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Abstract

The ABS (atom-bond sum-connectivity) index of a graph G is
given by the formula:

ABS(G) =
∑

xy∈E(G)

√
dx + dy − 2

dx + dy
,

where dx denotes the degree of vertex x in the graph G. The primary
objective of this research paper is to identify the maximum, and
second-maximum ABS index among all unicyclic graphs with a fixed
girth. Additionally, we provide a characterization of the specific
graphs that attain these extreme ABS values.
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1 Introduction

Let G be a connected, undirected, simple graph with precisely n vertices.

The neighborhood set and degree of a vertex x in G are N(x) and d(x),

respectively. A pendent vertex is a vertex of degree 1. An edge incident

with a pendent vertex is called a pendent edge. Let G − x represent the

resulting graph from G after removing a vertex x and all of its incident

edges. Similarly, G − xy represents the resulting graph from G after re-

moving the edge xy ∈ E(G). On the other hand, G + xy represents the

resulting graph from G by adding an edge xy between two non-adjacent

vertices x and y of G. Additionally, the renaming of entity B as A is

indicated by the notation A := B.

Chemical graph theory [27], an essential field within Mathematical

Chemistry, is dedicated to representing and examining chemical structures

through mathematical models. Within this field, topological indices play a

vital role in establishing links between molecular structures and the prop-

erties crucial for advancing computer-aided drug design [11, 17]. Among

these indices, the atom-bond sum-connectivity (ABS) index stands out,

expressing connectivity patterns in molecular graphs as real-number val-

ues. The ABS index has garnered considerable attention in literature ow-

ing to its capability to provide valuable insights into the structure-property

relationship of chemical compounds. Through the quantification of molec-

ular connectivity features, the ABS index serves as a mathematical tool

for comprehending and predicting the chemical and physical properties of

molecules.

Various topological indices based on degrees have been introduced,

as extensively discussed in [13, 16]. Among these, the atom-bond sum-

connectivity (ABS) index represents a novel approach, formulated by in-

corporating fundamental concepts from the atom-bond connectivity

(ABC) index and sum-connectivity (SC) index. This modified index first

introduced by Furtula et al. [13] in 2013, represents a novel perspective on

quantifying molecular structure. Ali et al. [5] have also defined the ABS

index for a simple connected graph G, expressed as follows:
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ABS(G) =
∑

xy∈E(G)

√
dx + dy − 2

dx + dy
.

They explored the properties of trees with the extremal ABS index

values compared to all other chemical trees of a specified order n ≥ 11.

Expanding on this research, Ali et al. [6], extended the application of ABS

to unicyclic graphs, determining both the maximum and minimum ABS

index values for unicyclic graphs of the same order and size. In a related

study, Gowtham and Gutman [15] established several inequalities that de-

scribe the relationship between the SC and ABS indices. Additionally,

Alraqad et al. [9, 10] characterized extremal trees and certain classes of

graphs with a fixed order, number of pendent vertices, chromatic number,

and independence number. Furthermore, [18, 25], provided a comprehen-

sive solution for the largest ABS index observed in trees with a fixed

number of leaves and matching number and diameter.

In our earlier investigation [24], we identified the first four minimum

ABS indices for unicyclic graphs with a specified girth, highlighting the

graphs that exhibit these extremal values. For a more comprehensive ex-

ploration of the ABS index and its implications in the realm of chemistry,

interested readers can refer to the additional references [1–3,7, 8, 22,24].

In [14], Ge et al. derived a relationship between the ABS(L(G)) and

ABS(G). They also identified the minimum ABS index among all line

graphs of unicyclic graphs with a fixed number of vertices. Hussain et

al. [19] established the sharp bounds for ABS index in terms of graph

invariants. The study also derived a lower bound for the ABS index

specifically for trees with the maximum degree. Additionally, in a recent

publications [20,30], authors determined both upper and lower bounds for

the ABS index of graphs by using the fixed parameters, which included

the chromatic number, clique number, connectivity, matching number and

domination number. Very recently, in [23], we determined the minimum

values of ABS index among all unicyclic graphs of a given order with max-

imum degree, also we characterized the extremal graphs attaining these
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minimum values.

Motivated by [24], in this study, we obtain the maximum, and second-

maximum ABS index of unicyclic graphs that consist of at least 5 vertices

and girth R, where (3 ≤ R ≤ n). Additionally, we provide a characteriza-

tion of the extremal graphs that correspond to these values.

Consider Un to be collection of all unicyclic graphs with n ≥ 5 vertices.

In a similar manner, the collection of all unicyclic graphs that have at least

5 vertices and girth R, where 3 ≤ R ≤ n is known as Un,R. It is observed
that, Un =

⋃n
R=3 Un,R. The cycle comprising n vertices is denoted by Cn

and unique unicyclic graph comprising n vertices and girth n−1 is denoted

by U1
n,n−1. It is evident that Un,n = {Cn} and Un,n−1 =

{
U1
n,n−1

}
. In

the subsequent arguments, we will specifically focus on the cases where

(3 ≤ R ≤ n− 2).

2 The maximum and second-maximum ABS

index among Un,R

In the following part, we will discuss the maximum and second-maximum

ABS index for graphs that belong to the set Un,R, as well as the extremal

graphs that corresponds to those graphs. Additionally, we determine the

extremal graph that has the second-maximum ABS index for graphs Un.
First, we will examine two lemmas.

Lemma 1. (i) Define f(p) =

√
2

b+ p
−
√

2

b+ p− 1
. Consider a integer

b ≥ 3 holds true for p ≥ 1, the function f is decreasing.

(ii) Define g(p) = 2

√
p

p+ 2
+ (p− 4)

√
p− 1

p+ 1
− (p− 3)

√
p− 2

p
. For p ≥ 3,

the function g is increasing.

(iii) Define h(p) =

√
p

p+ 2
+ (p− 3)

√
p− 1

p+ 1
− (p− 3)

√
p− 2

p
. For p ≥ 3,

the function h is increasing.

(iv) Define m(p) = −
√
p− 1

p+ 1
− 2

√
1

p(p+ 2)3
− (p− 3)

√
1

(p− 1)(p+ 1)3
+
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p+ 1

p

)√
p− 2

p
. For p ≥ 3, the function m is increasing.

(v) Define o(p) = −2

√
1

(p− 1)(p+ 1)3
− (p−4)

√
1

(p− 2)p3
+

√
p− 2

p3
. For

p ≥ 3, the function o is decreasing.

Proof. (i) consider the derivative function

f ′(p) =

√
1

(b+ p)3(b+ p− 2)
−

√
1

(b+ p− 1)3(b+ p− 3)

is negative-valued under the specified constraints.

(ii) consider the derivative function

g′(p)=2

√
1

p(p+2)3
+(p2+p−5)

√
1

(p+1)3(p−1)
−(p2−p−3)

√
1

p3(p−2)

is positive-valued under the specified constraints.

(iii) consider the derivative function, for p ≥ 3.

h′(p)=

√
1

p(p+2)3
+(p2+p−4)

√
1

(p+1)3(p−1)
−(p2−p−3)

√
1

p3(p−2)

is positive-valued under the specified constraints.

(iv) Consider the derivative function,

m′(p) =− 2

√
1

(p− 1)(p+ 1)3
+ 2(2p+ 1)

√
1

p3(p+ 2)5

+ (2p− 1)(p− 3)

√
1

(p− 1)3(p+ 1)5
+ 3

√
1

p5(p− 2)

is positive-valued under the specified constraints.

(v) Consider the derivative function,

o′(p) =2(2p− 1)

√
1

(p− 1)3(p+ 1)5
−
(
4p2 + 6p

p2(p− 2)

)√
1

p3(p− 2)

is negative-valued under the specified constraints.
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w′w

G1 G′
1

Figure 1. Transformation 1: Graphs G1 and G′
1 in Lemma 2

The proof of Lemma 2.1 in [6] does not require the condition of degrees.

Consequently, Lemma 2.1 can be refined to yield the following result.

Lemma 2. [6] Let G1 be a connected graph that is not trivial. Let x

and y be vertices such that there exists an edge xy ∈ E(G1). Furthermore,

dG1(x), dG1(y) ≥ 2 and NG1(x)∩NG1(y) = ∅. The graph G′
1 is constructed

by merging the edge xy into a new vertex w and then attaching a new

pendent edge ww′ to w. (Refer to Figure 1 for a visual representation of

these graphs). Then ABS(G1) < ABS(G′
1).

The graph Ln,R is defined as a unicyclic graph comprising n vertices,

where n−R pendent edges are connected to a single vertex x of the cycle

CR, for all 3 ≤ R ≤ n − 2. (Refer to Figure 2 for a visual representation

of these graphs).

CR
x n−R C3 x

y

n− 4 CR
x

y

n−R

Ln,R(3 ≤ R ≤ n− 2) L∗
n,3 L∗

n,R(4 ≤ R ≤ n− 2)

Figure 2. The graphs Ln,R, L∗
n,3 and L∗

n,R (3 ≤ R ≤ n− 2)
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Theorem 1. Let G ∈ Un,R. Then

ABS(G) ≤ (n− R)

√
n− R+ 1

n− R+ 3
+ 2

√
n− R+ 2

n− R+ 4
+ (R− 2)

√
1

2

with equality if and only if G ∼= Ln,R.

Proof. The theorem will be established through a mathematical induction

process based on n. If n = R+ 2 (i.e.,R = n− 2), then

ABS(Ln,n−2) = 2

√
3

5
+ 2

√
2

3
+ (R− 2)

√
1

2

= (n− R)

√
n− R+ 1

n− R+ 3
+ 2

√
n− R+ 2

n− R+ 4
+ (R− 2)

√
1

2
,

therefore the theorem is valid for n = R + 2. Hence, we proceed by as-

suming that n > R+2 and the theorem is applicable for smaller n values.

Additionally, for the sake of convenience, we make the assumption that G

possesses the maximum ABS index compared to all other graphs within

Un,R.
Consider a pendent vertex w ∈ V (G) and an edge yw ∈ E(G). The ver-

tex y has a degree ψ ≥ 2, given that G ∈ Un,R, which implies ψ ≤ n−R+2.

We define N(y) = {w, y1, ..., yψ−1} where each yi has a degree ψi (i.e.,

d(yi) = ψi) for each 1 ≤ i ≤ ψ − 1. Notably, within the set {y1, ..., yψ−1},
there is at least one vertex that has a degree greater than or equal to 2.

If only one vertex in {y1, ..., yψ−1}, say x, has a degree greater than or

equal to 2. According to Lemma 2, there is a graph G′ ∈ Un,R such that

ABS(G) < ABS(G′). However, this contradicts our initial assumption

that G has the maximum ABS index among all graphs in Un,R.
Hence, it follows that there must be at least 2 vertices in the set

{y1, ..., yψ−1} that have a degree of at least 2 (and thus ψ ≥ 3). Con-

sequently, we define G′′ as the graph obtained by deleting vertex w from

G, i.e., G′′ := G− w, it follows that G′′ ∈ Un−1,R.

Utilizing Lemma 1 (i) and (ii) along with the assumption from the

induction hypothesis, we can derive the following.
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ABS(G)=ABS(G′′)+

ψ−1∑
i=1

[√
ψ + ψi−2

ψ+ψi
−

√
(ψ − 1) + ψi − 2

(ψ − 1) + ψi

]
+

√
ψ − 1

ψ + 1

≤ABS(G′′)+

√
ψ−1

ψ+1
+2

√
ψ

ψ+2
−2

√
ψ−1

ψ+
+(ψ−3)

[√
ψ−1

ψ+1
−

√
ψ− 2

ψ

]

= ABS(G′′) + 2

√
ψ

ψ + 2
+ (ψ − 4)

√
ψ − 1

ψ + 1
− (ψ − 3)

√
ψ − 2

ψ

≤ (n− 1− R)

√
(n− 1)− R+ 1

(n− 1)− R+ 3
+ 2

√
(n− 1)− R+ 2

(n− 1)− R+ 4
+ (R− 2)

√
1

2

+ 2

√
ψ

ψ + 2
+ (ψ − 4)

√
ψ − 1

ψ + 1
− (ψ − 3)

√
ψ − 2

ψ

≤ (n− R− 1)

√
n− R

n− R+ 2
+ 2

√
n− R+ 1

n− R+ 3
+ (R− 2)

√
1

2

+ 2

√
n−R+2

n−R+4
+(n− R−2)

√
n− R+ 1

n− R+ 3
−(n− R− 1)

√
n−R

n− R+2

= (n− R)

√
n− R+ 1

n− R+ 3
+ 2

√
n− R+ 2

n−R+ 4
+ (R− 2)

√
1

2

equality occurs if and only if G′′ is isomorphic to Ln−1,R, where d(y) =

ψ = n − R + 2, with exactly 2 vertices in {y1, ..., yψ−1} have a degree of

2, while the remaining (ψ − 3) vertices in {y1, ..., yψ−1} have a degree of

1. In other words, G ∼= Ln,R. Therefore, Ln,R is the unique graph within

the set Un that exhibits the maximum ABS index among all graphs.

To determine the second-maximum ABS index among the graphs in

Un,R, we will need to utilize some additional lemmas.

Transformation 2: Let H be a connected graph that is nontrivial. Let

xy ∈ E(H) such that dH(x) = dH(y) = 2. Additionally, the other neigh-

bors of x and y have a degree of at least 2 in H. Now create a new graph

G2 from H by connecting µ − 2 pendent edges to x and ψ − 2 pendent

edges to y (where µ ≥ ψ ≥ 3), respectively. Additionally, create another

graph G′
2 from H by connecting the µ+ψ− 4 pendent edges to x. (Refer

to Figure 3 for a visual representation of these graphs.)
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G2 G′
2

y x

ww′

µ+ ψ − 4ψ − 2 µ− 2

ww′

y x

Figure 3. Illustration of Transformation 2

Lemma 3. Let G2 and G′
2 be the graphs in Figure 3. Then ABS(G2) <

ABS(G′
2).

Proof. Consider that NH(x) = {y, w} where dH(w) = s ≥ 2, and NH(y) =

{x,w′} where dH(w′) = t ≥ 2. Given that (µ ≥ ψ ≥ 3), then

ABS(G2)−ABS(G′
2)

=

(
(µ− 2)

√
µ− 1

µ+ 1
+

√
µ+ s− 2

µ+ s
+(ψ − 2)

√
ψ − 1

ψ + 1
+

√
ψ + t− 2

ψ + t

)

−

(
(µ−2)

√
µ+ψ−3

µ+ψ−1
+

√
µ+ψ+s−4

µ+ψ+s−2
+(ψ−2)

√
µ+ψ−3

µ+ψ−1
+

√
t

2+t

)

=(µ−2)

(√
µ−1

µ+1
−

√
µ+ψ−3

µ+ψ−1

)
+

(√
µ+s−2

µ+s
−

√
µ+ ψ + s− 4

µ+ ψ + s− 2

)

+(ψ − 2)

(√
ψ − 1

ψ + 1
−

√
µ+ ψ − 3

µ+ ψ − 1

)
+

(√
ψ + t− 2

ψ + t
−
√

t

2 + t

)

≤ (ψ−2)

(√
ψ−1

ψ+1
−

√
µ+ψ−3

µ+ ψ − 1

)
+

(√
ψ

ψ + 2
−
√

1

2

)

if µ = ψ = 3, then

ABS(G2)−ABS(G′
2) =

(√
1

2
−
√

3

5

)
+

(√
3

5
−
√

1

2

)
= 0
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So we can consider that µ ≥ 4 and ψ ≥ 3. Hence

ABS(G2)−ABS(G′
2)

≤ (ψ − 2)

(√
ψ − 1

ψ + 1
−

√
µ+ ψ − 3

µ+ ψ − 1

)
+

(√
ψ

ψ + 2
−
√

1

2

)
< 0

Therefore, ABS(G2)−ABS(G′
2) < 0

G3 G′
3

xy x

ww′
ww′

yµ−2ψ−2 ψ−3 µ−1

Figure 4. Illustration of Transformation 3

Transformation 3: Let H be a connected graph that is nontrivial. Let

xy ∈ E(H) such that dH(x) = dH(y) = 2, and their remaining neighbors

in H also have a degree of 2 . Now create a new graph G3 from H by

connecting µ− 2 pendent edges to x and ψ− 2 pendent edges to y, where

(µ ≥ ψ ≥ 3), respectively. Additionally, create another graph G′
3 from

H by connecting µ− 1 and ψ − 3 pendent edges to x and y, respectively.

(Refer to Figure 4 for a visual representation of these graphs.)

Lemma 4. Let G3 and G′
3 be the graphs in Figure 4. Then ABS(G3) <

ABS(G′
3).

Proof. Using Lemma 1 (iii), for p ≥ 3 the function h(p) is increasing

function. Given that µ ≥ ψ ≥ 3, then
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ABS(G3)−ABS(G′
3)

=

(
(µ− 2)

√
µ− 1

µ+ 1
+

√
µ

µ+ 2
+ (ψ − 2)

√
ψ − 1

ψ + 1
+

√
ψ

ψ + 2

)

−

(
(µ− 1)

√
µ

µ+ 2
+

√
µ+ 1

µ+ 3
+(ψ − 3)

√
ψ − 2

ψ
+

√
ψ − 1

ψ + 1

)

=

(√
ψ

ψ + 2
+ (ψ − 3)

√
ψ − 1

ψ + 1
− (ψ − 3)

√
ψ − 2

ψ

)

−
(√

µ+ 1

µ+ 3
+ (µ− 2)

√
µ

µ+ 2
− (µ− 2)

√
µ− 1

µ+ 1

)
= h(ψ)− h(µ+ 1) < 0

Therefore ABS(G3)−ABS(G′
3) < 0.

G4 G′
4

xy x

ww′ ww′

yµ−2ψ−2 ψ−3 µ−1

Figure 5. Illustration of Transformation 4

Transformation 4: Let H be a connected graph that is nontrivial. Let

two distinct vertices x and y have a degree of 2 and such that xy /∈ E(H).

Additionally, the remaining neighbors of x and y in H also have a degree

of 2. Now create a new graph G4 from H by connecting µ − 2 pendent

edges to x and ψ − 2 pendent edges to y where (µ ≥ ψ ≥ 3), respectively.

Additionally, create another graphG′
4 fromH by connecting µ−1 and ψ−3

pendent edges to x and y. (Refer to Figure 5 for a visual representation

of these graphs.)

Lemma 5. Let G4 and G′
4 be the graphs in Figure 5. Then ABS(G4) <

ABS(G′
4).
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Proof. Using Lemma 1 (ii), for p ≥ 3 the funtion g(p) is increasing. Since

µ ≥ ψ ≥ 3, then

ABS(G4)−ABS(G′
4)

=

(
(µ− 2)

√
µ− 1

µ+ 1
+2

√
µ

µ+ 2
+(ψ − 2)

√
ψ − 1

ψ + 1
+2

√
ψ

ψ + 2

)

−

(
(µ−1)

√
µ

µ+2
+2

√
µ+1

µ+3
+(ψ−3)

√
ψ−2

ψ
+2

√
ψ − 1

ψ + 1

)

=

(
2

√
ψ

ψ + 2
+ (ψ − 4)

√
ψ − 1

ψ + 1
− (ψ − 3)

√
ψ − 2

ψ

)

−
(
2

√
µ+ 1

µ+ 3
+ (µ− 3)

√
µ

µ+ 2
− (µ− 2)

√
µ− 1

µ+ 1

)
= g(ψ)− g(µ+ 1) < 0

Therefore ABS(G4)−ABS(G4
′) < 0.

ψ
y

CR

x
µ CR

x

y
ψ

n−R−1−ψ

L1
n,R L2

n,R

Figure 6. The graph sets L1
n,R and L2

n,R (3 ≤ R ≤ n− 2)

We consider two sets of unicyclic graphs comprising n vertices for 3 ≤
R ≤ n − 2. The first set denoted by L1

n,R consists of graphs created by

attaching µ and ψ pendent edges (µ ≥ ψ ≥ 1 and µ + ψ = n − R) to

two distinct vertices x and y of the cycle CR, respectively. The second

set of unicyclic graphs comprising n vertices denoted by L2
n,R created by

connecting ψ pendent edges (1 ≤ ψ ≤ n−R− 1) to a pendent vertex y of

Ln−ψ,R (as shown in Figure 6 for visual representation).
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Lemma 6. Let G ∈ L1
n,R

(i) If R = 3, then

ABS(G) ≤ (n− 4)

√
n− 3

n− 1
+

√
n− 1

n+ 1
+

√
n− 2

n
+

√
1

2
+

√
3

5

maintains equality holds if and only if ψ = 1.

(ii) If 4 ≤ R ≤ n− 2, then

ABS(G) ≤(n−R−1)

√
n−R

n−R+2
+2

√
n− R+ 1

n− R+ 3
+(R− 3)

√
1

2
+2

√
3

5

maintains equality holds if and only if xy /∈ E(G) and ψ = 1.

Proof. Assuming R = 3, it follows that xy ∈ E(G). we can apply Lemma

4 to draw the following conclusion:

ABS(G) ≤ (n− 4)

√
n− 3

n− 1
+

√
n− 1

n+ 1
+

√
n− 2

n
+

√
1

2
+

√
3

5

maintains equality if and only if µ = n− 4 and ψ = 1. Hence proved (i).

Assume for the moment that 4 ≤ R ≤ n − 2. If xy ∈ E(G), then by

Lemma 4, we derive the following conclusion:

ABS(G)≤(n−R−1)

√
n−R

n−R+2
+

√
n−R+1

n−R+3
+

√
n−R+2

n−R+4
+(R−2)

√
1

2
+

√
3

5

maintains equality if and only if µ = n−R− 1and ψ = 1 both hold true.

If xy /∈ E(G), then we can apply Lemma 5 to derive the following

conclusion:

ABS(G) ≤ (n− R− 1)

√
n− R

n− R+ 2
+2

√
n− R+ 1

n− R+ 3
+(R− 3)

√
1

2
+2

√
3

5

maintains equality if and only if µ = n− R− 1and ψ = 1 both hold true.
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Since(
(n−R−1)

√
n− R

n− R+ 2
+

√
n− R+ 1

n− R+ 3
+

√
n− R+ 2

n− R+ 4
+(R− 2)

√
1

2
+

√
3

5

)

−

(
(n− R− 1)

√
n− R

n− R+ 2
+ 2

√
n− R+ 1

n− R+ 3
+ (R− 3)

√
1

2
+ 2

√
3

5

)

=

√
n− R+ 2

n− R+ 4
−
√
n− R+ 1

n− R+ 3
+

√
1

2
−
√

3

5

≤
√

4

6
−
√

3

5
+

√
1

2
−
√

3

5
< 0

therefore (ii) holds.

Lemma 7. Consider G ∈ L2
n,R. Then

ABS(G) ≤ (n− R− 2)

√
n− R

n− R+ 2
+ 3

√
n− R+ 1

n− R+ 3
+ (R− 2)

√
1

2
+

√
1

3
.

maintains equality holds if and only if ψ = 1.

Proof. Since there is only one graph in L2
n,R, the statement of the lemma

is trivially true for the case n−R = 2. Therefore, we proceed by assuming

that n− R ≥ 3. Let

f(ψ) = ABS(G) =

√
n− R+ 1

n− R+ 3
+ 2

√
n− R+ 2− ψ

n− R+ 4− ψ
+ (R− 2)

√
1

2

+ (n− R− 1− ψ)

√
n− R+ 1− ψ

n− R+ 3− ψ
+ ψ

√
ψ

ψ + 2

where 1 ≤ ψ ≤ n− R− 1. Hence

f ′(ψ) = −

√
n− R+ 1− ψ

n− R+ 3− ψ
− 2

√
1

(n− R+ 2− ψ)(n− R+ 4− ψ)3

−(n−R−1−ψ)

√
1

(n−R+1−ψ)(n−R+3−ψ)3
+

√
ψ

ψ+2
+

√
ψ

(ψ+2)3

If 1 ≤ ψ ≤
⌊
n− R

2

⌋
(i.e., ψ + 2 ≤ n−R+ 2− ψ ), then by Lemma 1 (iv)
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(with p = n− R+ 2− ψ ≥ 3), leading to:

f ′(ψ) = −

√
n− R+ 1− ψ

n− R+ 3− ψ
− 2

√
1

(n− R+ 2− ψ)(n− R+ 4− ψ)3

−(n−R−1−ψ)

√
1

(n−R+1−ψ)(n−R+3−ψ)3
+

(
ψ+3

ψ+2

)√
ψ

ψ+2

+

(
n−R+3−ψ
n−R+2−ψ

)√
n−R−ψ

n−R+2−ψ
−
(
n−R+3−ψ
n−R+2−ψ

)√
n−R−ψ

n−R+2−ψ

≤ −

√
n− R+ 1− ψ

n− R+ 3− ψ
− 2

√
1

(n− R+ 2− ψ)(n− R+ 4− ψ)3

− (n− R− 1− ψ)

√
1

(n− R+ 1− ψ)(n− R+ 3− ψ)3

+

(
n− R+ 3− ψ

n− R+ 2− ψ

)√
n− R− ψ

n− R+ 2− ψ

=−
√
p−1

p+1
−2

√
1

p(p+ 2)3
−(p−3)

√
1

(p− 1)(p+ 1)3
+

(
p+ 1

p

)√
p−2

p
<0.

If

⌊
n− R+ 1

2

⌋
≤ ψ ≤ n − R − 1 (i.e., ψ + 2 ≥ n − R + 3 − ψ ), then

by Lemma 1 (v) (with p = n− R+ 3− ψ), leading to:

f ′(ψ) = −

√
ψ

ψ + 2
− 2

√
1

(n− R+ 2− ψ)(n− R+ 4− ψ)3

−(n−R−1−ψ)

√
1

(n−R+1−ψ)(n−R+3−ψ)3 +

√
ψ

ψ+2
+

√
ψ

(ψ+2)3

≥ −2

√
1

(p− 1)(p+ 1)3
− (p− 4)

√
1

(p− 2)p3
+

√
p− 2

p3
> 0.

This suggests that for 1 ≤ ψ ≤
⌊
n− R

2

⌋
, f(ψ) is increasing and for⌊

n− R+ 1

2

⌋
≤ ψ ≤ n−R−1, f(ψ) is decreasing. Therefore the maximum
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value of f(ψ) is max {f(1), f(n− R− 1)}. Since n− R ≥ 3, we have

f(n− R− 1)− f(1)

=

(
(n− R− 1)

√
n− R− 1

n− R+ 1
+

√
n− R+ 1

n− R+ 3
+ (R− 2)

√
1

2
+ 2

√
3

5

)

−

(
(n−R−2)

√
n−R

n−R+2
+

√
n−R+1

n−R+3
+2

√
n−R+1

n−R+3
+(R−2)

√
1

2
+

√
1

3

)

=(n−R−1)

√
n−R−1

n−R−1+2
−2

√
n−R+1

n−R+3
−(n−R−2)

√
n−R

n−R+2
+2

√
3

5
−
√

1

3

≤ (3− 1)

√
3− 1

3 + 1
− 2

√
3 + 1

3 + 3
− (3− 2)

√
3

3 + 2
+ 2

√
3

5
−
√

1

3
< 0.

As a result, the conclusion of Lemma 7 is valid.

The collection of unicyclic graph comprising n vertices denoted by L∗
n,3

created by connecting n − 4 and one pendent edge to 2 adjacent vertices

x and y of a triangle. For 4 ≤ R ≤ n− 2, the collection of unicyclic graph

comprising n vertices denoted by L∗
n,R created by connecting n − R − 1

and one pendent edge to 2 non-adjacent vertices x and y of the cycle CR

(as shown in figure 2 for visual representation). It is important to note

that L∗
n,R ⊆ L1

n,R and there are

⌊
R

2

⌋
−1 unicyclic graphs in L∗

n,R for each

4 ≤ R ≤ n − 2. We can now determine the second-maximum ABS index

among all graphs in Un,R.

Theorem 2. Let G ∈ Un,R and G ≇ Ln,R.

(i) If R = 3, then

ABS(G) ≤ (n− 4)

√
n− 3

n− 1
+

√
n− 1

n+ 1
+

√
n− 2

n
+

√
1

2
+

√
3

5

maintains equality if and only if G ∼= L∗
n,3.

(ii)If 4 ≤ R ≤ n− 2, then

ABS(G)≤(n− R− 1)

√
n− R

n− R+ 2
+2

√
n− R+ 1

n− R+ 3
+(R− 3)

√
1

2
+2

√
3

5

maintains equality if and only if G ∼= L∗
n,R.

Proof. SupposeG is a graph with a unique cycle C, where C := y1y2 . . . yRy1.
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Then there exists at least one vertex among {y1, y2, ..., yR} have a degree

of at least 3. For the sake of the proof, let

P := (n− 4)

√
n− 3

n− 1
+

√
n− 1

n+ 1
+

√
n− 2

n
+

√
1

2
+

√
3

5
,

for R = 3, or

P := (n− R− 1)

√
n− R

n− R+ 2
+ 2

√
n− R+ 1

n− R+ 3
+ (R− 3)

√
1

2
+ 2

√
3

5
,

for 4 ≤ R ≤ n− 2.

Similarly,

Q := (n− R− 2)

√
n− R

n− R+ 2
+ 3

√
n− R+ 1

n− R+ 3
+ (R− 2)

√
1

2
+

√
1

3
.

If G has at least 3 vertices among {y1, y2, ..., yR} have a degree of at

least 3. Then by using Lemmas 2, 3, (or 5), and 6, a graph G1 ∈ L1
n,R can

be found such that ABS(G) < ABS(G1) ≤ P .

If G has exactly 2 vertices among {y1, y2, ..., yR} have a degree of at

least 3. Then by using Lemmas 2, 4, (or 5) and 6, a graph G2 ∈ L1
n,R can

be found such that ABS(G) < ABS(G2) ≤ P maintains equality if and

only if G ∈ L∗
n,R.

Hence, it can be assumed that there is exactly one vertex among

{y1, y2, ..., yR} have a degree of at least 3. As G ≇ Ln,R, there must

be at least one non-pendent vertex that is located outside C. If, according

to Lemma 2 and 7, there exists at least two non-pendent vertex that is

located outside C, then allows to finding a graph G3
∼= L2

n,R such that

ABS(G) < ABS(G3) ≤ Q. Assuming there is only one non-pendent ver-

tex outside of C, implying that G ∼= L2
n,R. By using Lemma 7, we can

deduce that ABS(G) ≤ Q, with equality holding if and only if ψ = 1.

Comparing the values of P and Q is essential for proving the theorem.
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If R = 3, then

Q− P =

(
(n− 5)

√
n− 3

n− 1
+ 3

√
n− 2

n
+ (1)

√
1

2
+

√
1

3

)

−

(
(n− 4)

√
n− 3

n− 1
+

√
n− 2

n
+

√
n− 1

n+ 1
+

√
1

2
+

√
3

5

)

= −
√
n− 3

n− 1
+ 2

√
n− 2

n
+

√
1

3
−
√
n− 1

n+ 1
−
√

3

5

≤ −
√

2

3
+ 2

√
3

5
+

√
1

3
−
√

1

2
−
√

3

5
< 0.

So (i) holds.

If 4 ≤ R ≤ n− 2, then

Q− P =

(
(n− R− 2)

√
n− R

n− R+ 2
+3

√
n− R+ 1

n− R+ 3
+(R− 2)

√
1

2
+

√
1

3

)

−

(
(n− R− 1)

√
n− R

n− R+ 2
+2

√
n− R+ 1

n− R+ 3
+(R− 3)

√
1

2
+2

√
3

5

)

= −
√

n− R

n− R+ 2
+

√
n− R+ 1

n− R+ 3
+

√
1

3
+

√
1

2
+−2

√
3

5

≤ −
√

1

2
+

√
1

2
+

√
3

5
+

√
1

3
− 2

√
3

5
< 0.

This suggests (ii), and as a result, the proof confirming the theorem has

been explored.

The following corollary can be drawn by using Theorem 1 and Theorem

2 respectively.

Corollary 1. Let Ln,R, and L∗
n,R be the graphs defined as above.

(i) If n = 5, then

ABS(L5,3) > ABS(L∗
5,3) > ABS(u5,4) > ABS(u5,3) > ABS(C5)
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(ii) If n ≥ 6, then

ABS(Ln,3) >ABS(L
∗
n,3)>ABS(Ln,4)>ABS(L

∗
n,4) >....>ABS(Ln,n−2)

> ABS(L∗
n,n−2) > ABS(un,n−1) > ABS(Cn)

Proof. Since

ABS(L5,3) = 3.8893 > ABS(L∗
5,3) = 3.7799 > ABS(u5,4) > ABS(u5,3)

> ABS(C5)

This verifies that (i) valid.

Now we prove (ii). We utilize Theorem 1 and Theorem 2, to estabish that

ABS(Ln,R) > ABS(L∗
n,R) for each 3 ≤ R ≤ n− 2. Since

ABS(L∗
n,n−2) = (R− 2)

√
1

2
+ 4

√
3

5

ABS(Un,n−1) = (n− R+ 3)

√
1

2
+ 2

√
3

5

and ABS(Cn) = n

√
1

2
We can see that, ABS(L∗

n,n−2) > ABS(u∗n,n−1) >

ABS(Cn)

To establish (ii), we need to prove that ABS(L∗
n,R) > ABS(Ln,R+1) for

each value of R, where 3 ≤ R ≤ n− 3.

If R = 3, then utilize Theorem 2(i)

ABS(L∗
n,3)−ABS(Ln,4)

=

(
(n− 4)

√
n− 3

n− 1
+

√
n− 1

n+ 1
+

√
n− 2

n
+

√
2

4
+

√
3

5

)

−

(
(n− 4)

√
n− 3

n− 1
+ 2

√
n− 2

n
+ 2

√
1

2

)

=

√
n− 1

n+ 1
−
√
n− 2

n
+

√
3

5
−
√

1

2
> 0

Therefore, ABS(L∗
n,3) > ABS(Ln,4). For each 4 ≤ R ≤ n− 3 (and hence
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n ≥ 7), we have

ABS(L∗
n,R)−ABS(Ln,R+1)

=

(
(n− R− 1)

√
n− R

n− R+ 2
+ 2

√
n− R+ 1

n− R+ 3
+ (R− 3)

√
2

4
+ 2

√
3

5

)

−

(
(n− R+ 1)

√
n− R+ 2

n− R+ 4
+ 2

√
n− R+ 3

n− R+ 5
+ (R− 1)

√
1

2

)
> 0

So the assertion of the corollary holds.

Hence, the only graph in Un with the maximum ABS index is the

Ln,3 graph. The only graph in Unwith the second-maximum ABS is L∗
n,3

graph; this is demonstrated by Theorem 1, 2 and Corollary 1.
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