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Abstract

Topological index is a numerical graph invariant derived from
molecular graph. The atom bond sum connectivity index drew a
lot of interest from chemical graph theorists in a short period of
time. Nowadays, the degree sum of a vertex’s first neighbors is
recognized as a useful parameter in chemical graph theory. Keeping
these two facts in mind, the neighborhood degree sum based ABS
index (NABS) is put forward in this study. It is defined as

NABS(G) =
∑

uv∈E(G)

√
µG(u) + µG(v)− 2

µG(u) + µG(v)
,

where µG(u) represents the sum of degrees of all the vertices in a
graph G adjacent to the vertex u. The role of this index in structure-
property modelling and isomer discrimination is investigated. The
extremal graphs for NABS are identified in case of tree, bipartite,
unicyclic and general graphs in terms of different graph parameters
including graph order and size, maximum and minimum degree,
independence number, chromatic number, etc.
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1 Introduction

In the field of chemical graph theory, atoms and bonds are equivalent to

vertices and edges, respectively, within a molecule. This approach helps

to capture characteristics of structures and investigate how they impact

several physico-chemical properties and behaviors [10, 23]. Topological

index is a number representing a graph’s structure. In the middle of the

1970s, Randić introduced the Randić index [25] to evaluate the saturated

hydrocarbon’s degree of branching. The Randić index of a graph G has

the following formulation:

R(G) =
∑

uv∈E(G)

1√
dG(u) dG(v)

. (1)

where dG(u) represents the degree of the vertex u in G. By modifying the

Randić index, Estrada et al. [11] introduced the atom-bond connectivity

(ABC) index of graphs. The works related to ABC index can be found

in [3, 7, 12–14, 16], and the probabilistic inference of this index is shown

in [12]. The ABC index of a graph G has the following formulation:

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u) dG(v)
. (2)

Another study conducted by Zhou et al. [29] introduces modifications

to the Randić index. They replace dG(u) dG(v) with dG(u) + dG(v) in the

formulation (1), naming this modified index as the sum-connectivity index.

The sum-connectivity index of a graph G has the following definition:

SC(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

. (3)

By combining the concept of the SC index and ABC index, the atom-

bond sum-connectivity (ABS) index was developed by Ali et al. [2,4]. The
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definition of the ABS index for a graph G is as follows:

ABS(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u) + dG(v)
. (4)

Let NG(u) be the collection of vertices adjacent to u, i.e., NG(u) =

{v ∈ V (G) : uv ∈ E(G)}. The parameter µG(u) is referred in some recent

works [19,20] as the neighborhood degree sum of u. The topological indices

based on this parameter are found to be very useful in chemical graph

theory [6, 8, 18, 21, 22]. For some recent works on the ABS index, readers

are referred to [1,24]. This fact motivated us to present the neighborhood

degree sum based ABS index (NABS). It is defined as:

NABS(G) =
∑

uv∈E(G)

√
µG(u) + µG(v)− 2

µG(u) + µG(v)
. (5)

Reti et al. [26] generalized the indices based on neighborhood degree sum of

vertices. Let f(x, y) be symmetric real valued function. Then the general

neighborhood degree sum-based index for a graph G is defined as

I(G) =
∑

uv∈E(G)

f (µG(u), µG(v)) .

If we consider f(x, y) =
√

x+y−2
x+y on the aforesaid formula, then theNABS

index is generated.

Quantitative Structure-Property Relationship (QSPR) analysis serves

as a computational technique in chemistry, aiming to identify connections

between chemical compound’s molecular structure and related chemical or

physical properties. Topological indices play a crucial role in QSPR stud-

ies, as they provide a numerical representation of the connectivity patterns

within a molecular graph. The idea is to identify quantitative relationships

that can predict a property based on the molecular structure alone, with-

out the need for extensive experimental data. To get more insight on this

direction, readers are referred to [5,9,15]. We aim to investigate the signif-

icance of the NABS index in QSPR analysis. The isomer discrimination
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ability of this index is also explored. Sharp bounds of this index are de-

rived for class of trees, unicyclic, bipartite, and general connected graphs

in terms of graph order and size, maximum and minimum degree, inde-

pendence and chromatic number with identifying extremal graphs. Rest

of this work consider following terms and notations. We use n, m, ∆ and

δ to represent the order, size, maximum degree and minimum degree of

graph, respectively. To signify the average degree of a vertex u ∈ V (G),

we use mG(u).

2 Chemical significance

Various topological indices are available, and their numbers continue to in-

crease. However, most of these indices are treated purely mathematically,

without considering their chemical significance. To aid in the selection of

a relevant molecular descriptor from a wide array of candidates, a com-

pilation of valuable components has been formulated, among which is the

ability to estimate the properties and activities of molecules. QSPR anal-

ysis is typically conducted on both theoretical attributes and experimental

measurements of certain benchmark chemicals to assess the predictive ca-

pacity of topological indices. The objective of this study is to elucidate

the chemical relevance of the neighborhood degree sum based ABS in-

dex. Octane isomers were initially examined as benchmark datasets, and

some hydrocarbons with cyclic substructures were subsequently considered

since octanes lack cycles. Table 1 provide specific numerical values for the

NABS index and various properties are detailed.

A noteworthy correlation is observed between the NABS index and the

standard enthalpy of vaporization (DHV AP ), entropy (S), and acentric

factor (AF ) of octanes. To evaluate the NABS index’s performance, we

investigate the following relationship.

P = S (±2× E1) D+ I (±2× E2), (6)

In Equation (6), P represents the property, S denotes the slope, D corre-
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Table 1. NABS index and various properties for octane isomers.

Octanes NABS DHV AP S AF

C8 : 1 5.837578059 111.67 9.915 0.397898

C8 : 2 5.939919045 109.84 9.484 0.377916

C8 : 3 5.960534307 111.26 9.521 0.371002

C8 : 4 5.936123932 109.32 9.483 0.371504

C8 : 5 5.967003651 109.43 9.476 0.362472

C8 : 6 6.064463460 103.42 8.915 0.339426

C8 : 7 6.063658052 108.02 9.272 0.348247

C8 : 8 6.053708823 106.98 9.029 0.344223

C8 : 9 6.038878417 105.72 9.051 0.35683

C8 : 10 6.107927373 104.74 8.973 0.322596

C8 : 11 6.098552680 106.59 9.316 0.340345

C8 : 12 6.086982966 106.06 9.209 0.332433

C8 : 13 6.178609585 101.48 9.081 0.306899

C8 : 14 6.21860559 101.31 8.826 0.300816

C8 : 15 6.153464783 104.09 8.402 0.30537

C8 : 16 6.25079367 102.06 8.897 0.293177

C8 : 17 6.184270664 102.39 9.014 0.317422

C8 : 18 6.353024302 93.06 8.41 0.255294

sponds to descriptors, and I stands for the intercept, respectively. We use

E1, E2 to denote errors. We conduct regression analysis that includes sig-

nificance F (SF ), the F-test (F ), and the standard error (SE), apart from

R for more precise evaluation. In the context of S, DHV AP and AF , the

structure-property relationships generated by NABS are as follows.

S = −33.066(±6.13)NABS + 306.553(±37.306)), (7)

SE = 1.619, F = 116.316, SF = 9.5× 10−9, R2 = 0.879
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DHV AP = −2.576(±0.761)NABS + 24.798(±4.620)), (8)

SE = 0.201, F = 45.839, SF = 4.5× 10−6, R2 = 0.741

AF = −0.273(±0.023)NABS + 1.995(±0.142)), (9)

SE = 0.006, F = 537.218, SF = 9.74× 10−14, R2 = 0.971

In Figure 1, the linear relations (7), (8) are fitted. The linear fitting of

the relation (9) as seen in Figure 2.

Figure 1. Linear fittings of NABS with S and DHV AP for octanes.

Figure 2. Linear fitting between NABS and AF for octanes.

The R2 values indicate that the variability in data for S, DHV AP ,
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and AF accounts for 88%, 74%, and 97% of the variance, respectively.

Notably, the blue circles corresponding to AF in Figure 2 are positioned

closer to the regression line than other data points. A decrease in the SE

(standard error) value indicates a stronger regression relationship. All the

equations mentioned result in a small SE, with AF exhibiting particularly

low values. The model’s consistency improves with a higher F-value, and

in Model (9), the F -value is relatively high. The model is considered

statistically reliable when the SF (significance F ) value is less than 0.05,

and in each case, the SF value is significantly less than 0.05. Therefore,

it can be concluded that the NABS index outperforms S and DHV AP

in explaining the acentric factor. Moving forward, external validation of

the established model for AF is carried out using the nonane isomer as

an external dataset. The dataset is partitioned into training and test sets

in an 80 : 20 ratio using the Python scikit-learn machine learning module.

The training set is used to generate the model, which is subsequently

validated using the test set.

AF = −0.314(±0.043)NABS + 2.55(±0.306), (10)

SE = 0.015, F = 203.669, SF = 8.22× 10−14, R2 = 0.89.

Equation (10) represents the structure-property relationship within the

training set, with the data variance amounting to 89%. The test set

demonstrates a data variance of 84%, confirming the meaningfulness of

external validation. Now, we compare the performance of NABS with

other known indices. The concept of NABS originates from the atom-

bond sum-connectivity (ABS) index. Ali et al. [4] explored that the ABS

index somewhat outperforms the connectivity index (R), sum-connectivity

index (SCI), and atom-bond connectivity index (ABC). The correlation

coefficients of these indices with S, DHV AP , and AF are listed in Table

2.

Table 2 illustrates that concerning DHV AP , the efficacy of NABS is

comparatively lower than the other four indices. However, for S and AF ,

it exhibits superior performance compared to the existing indices.

Next, we investigate certain benzenoid hydrocarbons (BHC) for analysis.
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Table 2. The correlation coefficients between ABS, R, SCI, ABC, and
NABS with respect to S, DHV AP , and AF for octanes.

ABS R SCI ABC NABS

S 0.885 0.906 0.923 0.815 0.938

DHV AP 0.954 0.958 0.961 0.917 0.861

AF 0.880 0.904 0.929 0.808 0.985

The molecular structures for BHC are seen in Figure 3. The NABS index

demonstrates a notable correlation between benzenoid hydrocarbons and

the boiling point (BP ). The linear regression equation including stastical

parameters are reported as follows:

BP = 21.559(±1.063)NABS + 20.527(±23.641), (11)

SE = 10.963, F = 1642.76, SF = 6.48× 10−20, R2 = 0.989.

According to relation (11), 99% of observations fit the model related to

BP , and the F -value is also significantly large. The linear fitting of this

relation is depicted in Figure 4.

The correlation coefficients of ABS, R, SCI, ABC, and NABS with

BP for benzenoid hydrocarbons are reported in Table 3.

Table 3. The correlation coefficients of ABS, R, SCI, ABC, and
NABS with BP for benzenoid hydrocarbons.

ABS R SCI ABC NABS

BP 0.993 0.996 0.997 0.996 0.994

The fundamental aim of a molecular descriptor is to establish correla-

tions between structure and property. However, a good description should

distinguish each structure clearly and include as many structural details as

possible. Generating a single descriptor for distinct isomers is a problem

that many indices encounter; this issue is known as degeneracy. This de-

generacy is quantified by sensitivity [17], expressed as SD = 1− ND

N , where

N and ND represent the total number of isomers and the total quantity
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BHC1 BHC2 BHC3 BHC4 BHC5

BHC6 BHC7 BHC8 BHC9

BHC10 BHC11 BHC12 BHC13

BHC14 BHC15 BHC16 BHC17

BHC18 BHC19 BHC20 BHC21

Figure 3. Molecular graphs of benzenoid hydrocarbons.
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Figure 4. Linear fitting of NABS with BP for benzenoid hydrocar-
bons.

not identifiable by the index D, respectively. The isomer discrimination

ability of D is directly proportional to SD. Figure 5 and Table 4 compares

the sensitivity of NABS with that of some well-established descriptors. It

is clear that NABS exerts better isomer discrimination ability than other

well-known indices for octane, nonane and decane isomers.

Table 4. The sensitivity values of various indices for isomers of octane,
nonane, and decane.

M1 F M2 R ISI SDD SCI ABC ABS NABS

Octane 0.333 0.389 0.722 0.889 0.722 0.889 0.889 0.889 0.889 1

Nonane 0.200 0.229 0.457 0.800 0.686 0.686 0.800 0.800 0.800 1

Decane 0.107 0.133 0.28 0.667 0.547 0.547 0.627 0.627 0.627 1
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Figure 5. Comparison of isomer discrimination ability of different in-
dices.

3 Bounds of NABS index

In this section we derive some crucial bounds of the NABS index and

characterize the extremal graphs. A Turan graph is a complete multipar-

tite graph where the sizes of the partite sets differ by at most one. First,

we report some inequalities that will be used later.

Lemma 1. ( [27]) For a connected graph G of m edges and order n, such

that it is Kq+1-free graph, we have

m ≤
(
1− 1

q

)
n2

2
.

Equality in the above inequality occurs iff G is Turan graph.

Lemma 2. [8] For any vertex u ∈ V (G), we have

µG(u) = dG(u)mG(u) ≤ 2m− dG(u)− (n− dG(u)− 1) δ.

Theorem 1. Let f(x, y) be a non-negative symmetric real valued function,

which is strictly increasing in x, y for x ≥ 1, y ≥ 1. Let uv /∈ E(G) for a

graph G with max {µG(u), µG(v)} ≥ 1. Then show that

I(G+ uv) =
∑

uv∈E(G+uv)

f
(
µG(u), µG(v)

)
>

∑
uv∈E(G)

f
(
µG(u), µG(v)

)
= I(G).
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Proof. Let us consider µG(u) ≥ µG(v) ≥ 0. We assume µG(v) = 0, which

implies µG(u) ≥ 1. Therefore

I(G+ uv)− I(G)

=
∑

w∈NG(u)

[
f
(
µG(u) + 1, µG(w) + 1

)
− f

(
µG(u), µG(w)

)]
+f (µG(u) + 1, dG(u) + 1) > 0.

Now we consider µG(v) ≥ 1. Thus, we obtain

I(G+ uv)− I(G)

=
∑

w∈NG(u)

[
f
(
µG(u) + dG(v) + 1, µG(w) + 1

)
− f

(
µG(u), µG(w)

)]
∑

w′∈NG(v)

[
f
(
µG(v) + dG(u) + 1, µG(w

′) + 1
)
− f

(
µG(v), µG(w

′)
)]

+f
(
µG(u) + dG(v) + 1, µG(v) + dG(u) + 1

)
> 0.

Hence the proof is completed.

Employing Theorem 1, we get the following corollary.

Corollary 2. For two non-adjacent and non-isolated vertices u, v in G,

we have

NABS(G+ uv) > NABS(G).

Using Corollary 2, we obtain following results.

Corollary 3. Let G be a graph of order n, then we obtain

NABS(G) ≤ n
√
n2 − 2n

2
,

where equality appears iff G ∼= Kn.

Corollary 4. For a bipartite graph G of order n, we obtain

NABS(G) ≤
√⌈n

2

⌉ ⌊n
2

⌋ (⌈n
2

⌉ ⌊n
2

⌋
− 1

)
,
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where equality occurs iff G ∼= K⌈n
2 ⌉, ⌊n

2 ⌋.

Proof. For a bipartite graph G (of order n) having partite sets U , V such

that |U | = x ≥ y = |V |, (say). Then x + y = n and x ≥ y ≥ 1. Using

Corollary 2, one can write

NABS(G) ≤ NABS(Kx,y) =
√

xy(xy − 1) ≤
√⌈n

2

⌉ ⌊n
2

⌋ (⌈n
2

⌉ ⌊n
2

⌋
− 1

)
.

Moreover, the equality appears iff G ∼= K⌈n
2 ⌉, ⌊n

2 ⌋.

In the context of a graph G, an independent set S (where S ⊆ V (G))

is characterized by the absence of edges between its vertices. The inde-

pendence number, denoted by α, represents the size of the largest such

independent set in the graph. A graph labeled as a complete split graph

CS(n, α) (where 1 ≤ α ≤ n) consists of a clique containing n − α nodes

and a stable set containing α nodes. Notably, each node in the clique is

connected to every node in the stable set.

Corollary 5. For a graph G having n nodes with independence number

α, we have

NABS(G) ≤ (n− α)α

√
1− 2

(n− 1) (n− α) + (n− 1)2 − (α− 1)α

+
(n− α) (n− α− 1)

2

√
1− 1

(n− 1)2 − (α− 1)α
,

where equality holds iff G ∼= CS(n, α).

Proof. First we derive NABS(CS(n, α)). For this, we have µG(u) = (n−
1) (n−α) for u ∈ S and µG(u) = (n−1)2−(α−1) for u ∈ V (CS(n, α))\S.

NABS(CS(n, α)) =
∑

uv∈E(CS(n, α)),
u∈S,v∈V (CS(n, α))\S

√
1− 2

µG(u) + µG(v)

+
∑

uv∈E(CS(n, α)),
u∈V (CS(n, α))\S,v∈V (CS(n, α))\S

√
1− 2

µG(u) + µG(v)
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= (n− α)α

√
1− 2

(n− 1) (n− α) + (n− 1)2 − (α− 1)α

+
(n− α) (n− α− 1)

2

√
1− 1

(n− 1)2 − (α− 1)α
.

Consequently, equality occurs when G ∼= CS(n, α). Otherwise, G ≇
CS(n, α). Now using Corollary 2 (several times if needed), we obtain

NABS(G) < · · · < NABS(CS(n, α)).

This completes the proof of the theorem.

Theorem 6. Let T be a tree of order n, then we obtain NABS(T ) ≤√
(n− 1) (n− 2), where equality occurs iff T ∼= Sn.

Proof. Note that m = n− 1, δ = 1 for a tree T . Employing Lemma 2, we

have

µG(u) ≤ 2m− (n− dG(u)− 1)− dG(u) = n− 1,

for any vertex u ∈ V (G). For any edge uv ∈ E(T ), we obtain

µG(u) + µG(v) ≤ 2(n− 1),

where equality occurs iff µG(u) = µG(v) = n− 1. Consequently

NABS(T ) =
∑

uv∈E(T )

√
1− 2

µG(u) + µG(v)

≤
∑

uv∈E(T )

√
1− 1

n− 1
=

√
(n− 1) (n− 2)

where equality appears iff µG(u) = µG(v) = n− 1 for all uv ∈ E(T ), that

is, iff T ∼= Sn.

Let S′
n be a unicyclic graph generated from star graph by connecting

two pendent vertices. We now determine an upper bound of NABS for

any unicyclic graph G, and identify the extremal graph.
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Theorem 7. For a unicyclic graph G containing n nodes, we have

NABS(G) ≤ (n− 3)

√
n− 1

n
+ 3

√
n

n+ 1
.

The equality holds iff G ∼= S′
n.

Proof. If ℓ is the length of the cycle in G, then 3 ≤ ℓ ≤ n. We construct

the following cases:

Case1. ℓ = 3. Let x, y and z be three vertices on the cycle in G such that

dG(x) ≥ dG(y) ≥ dG(z). Let E
′′ be the collection of edges on the cycle in

G.

Case1.1 dG(y) > 2. In this case µG(u) ≤ n + 1 for u ∈ {x, y, z} and

µG(u) ≤ n− 2 for u ∈ V (G)\{x, y, z}. We have√
1− 2

µG(u) + µG(v)
≤

√
n

n+ 1
for uv ∈ E′′

and √
1− 2

µG(u) + µG(v)
≤

√
1− 2

2n− 1
for uv ∈ E(G\E′′).

One can easily check that

NABS(G) =
∑

uv∈E(G)

√
1− 2

µG(u) + µG(v)

≤ 3

√
n

n+ 1
+ (n− 3)

√
1− 2

2n− 1

< (n− 3)

√
n− 1

n
+ 3

√
n

n+ 1
.

Case1.2 dG(y) = 2. Then dG(z) = 2. If all the vertices in V (G)\{x, y, z}
are adjacent to vertex x, then G ∼= S′

n. Thus the equality occurs. Oth-

erwise, x ≤ n − 2. Note that µG(x) ≤ n + 1, µG(y) ≤ n, µG(z) ≤ n and
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µG(u) ≤ n− 1 for u ∈ V (G)\{x, y, z}. Hence

NABS(G) =
∑

uv∈E(G)

√
1− 2

µG(u) + µG(v)

≤ 2

√
1− 2

2n+ 1
+

√
n− 1

n
+ (n− 3)

√
n− 1

n

< (n− 3)

√
n− 1

n
+ 3

√
n

n+ 1
.

Case2. ℓ = 4. Let V ′ and E′ be the collection of nodes and edges on

the cycle in G, respectively. For each u ∈ V (G), there is at least one

non-pendant node v for which uv /∈ E(G). In this case∑
v:uv/∈E(G)

dG(v) ≥ (n− dG(u)− 1) + 1 = n− dG(u)

and by Lemma 2, we obtain

µG(u) ≤ 2n− dG(u)− (n− dG(u)), that is, µG(u) ≤ n

for each u ∈ V (G). Moreover, in view of Lemma 2, we obtain µG(u) ≤ n−2

for any u ∈ V (G)\V ′, as∑
v:uv/∈E(G)

dG(v) ≥ (n− dG(u)− 1) + 3 = n− dG(u) + 2.

It is evident that√
1− 2

µG(u) + µG(v)
≤

√
n− 1

n
for uv ∈ E′,

and √
1− 2

µG(u) + µG(v)
≤

√
n− 2

n− 1
for uv ∈ E(G\E′).
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Hence

NABS(G) =
∑

uv∈E′

√
1− 2

µG(u) + µG(v)

+
∑

uv∈E(G\E′)

√
1− 2

µG(u) + µG(v)

≤ 4

√
n− 1

n
×+(n− 4)

√
n− 2

n− 1

< (n− 3)

√
n− 1

n
+ 3

√
n

n+ 1
.

Case3. ℓ ≥ 5. At least two non-pendant nodes are non-adjacent to the

vertex u, where u is any vertex in G. In this case we have∑
v:uv/∈E(G)

dG(v) ≥ (n− dG(u)− 1) + 2 = n− dG(u) + 1.

By Lemma 2, we obtain

µG(u) ≤ 2n− dG(u)− (n− dG(u) + 1), that is, µG(u) ≤ n− 1

for any vertex u ∈ V (G) as m = n. Note that, for each uv ∈ E(G),√
1− 2

µG(u) + µG(v)
≤

√
n− 2

n− 1
.

Hence

NABS(G) =
∑

uv∈E(G)

√
1− 2

µG(u) + µG(v)

≤ n

√
n− 2

n− 1
< (n− 3)

√
n− 1

n
+ 3

√
n

n+ 1
.
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Lemma 3. [28] For a connected graph G, µG(u) = µG(v) for all u, v ∈
V (G) iff G is a regular graph or a bipartite semi-regular graph.

Let δN = min {µG(u) : u ∈ V (G)} and ∆N = max {µG(u) : u ∈
V (G)}.

Theorem 8. Let G be a connected graph with m edges. Then we obtain

m

√
δN − 1

∆N
≤ NABS(G) ≤ m

√
∆N − 1

δN
,

where both the equalities occur iff G is regular or bipartite semi-regular.

Proof. For uv ∈ E(G), we obtain√
µG(u) + µG(v)− 2

µG(u) + µG(v)
=

√
1

µG(u) + µG(v)
.
√

µG(u) + µG(v)− 2.

It follows from√
(2δN − 2) ≤

√
µG(u) + µG(v)− 2 ≤

√
(2∆N − 2)

and √
1

2∆N
≤

√
1

µG(u) + µG(v)
≤

√
1

2δN

that

m

√
δN − 1

∆N
≤ NABS(G) ≤ m

√
∆N − 1

δN
.

Both the equalities are satisfied iff µG(u) = µG(v) for all u, v ∈ V (G).

Hence by Lemma 3, the equalities occur iff G is regular or bipartite semi-

regular.

It is evident that for a graph G, we have ∆N ≤ ∆2 and δN ≥ δ2, where

the equality occurs iff G is regular. Combining this fact with Theorem 8,

we obtain the following result.

Corollary 9. Let G be a connected graph with m edges. Then we obtain

m

√
δ2 − 1

∆2
≤ NABS(G) ≤ m

√
∆2 − 1

δ2
,
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where both the equalities occur iff G is regular.

Employing Lemma 1 on the above corollary we obtain the following

result.

Corollary 10. For a connected graph G of order n with chromatic number

χ (provided χ divides n), we have

NABS(G) ≤ n2(χ− 1)

2χ

√
∆2 − 1

δ2
,

where the equality occurs iff G is a complete χ-partite graph, with all partite

sets of vertices possess same cardinality.

4 Concluding remarks

The neighborhood degree sum based atom bond sum connectivity index

has been introduced in this work parallel to the well-established ABS

index. The chemical significance of this index has been extensively in-

vestigated. The NABS has been found to adequately explain entropy,

standard enthalpy of vaporization, and the acentric factor of octanes. Its

performance is notable for AF . Its correlation has been observed to be

better for S and AF compared to ABS, R, SCI and ABC. External

validation considering nonane isomers has been noticed to be meaningful.

This novel index has also remarkable linear relation with the boiling point

of benzenoid hydrocarbons. The isomer discrimination ability of NABS

outperforms some well-established indices including ABS. Consequently,

it can be concluded that the incorporation of NABS into chemical graph

theory is not arbitrary but rather essential. The extremal graphs have

been characterized for different family of graphs including tree, unicyclic,

bipartite, and general connected graph, in terms numerous graph parame-

ters. Future research may delve deeper into the specific advantages of the

NABS index in characterizing complex structures and networks, fostering

innovation in both mathematical theory and applied sciences.

Acknowledgements: We express our sincere gratitude to the reviewer

for making significant comments to enhance the quality of the work.
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