sn the path

and star with n vertices, respectively. A pendent vertex in a graph is a

vertex with degree one. A pendent vertex in a tree is also called a leave.

A stem is a vertex adjacent to a pendent vertex. A strong stem is a stem

adjacent to at least two pendent vertices. An end-stem is a stem whose all

neighbors, except at most one, are pendent vertices. A vertex’s progenitor

(parent vertex) in a rooted tree is the vertex connected to it along the

path to the root. The term clique number of a graph G refers to the

number of vertices in a largest clique (the set of vertices with all pairs

adjacent) and it is denoted as α(G). The chromatic number of a graph

G is the least number of colors required to color all of its vertices while

ensuring that no two neighboring vertices receive the same color. This

number is represented by the symbol χ(G). For convenience, we will use

I(uv) =
√
1− 2

du+dv
. Some significant results that will assist us in proving

our primary findings are provided below.

Lemma 1. ( [2]) Let n ≥ 4 and T ∈ Tn. Then ABSC(T ) ≥ ABSC(Pn),

the equality holds if and only if T ∼= Pn.

A well-known inequality, the Diaz-Metcalf inequality, was first pub-

lished in [24].

Lemma 2. ( [24]) Let ai and bi, where i = 1, 2, . . . , n, be real numbers

such that Aai ≤ bi ≤ Bai for each i = 1, 2, . . . , n with 0 < A ≤ B. Then

(A+B)

n∑
i=1

aibi ≥
n∑

i=1

b2i +AB

n∑
i=1

a2i ,
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the equality holds if and only if either bi = Aai or bi = Bai for each

i = 1, 2, . . . , n.

Lemma 3. ( [20]) Let a and b be real numbers such that a ≥ b ≥ 0. Then
√
a− b ≥

√
a−

√
b, the equality holds if and only if a = b or b = 0.

Lemma 4. ( [29]) Let G be a connected Kq+1-free graph of order n and

having m edges. Then

m ≤
(
1− 1

q

)
· n

2

2
,

the equality holds if and only if G is a complete q-partite graph in which

all classes are of equal cardinality.

For a graph G, the harmonic (H) index is defined as [16]:

H(G) :=
∑

uv∈E(G)

2

du + dv
. (6)

Lemma 5. ( [7]) Let G be a simple graph with chromatic number χ(G)

and harmonic index H(G). Then χ(G) ≤ 2H(G), the equality holds if

and only if G is a complete graph possibly with some additional isolated

vertices.

The remainder of this paper is organized as follows: In Section 2, we

obtain certain lower bounds for the ABSC index of graphs, specifically

the least ABSC index of trees with a given maximum degree. In Section

3, we give some upper bounds for the ABSC index of graphs. In Section

4, we conclude our paper.

2 Lower bounds for the ABSC index of

graphs

In this section, we will find lower bounds for the atom-bond sum-

connectivity index of graphs.
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Theorem 1. Let G be a connected graph with m edges, maximum degree

∆ and minimum degree δ. Then

m

√
δ − 1

∆
≤ ABSC(G) ≤ m

√
∆− 1

δ
,

the equality holds if and only if G is a regular graph.

Proof. For uv ∈ E(G), we have√
du + dv − 2

du + dv
=

√
1

du + dv
·
√
du + dv − 2.

It follows from√
2 (δ − 1) ≤

√
du + dv − 2 ≤

√
2 (∆− 1)

and √
1

2∆
≤
√

1

du + dv
≤
√

1

2δ

Thus,

m

√
δ − 1

∆
≤ ABSC(G) ≤ m

√
∆− 1

δ
.

Since δ = ∆ only holds when G is a regular graph and vice versa, the

equalities only hold when G is a regular graph.

The first Zagreb (M1) index [18] of a graph G is defined as:

M1(G) :=
∑

uv∈E(G)

(du + dv) . (7)

Theorem 2. Let G be a connected graph with m edges, maximum degree

∆ and minimum degree δ ≥ 2. Then

ABSC(G) ≥
M1(G) + 2

√
δ∆(δ − 1)(∆− 1)H(G)− 2m

2
(√

δ(δ − 1) +
√
∆(∆− 1)

) , (8)

the equality holds if and only if G is a regular graph.
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Proof. We know that√
2(δ − 1) ≤

√
du + dv − 2 ≤

√
2(∆− 1),√

1

du + dv

√
2δ
√
2(δ − 1) ≤

√
du + dv − 2 ≤

√
1

du + dv

√
2∆
√

2(∆− 1),

and√
1

du + dv
2
√

δ(δ − 1) ≤
√
du + dv − 2 ≤

√
1

du + dv
2
√
∆(∆− 1).

Setting 2
√
δ(δ − 1) as A, 2

√
∆(∆− 1) as B ,

√
1

du+dv
as ai and

√
du + dv − 2 as bi, by Lemma 2 we have

ABSC(G) =∑
uv∈E(G)

√
1

du + dv
·
√
du + dv − 2

=

[
2
√

δ(δ − 1) + 2
√

∆(∆− 1)
]

2
√

δ(δ − 1) + 2
√

∆(∆− 1)

∑
uv∈E(G)

(√
1

du + dv
·
√
du + dv − 2

)

≥

[ ∑
uv∈E(G)

(du + dv − 2) +
(
4
√

δ(δ − 1)
√

∆(∆− 1)
)( ∑

uv∈E(G)

1
du+dv

)]
2
√

δ(δ − 1) + 2
√

∆(∆− 1)

=
M1(G) + 2

√
δ∆(δ − 1)(∆− 1)H(G)− 2m

2
(√

δ(δ − 1) +
√

∆(∆− 1)
) .

This completes the proof.

Theorem 3. Let G be a graph with n vertices and m edges. Then

ABSC(G) ≥ m−
√
2 SC(G), (9)

the equality holds if and only if G ∼= n
2K2 (n is even).

Proof. By Lemma 3, we have

ABSC(G) =
∑

uv∈E(G)

√
1

du + dv
·
√
du + dv − 2
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≥
∑

uv∈E(G)

√
1

du + dv
·
(√

du + dv −
√
2
)

=
∑

uv∈E(G)

−
∑

uv∈E(G)

√
2

du + dv

= m−
√
2SC(G),

where the equality holds if and only ifG ∼= n
2K2 (n is even). This completes

the proof.

Corollary. Let G be a graph with n vertices, m edges and minimum degree

δ. Then

ABSC(G) ≥ m

(
1− 1√

δ

)
,

the equality holds if and only if G ∼= n
2K2(n is even).

Proof. Since

SC(G) =
∑

uv∈E(G)

1√
du + dv

≤ m√
2δ

, (10)

from Theorem 3, we get the required result. Moreover the equality holds

in (10) if and only if G ∼= n
2K2(n is even).

Now we will find the minimum value of the ABSC index of T ∈ Tn,∆.
We apply some transformations to streamline the problem of minimizing

the ABSC index of T ∈ Tn,∆. From this point on, we assume that T is

a rooted tree with root r and that r is a vertex with maximum degree ∆

and N(r) = {r1, r2, . . . , r∆}.

Theorem 4. Let n ≥ 5 and T ∈ Tn,∆. Then we have

ABSC(T ) ≥
∆
(√

∆
∆+2

+
√

1
3

)
+

√
2

2
(n− 2∆− 1) , ∆ ≤ n−1

2
;

(n−∆− 1)
(√

∆
∆+1

+
√

1
3

)
+ (2∆− n+ 1)

√
∆−1
∆+1

, ∆ > n−1
2

.

Before we prove Theorem 4, we need to prove a few supporting results.
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Figure 1. The trees T and T ∗ in the proof of Lemma 6.

Lemma 6. Let T ∈ Tn,∆ be a rooted tree and r be the root vertex of T

with dT (r) = ∆. If there is an end-stem with degree at least three other

than the root vertex r in T , then there exists a tree T ∗ with |V (T ∗)| = n

and ∆(T ∗) = ∆, such that ABSC(T ) > ABSC(T ∗).

Proof. Let u ̸= r be an end-stem of T with dT (u) = t ≥ 3. Suppose

that v is the parent vertex of u and N(u) = {v, u1, u2, . . . , ut−1}. Let

Ω = {uv, uu1, uu2, . . . , uut−1} and T ∗ = T − {uu1, uu2, . . . , uut−2} +

{u1u2, u2u3, . . . , ut−2ut−1}. Then |V (T ∗)| = n and ∆(T ∗) = ∆, thus

we have

ABSC(T ) =
∑
uv/∈Ω

I(uv) +
∑
uv∈Ω

I(uv)

=
∑
uv/∈Ω

I(uv) +

√
1− 2

t+ dT (v)
+ (t− 2)

√
1− 2

t+ 1

+

√
1− 2

t+ 1

and

ABSC(T ∗) =
∑
uv/∈Ω

I(uv) +

√
1− 2

2 + dT (v)
+ (t− 2)

√
1− 2

2 + 2
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+

√
1− 2

2 + 1
.

Now using dT (u) = t ≥ 3, we get

ABSC(T )−ABSC(T ∗) ≥

√
1− 2

t+ dT (v)
−

√
1− 2

2 + dT (v)

+

√
1− 2

t+ 1
−
√
1− 2

2 + 1
> 0.

r

r1

u1

z

zi

v

u

T

Ti
r

r1

u1

z

zi

v

u

T ∗

Figure 2. The trees T and T ∗ in the proof of Lemma 7.

Lemma 7. Let T ∈ Tn,∆ be a rooted tree and r is the root vertex of T

with dT (r) = ∆. If there is a stem with degree at least three other than

the root vertex r in T , then there exists a tree T ∗ with |V (T ∗)| = n and

∆(T ∗) = ∆, such that ABSC(T ) > ABSC(T ∗).

Proof. Let u ̸= r be a stem of T with dT (u) = t ≥ 3 and N(u) =
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{v, u1, u2, . . . , ut−1} where vertex u1 is the parent of u and v is a pendent

vertex in T . If u is an end-stem, then by Lemma 6, the conclusion holds.

Thus we can assume that u is a stem, but not an end-stem. Let rri ∈ E(T )

and Ti be the component of T − rri containing ri. Let zi ∈ V (Ti) be one

pendent vertex with maximum distance from ri in Ti and vertex z is a

parent of zi. If dT (z) ≥ 3, then by Lemma 6, we can obtain a contra-

diction. Thus dT (z) = 2. Let Ω = {zzi, uv, uu1, uu2, . . . , uut−1} and

T ∗ = T − uv + vzi. Then |V (T ∗)| = n and ∆(T ∗) = ∆, thus we have

ABSC(T ) =
∑
uv/∈Ω

I(uv) +
∑
uv∈Ω

I(uv)

=
∑
uv/∈Ω

I(uv) +

√
1− 2

1 + t
+

√
1− 2

1 + 2

+

t−1∑
i=1

√
1− 2

dT (ui) + t

and

ABSC(T ∗) =
∑
uv/∈Ω

I(uv) +

√
1− 2

2 + 2
+

√
1− 2

1 + 2

+
t−1∑
i=1

√
1− 2

dT (ui) + t− 1
.

Now using dT (u) = t ≥ 3, we get

ABSC(T )−ABSC(T ∗) =

√
1− 2

1 + t
−
√
1− 2

2 + 2

+

t−1∑
i=1

√
1− 2

dT (ui) + t

−
t−1∑
i=1

√
1− 2

dT (ui) + t− 1
> 0.
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Figure 3. The trees T and T ∗ in the proof of Lemma 8.

Lemma 8. Let T ∈ Tn,∆ be a rooted tree and r be the root vertex of T

with dT (r) = ∆. If there is a vertex with degree at least three other than

the root vertex r in T , then there exists a tree T ∗ with |V (T ∗)| = n and

∆(T ∗) = ∆, such that ABSC(T ) > ABSC(T ∗).

Proof. Let u ̸= r be a vertex with dT (u) = t ≥ 3 such that dT (u, r)

is as large as possible. Assume N(u) =
{
u0
1, u

0
2, . . . , u

0
t−1, ut

}
, and ut

is the parent of vertex u. Let rri ∈ E(T ) and Ti be the component

of T − rri containing ri. Suppose that the path u0
iu

1
i . . . u

li
i is the longest

path in Ti starting from u0
i where i = 1, 2, l . . . , t−1. Further suppose that

qi ∈ V (Ti) is a pendent vertex such that dTi
(ri, qi) is maximum. Let q be

the parent of vertex qi. Now we can suppose that qi /∈
{
ul1
1 , . . . , u

lt−2

t−2

}
.

By Lemmas 6 and 7 and that dT (u, r) is as large as possible, dT (q) = 2

and all descendants of u except pendent vertices, have degree two. We

distinguish three cases:
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Case 1. t = 3.

Let T ∗ = T − uu0
1 + qiu

0
1. Then we have |V (T ∗)| = n and ∆(T ∗) = ∆.

Let Ω =
{
qiq, uu

0
1, uu

0
2, uu3

}
. Then we have

ABSC(T ) =
∑
uv/∈Ω

I(uv) +
∑
uv∈Ω

I(uv)

=
∑
uv/∈Ω

I(uv) +

√
1− 2

3 + 2
+

√
1− 2

3 + 2

+

√
1− 2

3 + dT (u3)
+

√
1− 2

2 + 1

and

ABSC(T ∗) =
∑
uv/∈Ω

I(uv) +

√
1− 2

2 + 2
+

√
1− 2

2 + 2

+

√
1− 2

2 + dT (u3)
+

√
1− 2

2 + 2
.

Thus,

ABSC(T )−ABSC(T ∗) > 2

√
1− 2

3 + 2
+

√
1− 2

2 + 1
−3

√
1− 2

2 + 2
> 0.

Case 2. t = 4.

Let T ∗ = T − uu0
1 + qiu

0
1. Then we have |V (T ∗)| = n and ∆(T ∗) = ∆.

Let Ω =
{
qiq, uu

0
1, uu

0
2, uu

0
3, uu4

}
. Then we have

ABSC(T ) =
∑
uv/∈Ω

I(uv) +
∑
uv∈Ω

I(uv)

=
∑
uv/∈Ω

I(uv) + 3

√
1− 2

4 + 2
+

√
1− 2

4 + dT (u4)

+

√
1− 2

2 + 1
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and

ABSC(T ∗) =
∑
uv/∈Ω

I(uv) + 2

√
1− 2

3 + 2
+ 2

√
1− 2

3 + 2
+

√
1− 2

3 + dT (u4)
.

Thus,

ABSC(T )−ABSC(T ∗) > 3

√
1− 2

4 + 2
− 2

√
1− 2

3 + 2
+

√
1− 2

2 + 1

− 2

√
1− 2

2 + 2
> 0.

Case 3. t ≥ 5.

For t ≥ 5, we consider further two cases, qi ̸= u
lt−1

t−1 and qi = u
lt−1

t−1 . First

we consider qi ̸= ut−1
t−1. Let Ω =

{
uu0

i , u
li
i u

li−1
i | 1 ≤ i ≤ t− 1

}
∪{qiq, uut}.

Let T ∗ = T−
{
uu0

1, uu
0
2, l . . . , uu

0
t−1

}
+
{
u0
1qi, u

0
2u

l1
1 , u

0
3u

l2
2 , l . . . , u

0
t−1u

lt−2

t−2

}
.

Then we have |V (T ∗)| = n and ∆(T ∗) = ∆. Thus we have

ABSC(T ) =
∑
uv/∈Ω

I(uv) +
∑
uv∈Ω

I(uv)

=
∑
uv/∈Ω

I(uv) + (t− 1)

√
1− 2

2 + 1
+

√
1− 2

2 + 1

+ (t− 1)

√
1− 2

t+ 2
+

√
1− 2

t+ dT (ut)

and

ABSC(T ∗) =
∑
uv/∈Ω

I(uv) + (t− 1)

√
1− 2

2 + 2
+

√
1− 2

2 + 1

+ (t− 1)

√
1− 2

2 + 2
+

√
1− 2

1 + dT (ut)
.

Thus,

ABSC(T )−ABSC(T ∗) > (t− 1)

[√
1

3
+

√
1− 2

t+ 2
−

√
2

]
> 0, for t ≥ 5.

Now suppose that qi = u
lt−1

t−1 . Let T ∗ = T − {uu0
1, uu

0
2, l . . . , uu

0
t−2} +
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{u0
1qi, u

t1
1 u0

2, u
l2
2 u

0
3, l . . . , u

lt−3

t−3 u
0
t−2}. Then |V (T ∗)| = n and ∆(T ∗) = ∆.

Let Ω =
{
uu0

i , u
li
i u

li−1
i | 1 ≤ i ≤ t− 1

}
∪ {uut}. Then we have

ABSC(T ) =
∑
uv/∈Ω

I(uv) +
∑
uv∈Ω

I(uv)

=
∑
uv/∈Ω

I(uv) + (t− 1)

√
1− 2

1 + 2
+ (t− 1)

√
1− 2

t+ 2

+

√
1− 2

t+ dT (ut)

and

ABSC(T ∗) =
∑
uv/∈Ω

I(uv) + (t− 2)

√
1− 2

2 + 2
+

√
1− 2

1 + 2

+ (t− 1)

√
1− 2

2 + 2
+

√
1− 2

2 + dT (ut)
.

Thus,

ABSC(T )−ABSC(T ∗) > (t− 2)

(√
1

3
−
√

1

2

)

+ (t− 1)

(√
1− 2

t+ 2
−
√

1

2

)
> 0, for t ≥ 5.

This completes the proof.

A spider is a tree with only one vertex whose degree is greater than

two and that vertex is called the central vertex of the spider. A leg in

a spider is a path from the vertex with maximum degree to one pendent

vertex.

Lemma 9. Let T be a spider with n vertices and k ≥ 3 legs. If there is a

leg of length larger than two and a leg of length one. Then there exists a

spider T ∗ with k legs and n vertices such that ABSC(T ) > ABSC(T ∗).

Proof. Let T be a spider and r be the central vertex and root of T . Also,

we let NT (r) = {r1, r2, . . . , rk}. Without loosing the generality, we can
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suppose that rky1y2. . . . yl is the most longest leg of spider T . Consider a

set Ω = {r1r, ylyl−1, yl−2yl−1}. Let T ∗ = T − ylyl−1 + r1yl. Then we have

ABSC(T ) =
∑
uv/∈Ω

I(uv) +
∑
uv∈Ω

I(uv)

=
∑
uv/∈Ω

I(uv) +

√
1− 2

k + 1
+

√
1− 2

1 + 2
+

√
1− 2

2 + 2

and

ABSC(T ∗) =
∑
uv/∈Ω

I(uv) +

√
1− 2

k + 2
+

√
1− 2

1 + 2
+

√
1− 2

1 + 2
.

Thus,

ABSC(T )−ABSC(T ∗) =

√
1− 2

k + 1
−
√
1− 2

k + 2
+

√
1− 2

2 + 2

−
√
1− 2

1 + 2
> 0, for k ≥ 3.

This completes the proof.

Now we can prove Theorem 4 by using the above lemmas.

Proof of Theorem 4. Let T ∗ ∈ Tn,∆ (n ≥ 5) and ABSC(T ∗) =

min {ABSC(T ) | T ∈ Tn,∆, n ≥ 5}. Let r be the root of T ∗ with ∆T ∗ =

∆. If ∆ = 2, then T ∼= Pn. By Lemma 1, the conclusion holds. We

may suppose ∆ ≥ 3. By our choice of T ∗ as minimum of ABSC(T ), we

conclude from Lemmas 6, 7 and 8 that T ∗ is a spider having central vertex

r. Further we have two cases now:

Case 1. All legs of T ∗ have length at least two.

It is obvious ∆ ≤ n−1
2 , thus

ABSC(T ∗) = ∆

√
1− 2

∆ + 2
+∆

√
1− 2

1 + 2

+ (n− 2∆− 1)

√
1− 2

2 + 2
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= ∆

(√
∆

∆+ 2
+

√
1

3

)
+

√
2

2
(n− 2∆− 1) .

Case 2. All legs of T ∗ have length at most 2.

From Case 1, we can suppose that T ∗ has at least one leg of length 1.

If T ∗ is a star graph then the result will be obvious, so suppose that T ∗

is not a star graph. Then the number of leaves in NT∗(r) are 2∆ + 1− n

and we have:

ABSC(T ) = (2∆− n+ 1)

√
1− 2

∆ + 1
+ (n−∆− 1)

√
1− 2

∆ + 2

+ (n−∆− 1)

√
1− 2

1 + 2

= (n−∆− 1)

(√
∆

∆+ 1
+

√
1

3

)
+ (2∆− n+ 1)

√
∆− 1

∆ + 1
,

which completes our arguments. ■

3 Upper bounds for the ABSC index of

graphs

In this section, we will consider some upper bounds for the atom-bond

sum-connectivity index of graphs.

Theorem 5. Let G be a connected graph having n vertices, m edges,

maximum degree ∆, minimum degree δ, and clique number α. Then

ABSC(G) ≤ n2 (α− 1)

2α

√
∆− 1

δ
, (11)

the equality holds if and only if G is a complete α-partite graph in which

all classes are of equal cardinality.

Proof. We know that

ABSC(G) =
∑

uv∈E(G)

√
1− 1

du + dv
≤ m

√
∆− 1

δ
,
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since G has a clique number α, so G is Kα+1-free graph. By Lemma 4, we

get

m ≤ n2 (α− 1)

2α
,

so from the above arguments we get our required result. Suppose that the

equality holds in (11). We can conclude that G is a complete α-partite

graph in which all the classes are of equal cardinality.

Conversely, if G is a complete α-partite graph in which all the classes

are of equal cardinality, then

ABSC(G) =
n2 (α− 1)

2α

√
∆− 1

δ
,

which completes our arguments.

Lemma 10. ( [2]) Let G be a graph with m egdes. Then

ABSC(G) ≤
√

m (m−H(G)), (12)

the equality holds if and only if either m = 0 or there is a fixed number k′

such that du + dv = k′ for every edge uv ∈ E(G).

Theorem 6. Let G be a simple graph with m edges and chromatic number

χ(G). Then

ABSC(G) ≤ m

√
1− χ(G)

2m
,

the equality holds if and only if G is a complete graph possibly with the

some additional isolated vertices.

Proof. By Lemmas 5 and 10, we have

χ(G)

2
≤ m2 − (ABSC(G))

2

m
,

(ABSC(G))
2 ≤ m2 − mχ(G)

2
,

ABSC(G) ≤ m

√
1− χ(G)

2m
.

This completes the proof.
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4 Conclusions

In this paper, we first presented some lower bounds for the ABSC

index of graphs especially for the trees with given maximum degree. Then

we gave some upper bounds for the ABSC index of graphs. We found

sharp bounds in terms of different graph parameters such as the first Za-

greb index, the harmonic index, the sum-connectivity index, the minimum

and maximum degrees, the clique number, and the chromatic number. The

problem of finding the maximum ABSC index of trees with given maxi-

mum degree and characterizing the extremal trees remain to be resolved

in the future.
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