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Abstract

In 2024, the Euler-Sombor index (EU) was introduced based on
the calculation of the circumference of an ellipse, which is defined
as

EU(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 + d(u)d(v).

In this paper, we present the maximum values of the Euler-Sombor
index of trees with some given parameters, such as the matching
number, the number of pendent vertices and the diameter.

1 Introduction

Recently, Gutman [20] introduced the Sombor index which has become

very familiar in most of the recent studies. The Sombor index is defined
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as

SO(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2,

where d(u) and d(v) are the degrees of vertices u and v. In a short period,

the Sombor index has been extensively studied in literatures [1, 3, 4, 7–14,

16–19, 23, 28–32, 34–38, 41, 45–47]. Then, Gutman et al. [22] subsequently

introduced a geometric method for constructing degree-based topological

indices, the Elliptic Sombor index (ESO), which is defined as

ESO(G) =
∑

uv∈E(G)

(d(u) + d(v))
√
d(u)2 + d(v)2.

Espinal et al. [15] solved the extremal ESO problem for chemical graphs

and trees with equal vertices. Tang et al. [43] analyzed the maximal value

of the Elliptic Sombor index of trees with a given number of pendent

vertices, diameter and matching number.

Soon after, Gutman [21] and Tang et al. [44] proposed another index

with geometric significance, the Euler-Sombor index (EU), which is defined

as

EU(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 + d(u)d(v).

After this, the Euler-Sombor index demonstrates its vitality as a new

index. Hu et al. [25] found tight bounds for the Euler-Sombor index of

maximal outerplanar graphs. Kirana et al. [26, 27] investigated the Ellip-

tic and Euler Sombor indices of the union and corona products of paths,

cycles and complete graphs, and also analyzed the Euler-Sombor index

of trees, unicyclic graphs and chemical graphs. Tang et al. [39, 40, 44]

studied the extremal values of the Euler-Sombor index in unicyclic and

bicyclic graphs, highlighting its chemical relevance for property predic-

tion. Bansode et al. [5] discussed the Euler-Sombor index, eigenvalues,

and energy of some graph classes. Albalahia et al. [2] identified optimal

Euler-Sombor index graphs for tricyclic molecules of a given order. G. O.

Kızılırmak [33] determined the extremal values of the Euler-Sombor index

of tricyclic graphs. Tache et al. [42] determined, for all x ≥ 5, the first,

second, and third minimum and maximum unicyclic graphs of order n with
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respect to the Euler-Sombor index.

In this paper, we aim to give some sharp upper bounds for the Euler-

Sombor index in trees, with some given parameters, such as the matching

number, the number of pendent vertices and the diameter. The rest of the

paper is organised as: In Section 2, some needed preliminary is given. In

section 3, we present the main proof process. In Section 4, future research

on the Euler-Sombor index is proposed.

2 Preliminaries

Throughout this paper, all graphs are assumed to be simple, undirected,

and finite; see [6] for undefined terms. We denote the vertex and edge sets

of a graph G by V (G) and E(G), respectively. The number of vertices and

the number of edges of G are called the order and the size, respectively. Let

n and m represent the order and size of G, respectively. For a vertex u ∈
V (G), the degree of u, denoted by dG(u), is the number of edges incident

with u in G. The maximum degree of G, denoted by ∆, is max{dG(u) : u ∈
V (G)}. A vertex u with dG(u) = 1 is a pendent vertex, and its incident

edge is a pendent edge. The neighborhood of a vertex u is denoted by

NG(u).

For S ⊆ E(G), G − S denotes the graph obtained from G by deleting

the edges in S. G+ S denotes the graph obtained by adding the edges in

S to G. If S = {uv}, we can write G − uv and G + uv instead of G − S

and G+ S, respectively. For v ∈ V (G), G− v is the graph obtained from

G by deleting v and all its incident edges.

Let Pn and Sn denote the path and star of order n ≥ 1, respectively.

An acyclic graph, by definition, contains no cycles. A connected acyclic

graph is called a tree. A tree T is called to be a caterpillar if it becomes a

path after deleting all pendent vertices.

A matching is a set of edges in a graph, no two of which share a vertex.

Given a matching M , the endpoints of each edge in M are matched by

M , and any vertex incident to an edge in M is covered by M . A perfect

matching covers all vertices of a graph. A matching M is a maximum

matching of G if no matching M ′ of G has a larger cardinality than M .The
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matching number of G, denoted α′(G), is the cardinality of a maximum

matching. A vertex cover of a graph G is a set S of vertices such that every

edge of G is incident to a vertex in S. The covering number, denoted by

β(G), is the minimum cardinality of a vertex cover of G. The well-known

König’s min-max theorem states that

α′(G) = β(G)

for any bipartite graph G. The distance dG(u, v) between vertices u and v

in G is the length of the shortest path connecting them. The diameter of

a graph G is defined as diam(G) = max{u,v}⊆V (G) dG(u, v). The following

lemmas are crucial for proving our main theorems.

Lemma 1. the function

f(x, y) =
√
x2 + y2 + xy −

√
(x− 1)2 + y2 + (x− 1)y,

is increasing with respect to x ∈ [1,+∞) and is decreasing with respect to

y ∈ [1,+∞), respectively.

Proof. Since x ⩾ 1, we have

(x+
1

2
y)2[(x− 1)2 + y2 + (x− 1)y]− (x+

1

2
y − 1)2(x2 + y2 + xy) > 0.

A simple calculation shows that

∂f

∂x
=

x+ 1
2y√

x2 + y2 + xy
−

x+ 1
2y − 1√

(x− 1)2 + y2 + (x− 1)y
> 0.

As in the above proof process, we can obtain ∂f
∂y < 0, when y ⩾ 1.

By the elementary calculus, the result follows.

Lemma 2. Let T be a tree with an edge e = uv satisfying dT (u) ≥ 2 and

dT (v) ≥ 2. H1 = {uw : w ∈ NT (v) \ {u}}, H2 = {vw : w ∈ NT (v) \ {v}}.
If T ′ = T −H1 +H2, then

EU(T ′) > EU(T ).
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Figure 1. The transformation-I

Proof. Let x = dT (u) ≥ 2 and y = dT (v) ≥ 2. Since x ≥ 2 and y ≥ 2, we

have

1 + (x+ y − 1)2 + x+ y − 1 ≥ x2 + y2 + xy.

Note that dT ′(w) = dT (w), dT ′(u) = x + y − 1 and dT ′(v) = 1, where

w ∈ NT ′(u) ∪NT ′(v) \ {u, v}. Thus,

EU(T ′)− EU(T )

=
∑

w∈NT (v)\{u}

√
(x+ y − 1)2 + d2

T ′(w) + (x+ y − 1)dT ′(w)

−
∑

w∈NT (v)\{u}

√
y2 + d2

T (w) + ydT (w)

+
√

(x+ y − 1)2 + 1 + x+ y − 1−
√
x2 + y2 + xy

+
∑

w∈NT (u)\{v}

√
(x+ y − 1)2 + d2

T ′(w) + (x+ y − 1)dT ′(w)

−
∑

w∈NT (u)\{v}

√
x2 + d2

T (w) + xdT (w)

> 0.

The proof is completed.

Lemma 3. Let P be the longest path of a tree T . Assume that u is an

end vertex of P and v ∈ V (P ) is the vertex such that dP (v, u) is as small

as possible, subject to dT (v) ≥ 3. Let u1 be the unique neighbor of u
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Figure 2. The transformation-II

on P and v1 and v2 be the two neighbors of v on P . H1 = {vw : w ∈
NT (v) \ {v1, v2}}, H2 = {uw : w ∈ NT (v) \ {v1, v2}}. If T ′ = T −H1+H2,

then

EU(T ′) < EU(T ).

Proof. Let x = dT (v) ≥ 3. Next, we consider two cases based on the value

of dP (v, u).

Case 1. dP (v, u) = 1.

By the assumption, u1 = v, v1 = u, dT ′(u) = x − 1 and dT ′(v) = 2,

dT ′(v2) = dT (v2). Since x ≥ 3, we have√
(x− 1)2 + 22 + 2(x− 1) <

√
x2 + 1 + x.

Thus,

EU(T ′)− EU(T )

=
∑

w∈NT (v)\{u,v2}

√
(x− 1)2 + d2

T ′(w) + (x− 1)dT ′(w)

−
∑

w∈NT (v)\{u,v2}

√
x2 + d2

T (w) + xdT (w)

+
√

(x− 1)2 + 22 + 2(x− 1)−
√
1 + x2 + x

+ (
√
22 + d2

T ′(v2) + 2dT ′(v2)−
√

x2 + d2
T (v2) + 2dT (v2))
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< 0.

Case 2. dP (v, u) ≥ 2.

By Lemma 1 and x ≥ 3, we have

(
√
(x− 1)2 + 22 + 2(x− 1)−

√
x2 + 22 + 2x)− (

√
7− 2

√
3) < 0. (1)

Furthermore, since dP (v, u) is as small as possible, we have dT ′(u1) =

dT (u1) = 2 and dT ′(v1) = dT (v1) = 2

Thus, by (1), we obtain

EU(T ′)− EU(T )

=
∑

w∈NT (v)\{v1,v2}

(
√

(x− 1)2 + d2
T ′(w) + (x− 1)dT ′(w)

−
∑

w∈NT (v)\{v1,v2}

√
x2 + d2

T (w) + xdT (w))

+
√

(x− 1)2 + 22 + 2(x− 1)−
√
7 + 2

√
3−

√
x2 + 22 + 2x

+
√

22 + d2
T ′(v2) + 2dT ′(v2)−

√
x2 + d2

T ′(v2) + xdT ′(v2)

< (
√
(x− 1)2 + 22 + 2(x− 1)−

√
x2 + 22 + 2x)− (

√
7− 2

√
3)

< 0.

This completes the proof.

Corollary. For a tree T of order n ≥ 3, we have

2
√
7 + 2(n− 3)

√
3 ≤ EU(T ) ≤ (n− 1)

√
(n− 1)2 + n.

The left equality holds if and only if T ∼= Pn and the right equality holds if

and only if T ∼= Sn.

Proof. Let T ̸∼= Sn. Using a sequence of Transformation-I operations

(T1, T2, . . . , Tt) as described in Lemma 2, T can be transformed into Sn

through a sequence T1 = T, T2, . . . , Tt = Sn where EU(Ti+1) > EU(Ti)
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for all 1 ≤ i < t. Therefore,

EU(T ) < EU(Sn) = (n− 1)
√

(n− 1)2 + n.

Conversely, if T ̸∼= Pn, Lemma 3 guarantees a sequence of Transforma-

tion-II operations (T1, T2, . . . , Tt) transforming T into Pn, where T1 = T ,

Tt = Pn, and EU(Ti+1) < EU(Ti) for all i ∈ {1, . . . , t− 1}. Thus,

2
√
7 + 2(n− 3)

√
3 = EU(Pn) < EU(T ).

Additionally, if T ∼= Pn or T ∼= Sn, then equality holds on the right or

left.

3 Main results

3.1 Trees with matching number α′

In this section, Let n, α′ be integers such that n ≥ 2α′ ≥ 2. Let Tn,α′ be

the tree formed from the star Sn−α′−1 by subdividing α′−1 of its pendent

edges. Note that α′(Tn,α′) = α′, and Tn,α′ and T2α′,α′ are illustrated in

Fig. 3. Simply, we obtain

EU(Tn,α′) = (n− 2α′ + 1)
√

1 + (n− α′)2 + n− α′

+(α′ − 1)(
√
7 +

√
22 + (n− α′)2 + 2(n− α′)).

Tn,α′ maximizes the Euler-Sombor index among trees of order n with

matching number α′. Define a function:

k(n, α′) = (n− 2α′ + 1)
√
1 + (n− α′)2 + n− α′

+(α′ − 1)(
√
7 +

√
22 + (n− α′)2 + 2(n− α′)).

We begin with a useful lemma (see [24]).

Lemma 4. [24] If T is a tree of order n > 2α′ with α′(T ) = α′, then there

is a maximum matching M and a pendent vertex u such that M does not

saturate u.
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Figure 3. The tree Tn,α′ (left) and T2α′,α′ (right).

We extend the previous result to the Euler-Sombor index as follows.

Lemma 5. [7] Assume that T ∗ has the maximum Sombor index among all

trees of order n with matching number α′. If M is a maximum matching

with |M | = α′, then

(1) e is a pendent edge of T ∗ for each e ∈ M ;

(2) u is saturated by M for each non-pendent vertex.

Lemma 6. Assume that T ∗ has the maximum the Euler-Sombor index

among trees of order n with matching number α′. If M is a maximum

matching with |M | = α′, then

(1) e is a pendent edge of T ∗ if e ∈ M ;

(2) u is saturated by M if d(u) ≥ 2.

Proof. To prove (1), let e = uv ∈ M . Assume e is not a pendent edge of

T ∗, implying dT∗(u) ≥ 2 and dT∗(v) ≥ 2. Define T ′ = T ∗ − {vw : w ∈
NT∗(v) \ {u}}+ {uw : w ∈ NT∗(v) \ {u}}.

Claim 1. α′(T ′) = α′(T ∗).

Because M is a matching of T ′, α′(T ′) ≥ |M | = α′(T ∗). We now

show that α′(T ′) ≤ α′(T ∗). We can use Kőnig’s theorem to prove β(T ′) ≤
β(T ∗). Let S be a minimum cover of T ∗. Then S′ covers T ′, where

S′ =

{
S \ {v}, u ∈ S

(S \ {v}) ∪ {u}, otherwise.

Thus,

α′(T ∗) = β(T ∗) = |S| ≥ |S′| ≥ β(T ′) = α′(T ′).

This proves the claim.

This contradicts the choice of T ∗ because Lemma 2 implies EU(T ′) >

EU(T ∗).
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Then, we prove (2). If T ∗ ∼= Sn, the claim is immediate. Otherwise,

assume T ∗ ̸∼= Sn and contains a non-M -saturated vertex u with dT∗(u) ≥
2. Because T ∗ is not a star, u has a neighbor v with dT∗(v) ≥ 2. By

the maximality of M , v is M -saturated. Let T ′′ = T ∗ − {vw : w ∈
NT∗(v)\{u}}+{uw : w ∈ NT∗(v)\{u}}. By Claim 1, we have α′(T ′′) = α′.

Thus, EU(T ′′) > EU(T ∗) by Lemma 2, contradicting the maximality of

T ∗.

Recall that S ⊆ V (G) is an independent set of a graph G if no two

vertices in S are adjacent. The Independence number of G, denoted by

α(G), is the maximum cardinality of an independent set of G. The well-

known Gallai identity says that

α(G) + β(G) = n

for any graph G.

Next, we establish a sharp upper bound for the Euler-Sombor index

EU(T ) of a tree T with a specified matching number.

Theorem 1. If T is a tree of order n > 2α′, which has matching number

α′,then EU(T ) ≤ k(n, α′), with equality if and only if T ∼= Tn,α′ .

Proof. Assume that T has the maximum Euler-Sombor index EU among

all trees with order n with matching number α′. If n = 3, then T ∼= P3
∼=

T3,1. Therefore, the result is immediate. Then, let n ≥ 4 and assume the

result holds for all trees of order between 2α′ + 1 and n− 1. We proceed

by induction on n.

Let M be a matching of T with |M | = α′. By Lemma 4, a pendent

vertex u exists such that T−u has a matching M with size α′. Let v be the

unique neighbor of u. Set x = dT (v) and NT (v) \ {u} = {v1, v2, ..., vx−1}.
Let T ′ = T − u. Then T ′ is a tree of order n − 1 with matching number

α′.

By Gallai’s identity and König’s theorem, we can know that x =

dT (v) ≤ α(T ) = n − β(T ) = n − α′(T ) = n − α′. Let t be the number of

pendent vertices in NT ′(v) in T ′, say v1, . . . , vt. Lemma 6 implies that T

has n−α′ pendent vertices. Therefore, t+1 ≤ n−α′−(α′−1) = n−2α′+1,
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which simplifies to t ≤ n− 2α′. By induction hypothesis,

EU(T ′) ≤ (n− 2α′)
√
1 + (n− 1− α′)2 + n− 1− α′

+ (α′ − 1)(
√
7 +

√
22 + (n− 1− α′)2 + 2(n− 1− α′)).

Since dT (vi) = dT ′(vi) ≥ 2 for i ∈ {t+ 1, . . . , x− 1}, by Lemma 1,

x−1∑
i=t+1

(
√
x2 + dT (vi)2 + xdT (vi)−

√
(x− 1)2 + dT ′(vi)2 + (x− 1)dT ′(vi))

=

x−1∑
i=t+1

f(x, dT (vi)) ≤
x−1∑

i=t+1

f(x, 2).

In addition, by x ≤ n− α′, t ≤ n− 2α′ and dT (vi) = dT ′(vi) ≥ 2 we have

EU(T )

= EU(T ′) +
√

x2 + 1 + x+

t∑
i=1

f(x, 1) +

x−1∑
i=t+1

f(x, dT (vi))

≤ EU(T ′) +
√
x2 + 1 + x+

t∑
i=1

f(x, 1) +

x−1∑
i=t+1

f(x, 2)

≤ EU(T ′) +
√
(n− α′)2 + 1 + (n− α′) + tf(n− α′, 1)

+ (n− α′ − t− 1)f(n− α′, 2)

≤ EU(T ′) +
√
(n− α′)2 + 1 + (n− α′) + (n− α′ − 1)f(n− α′, 2)

+ (n− 2α′)(f(n− α′, 1)− f(n− α′, 2))

≤ (n− 2α′ + 1)
√
1 + (n− α′)2 + (n− α′)

+ (α′ − 1)(
√
7 +

√
22 + (n− α′)2 + 2(n− α′)).

A simple calculation shows that EU(Tn,α′) = k(n, α′). Conversely,

if EU(Tn,α′) = k(n, α′), the preceding expression becomes an equality,

implying x = dT (u) = n−α′, t = n−2α′, and dT ′(vi) = 2 for n−2α′+1 ≤
i ≤ n− α′ − 1. Hence, T ∼= Tn,α′ .
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3.2 Trees with p pendent vertices

In this section, let Tn,p be the tree obtained from the star Sp+1 (where

n ≥ p ≥ 2) by subdividing one pendent edge n− p− 1 times (see Fig. 4).

Obviously, Tn,p has exactly p pendent vertices. By a simple computation,

we have

EU(Tn,p) = (p− 1)
√

1 + p2 + p+
√

22 + p2 + 2p+ 2(n− p− 2)
√
3 +

√
7.

Tn,p maximizes the Euler-Sombor index among trees of order n with p

pendent vertices. For clarity, define a function:

g(n, p) = (p− 1)
√
1 + p2 + p+

√
22 + p2 + 2p+ 2(n− p− 2)

√
3 +

√
7.

Figure 4. The tree Tn,p.

Theorem 2. If T is a tree of order n with p pendent vertices, then

EU(T ) ≤ g(n, p), with equality if and only if T ∼= Tn,p.

Proof. Let T be a tree of order n with p pendent vertices. The result follows

immediately, since T ∼= Pn
∼= Tn,2 when p = 2, and T ∼= Sn

∼= Tn,n−1 when

p = n− 1.

Next, let 3 ≤ p ≤ n − 2. Assume the result holds for all trees T ′ of

order n′ with p′ pendent vertices, where n′ + p′ < n + p. Let u be a leaf

of T , and let v be its neighbor. Let x = dT (v). Note that 2 ≤ x ≤ p. Let

NT (v) \ {u} = {v1, v2, ..., vx−1}. Because T is not a star, v has a neighbor

v1 with degree at least two. Let T ′ = T − u. We now consider two cases

based on dT (v).

Case 1. dT (v) = 2.
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By the assumption, dT ′(v) = 1, and thus, T ′ is a tree of order n − 1

with p pendent vertices. By the induction hypothesis,

EU(T ′) ≤ (p− 1)
√

1 + p2 + p+
√
22 + p2 + 2p+ 2(n− p− 3)

√
3 +

√
7.

In addition, since dT ′(v1) = dT (v1) ≥ 2, by Lemma 1,√
22 + d2

T ′(v1) + 2dT ′(v1)−
√

1 + d2
T ′(v1) + dT ′(v1) ≤ 2

√
3−

√
7.

Thus,

EU(T )

= EU(T ′) +
√
7 +

√
22 + d2

T (v1) + 2dT (v1)−
√

1 + d2
T ′(v1) + dT ′(v1)

≤ EU(T ′) +
√
7 + 2

√
3−

√
7

≤ (p− 1)
√
1 + p2 + p+

√
22 + p2 + 2p+ 2(n− p− 3)

√
3

+
√
7 +

√
7 + 2

√
3−

√
7

= (p− 1)
√
1 + p2 + p+

√
22 + p2 + 2p+ 2(n− p− 2)

√
3 +

√
7.

Case 2. dT (v) ≥ 3.

Since dT ′(v) = dT (v) − 1 ≥ 2, T ′ is a tree of order n − 1 with p − 1

pendent vertices. Therefore, by the induction hypothesis,

EU(T ′) ≤ (p− 2)
√

1 + (p− 1)2 + p− 1 +
√

22 + (p− 1)2 + 2(p− 1)

+ 2(n− p− 2)
√
3 +

√
7.

Since dT ′(v1) = dT (v1) ≥ 2 and dT ′(vi) = dT (vi) ≥ 1 for each i ∈
{2, 3 . . . , x− 1}, by Lemma 1,√

22 + d2
T ′(v1) + 2dT ′(v1)−

√
1 + d2

T ′(v1) + dT ′(v1) ≤ 2
√
3−

√
7,

and

x−1∑
i=2

√
d2
T (v) + d2

T (vi) + dT (v)dT (vi)−
√

d2
T ′(v) + d2

T ′(vi) + dT ′(v)dT ′(vi)
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≤
x−1∑
i=2

(
√
x2 + 1 + x−

√
(x− 1)2 + 1 + x− 1) = (x− 2)f(x, 1).

In addition, since x ≤ p, by Lemma 1,√
x2 + 1 + x+ (x− 2)f(x, 1) + f(x, 2) ≤

√
p2 + 1 + p+ (p− 2)f(p, 1) + f(p, 2).

Thus,

EU(T )

= EU(T ′) +
√
x2 + 1 + x+

x−1∑
i=1

(
√
x2 + d2

T (vi) + xdT (vi)

−
√

(x− 1)2 + d2
T ′(vi) + (x− 1)dT ′(vi))

≤ EU(T ′) +
√

x2 + 1 + x+ (x− 2)f(x, 1) + f(x, 2)

≤ EU(T ′) +
√
p2 + 1 + p+ (p− 2)f(p, 1) + f(p, 2)

≤ (p− 1)
√

1 + p2 + p+
√
22 + p2 + 2p+ 2(n− p− 2)

√
3 +

√
7.

A simple calculation shows that EU(Tn,p) = g(n, p). On the other hand,

if EU(Tn,p) = g(n, p), then all the equalities hold in the above expression.

Thus, x = dT (v) = p, dT (v1) = 2 and dT (vi) = 1 for 2 ≤ i ≤ x − 1,

suggesting T ∼= Tn,p.

3.3 Trees with diameter d

In this section, let n and d be integers such that n ≥ d+1 ≥ 2. Define T i
n,d

as the tree formed by attaching n − d − 1 edges to vertex ui of the path

P = u0u1 · · ·ud (see Fig. 5). Note that diam(T i
n,d) = d and T i

n,d
∼= T d−i

n,d

for all i.

Simply, we have

EU(T 1
n,d) =

√
7 +

√
22 + (n− d+ 1)2 + 2(n− d+ 1)

+ (n− d)
√
1 + (n− d+ 1)2 + n− d+ 1 + 2(d− 3)

√
3.

Our goal is to prove that T 1
n,d maximizes the EU value among all trees of
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order n and diameter d. To this end, we define the following function:

h(n, d) =
√
7 +

√
22 + (n− d+ 1)2 + 2(n− d+ 1)

+ (n− d)
√

1 + (n− d+ 1)2 + n− d+ 1 + 2(d− 3)
√
3.

Figure 5. The tree T 1
n,d (above) and T i

n,d (below).

Lemma 7. If T ∗ has the maximum the the Euler-Sombor index among all

trees of order n with diameter d, then T ∗ is a caterpillar.

Proof. Assume for contradiction that T ∗ is not a caterpillar. Let P =

u0u1 · · ·ud be a diametrical path of T ∗. Since T ∗ is not a caterpillar,

there exists an integer i between 2 and d− 2 such that ui has a neighbor

v /∈ {ui−1, ui+1} with dT∗(v) ≥ 2. Thus, the edge vui satisfies dT∗(v) ≥ 2

and dT∗(ui) ≥ 2. Let T ′ = T ∗ − {vw : w ∈ NT∗(v) \ {ui}} + {uiw :

w ∈ NT∗(v) \ {ui}}. One can see that T ′ is also a tree of order n with

diameter d. This contradicts the maximality of T ∗, since Lemma 2 implies

EU(T ′) > EU(T ∗).

Lemma 8. Let T ∗ be a caterpillar graph of order n and diameter d. If it

has two vertices of degree greater than 2, then its Euler-Sombor index EU
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cannot attain the maximum among all trees of order n with diameter d.

Proof. Let P = u0u1 · · ·ud be a diametrical path of T ∗. Assume, for

contradiction, that there exist ui, uj ∈ V (P ) with i < j, dT∗(ui) = ∆ ≥ 3,

and dT∗(uj) ≥ 3, where i ∈ {1, 2, ..., d − 1}. Choose ui and uj such that

dT (ui, uj) is minimized. Let x = dT∗(ui) and y = dT∗(uj). We consider

two cases based on whether dT (ui, uj) = 1.

Case 1. dT (ui, uj) = 1.

Because i < j, we have uj = ui+1. Define T ′ = T ∗ − ui+1w1 + uiw1,

where w1 ∈ NT∗(ui+1) \ {ui, ui+2}. Then diam(T ′) = d.

Now, we show EU(T ′) > EU(T ∗). Since x ≥ y ≥ 3, we have√
(x+ 1)2 + (y − 1)2 + (x+ 1)(y − 1) >

√
x2 + y2 + xy.

By Lemma 7, we have dT ′(w) = dT∗(w) = 1, where w ∈ NT∗(ui) ∪
NT∗(ui+1) \ {ui−1, ui, ui+1, ui+2}.

Since x ≥ y,

(x− 2)(
√

(x+ 1)2 + 1 + x+ 1−
√
x2 + 1 + x)

> (y − 3)(
√
y2 + 1 + y −

√
(y − 1)2 + 1 + y − 1).

and√
(x+ 1)2 + x+ 2−

√
y2 + 1 + y ≥

√
(y + 1)2 + y + 2−

√
y2 + 1 + y.

Since dT ′(ui+2) = dT (ui+2) ≥ 1, by Lemma 1,√
y2 + d2

T ′(ui+2) + ydT ′(ui+2)−
√

(y − 1)2 + d2
T∗(ui+2) + (y − 1)dT∗(ui+2)

= f(y, dT ′(ui+2))

≤ f(y, 1) =
√

y2 + 1 + y −
√

(y − 1)2 + 1 + y − 1.

In addition, since y + 1 > y, by Lemma 1,

(
√
(y + 1)2 + y + 2−

√
y2 + 1 + y)− (

√
y2 + 1 + y−

√
(y − 1)2 + y) > 0.
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Thus,

EU(T ′)− EU(T ∗)

= (x− 2)f(x+ 1, 1)− (y − 3)f(y, 1) +
√

(x+ 1)2 + x+ 2−
√
y2 + 1 + y

+ f(x+ 1, dT ′(ui−1))− f(y, dT ′(ui+2))

+ (
√
(x+ 1)2 + (y − 1)2 + (x+ 1)(y − 1)−

√
x2 + y2 + xy)

> (
√
(x+ 1)2 + x+ 2−

√
y2 + 1 + y)− f(y, dT ′(ui+2))

> f(y + 1, 1)− f(y, dT ′(ui+2))

> f(y + 1, 1)− f(y, 1)

> 0.

Case 2. dT (ui, uj) ≥ 2.

Since j ≥ i + 2, let T ′ = T ∗ − ujw1 + uiw1, where w1 ∈ N(uj) \
{uj−1, uj+1}. Then diam(T ′) = d.

Now we show EU(T ′) > EU(T ∗).

By the choice of ui and uj , dT∗(ui+1) = dT ′(ui+1) = 2 and dT∗(uj−1) =

dT ′(uj−1) = 2.

Since dT ′(uj+1) = dT (uj+1) ≥ 1 and x ≥ y ≥ 3, by Lemma 1,√
y2 + d2

T ′(uj+1) + ydT ′(uj+1)−
√

(y − 1)2 + d2
T∗(uj+1) + (y − 1)dT∗(uj+1)

≤
√

y2 + 1 + y −
√

(y − 1)2 + y

≤
√

(y + 1)2 + 2 + y −
√

y2 + 1 + y = f(y + 1, 1).

Thus,

EU(T ′)− EU(T ∗)

= (x− 2)f(x+ 1, 1)− (y − 3)f(y, 1)

+ (
√

(x+ 1)2 + 1 + x+ 1−
√
y2 + 1 + y)
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+ f(x+ 1, dT ′(ui−1)) + f(x+ 1, 2)− f(y, 2)− f(y, dT ′(uj+1))

> f(y + 1, 1) + f(x+ 1, 2)− f(y + 1, 2)− f(y + 1, 1)

> 0.

Therefore, the proof is completed.

Theorem 3. Let n and d be two integers with 2 ≤ d ≤ n − 2. If T is

a tree of order n with diameter d, then EU(T ) ≤ h(n, d), with equality if

and only if T ∼= EU(T 1
n,d).

Proof. Suppose T has the maximum Euler-Sombor index among all trees

of order n with diameter d. Lemmas 7 and 8 imply T ∼= T i
n,d for some

i ∈ {1, 2, . . . , d− 1}. Simply put, if 2 ≤ i ≤ d− 2, then

EU(T i
n,d) = 2

√
7 + 2

√
22 + (n− d+ 1)2 + 2(n− d+ 1) + 2(d− 4)

√
3

+(n− d− 1)
√
(n− d+ 1)2 + 1 + (n− d+ 1),

and

EU(T 1
n,d) =

√
7 +

√
22 + (n− d+ 1)2 + 2(n− d+ 1)

+(n− d)
√

12 + (n− d+ 1)2 + n− d+ 1 + 2(d− 3)
√
3.

Since n− d+ 1 > 2, by Lemma 1, we have

EU(T 1
n,d)− EU(T i

n,d) = (2
√
3−

√
7)

− (
√

22 + (n− d+ 1)2 + 2(n− d+ 1)

−
√
(n− d+ 1)2 + n− d+ 2)

= f(2, 2)− f(2, n− d+ 1)

> 0.

Thus, T ∼= T 1
n,d, completing the proof.
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4 Discussion

In this paper, we give the sharp bounds for the Euler-Sombor index among

all trees of order n with the matching number, the number of pendent

vertices and the diameter, respectively. Naturally, the Euler-Sombor index

is also meaningful for extremal problems in other special graph classes,

especially for chemical graphs. For further study, the extremal problems

for chemical trees are interesting.
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