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Abstract

Topological indices are numerical descriptors of graphs that are
widely used in fields such as mathematical chemistry, network the-
ory, and structural analysis. Among the recently introduced degree-
based indices, the Euler Sombor index has gained significant atten-
tion due to its applicability.

The Euler Sombor index is defined as:

EU(G) =
∑

xy∈E(G)

√
dG(x)2 + dG(y)2 + dG(x)dG(y),

where dG(x) denotes the degree of vertex x in the graph G, and the
sum is taken over all edges of G.

In this study, we focus on the minimum value of the Euler Som-
bor index for the class of unicyclic graphs with a fixed diameter
d ≥ 2.

1 Introduction

This paper considers only finite,connected and undirected graphs. Let G

be a graph with set of vertices V (G) and set of edges E(G). The degree
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of the vertex x ∈ V is defined as the number of vertices adjacent to x,

and it is denoted by dG(x). The set of all neighbors of vertex x is NG(x).

If dG(x) = 1, then x is called a pendent vertex of G. Let d(u, v) denote

the distance between two distinct vertices u and v in a graph G, which

is defined as the number of edges in the shortest path connecting them.

The diameter of a graph G, denoted by d(G), is defined as the greatest

distance between any pair of vertices in the graph, i.e.,

d(G) = max{d(u, v) | u, v ∈ V (G)}.

A diametral path is the shortest path between two vertices u and v such

that d(u, v) = d(G). For simplicity, we denote the diameter d(G) by d.

For graph-theoretical notions and terminology used in the present paper,

we refer the reader to [3].

A unicyclic graph is a connected graph containing exactly one cycle, and

due to this unique cycle, such graphs offer a rich structure for studying

degree-based invariants. The diameter constraint imposes a structural lim-

itation, making the identification of extremal graphs both more interesting

and more complex.

Topological indices characterize the molecular structure of a graph and

are called numerical parameters used to estimate physicochemical infor-

mation . The Euler Sombor index is introduced in [7,21], where the Euler

Sombor index is defined

EU(G) =
∑

xy∈E(G)

√
d2G(x) + d2G(y) + (dG(x)dG(y)). (1)

For other studies in the literature related to Euler Sombor index and other

Sombor related indices, see [1,5,8–12,18,22]. Especially in recent years, a

lot of work has been done on the extremal value problem of Sombor and

Euler Sombor indices. Cruz and Rada [4] investigated the extremal values

of the classical Sombor index in unicyclic and bicyclic graphs, identify-

ing the graph structures that attain the minimum and maximum values.

Alidadi et al. [2] studied unicyclic graphs with fixed diameter and vertex

number, focusing on those achieving the minimum Sombor index. They es-
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tablished lower bounds for graphs with diameter at least two and described

the graph structures that meet those bounds. Liu et al. [15] presented a

comprehensive review of the Sombor index, summarizing known extremal

results and bounds across various graph classes.Their work systematically

compiled lower and upper bounds of the index, along with extremal struc-

tures that attain these values. Dorjsembe and Horoldagva [6] examined

the reduced Sombor index in bicyclic graphs, identifying graph structures

that attain the extremal values and discussing the implications for graph

theory.

Shooshtari et al. [19] focused on modified Sombor index in unicyclic

graphs with fixed diameter, determining the lower bounds and charac-

terizing the graphs that minimize this index. Zhang and Zhao [23] in-

vestigated the extremal values of the Sombor index in tricyclic graphs,

identifying the graph structures that attain the minimum and maximum

values. Khanra and Das [13] conducted a systematic study of the Eu-

ler Sombor index across trees, unicyclic, and chemical graphs, comparing

how the index behaves in different graph classes and offering new theoret-

ical insights. Kızılırmak [14] analyzed the Euler Sombor index in tricyclic

graphs, identifying the structures that attain the maximum and minimum

values of the index.

Su and Tang [20]investigated unicyclic and bicyclic graphs with respect

to their Euler Sombor index, characterizing extremal graphs and elaborat-

ing on the structural implications. Liu [16] explored unicyclic graphs with

fixed diameter and number of vertices that achieve the maximum Som-

bor index, offering a structural characterization of extremal graphs. Liu

et al. [17] focused on tetracyclic (chemical) graphs, examining extremal

values of the Sombor index and its relationships with graph parameters.

Unicyclic graphs, which are connected graphs containing exactly one cycle,

offer a rich structure for exploring degree-based invariants. The diameter

constraint imposes a structural limitation, making the identification of ex-

tremal graphs both more interesting and more complex. In this paper, we

aim to present the minimum Euler Sombor index for unicyclic graphs with

the diameter d ≥ 2.
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2 Main results

In this section, we will provide a lower bound for the Euler Sombor index

on unicyclic graphs with diameter d ≥ 3. First, we present two Lemmas

that will be used in the theorems.

Lemma 1. Let G be a unicyclic graph and let H be a diametral path in

G. If there exists a pendent vertex v /∈ V (H), then one can construct a

unicyclic subgraph G∗ ⊂ G such that v /∈ V (G∗), the diameter remains

unchanged, and the Euler Sombor index satisfies EU(G) > EU(G∗).

Proof. Let H be a diametral path in G and suppose v ∈ V (G) is a pendent

vertex such that v /∈ V (H). Let u denote the closest vertex to v for which

dG(u) ̸= 2. Define the subgraph G∗ ⊂ G to be the graph obtained by

deleting the path connecting u and v from G. Let x be the neighbor of u

along the deleted path (in case the path has only one edge, we set x = v).

It is clear that G∗ remains a unicyclic graph and preserves the diameter,

i.e., d(G∗) = d(G). We then obtain the following inequality:

EU(G)− EU(G∗) ≥
√
d2u + 1 + du

+
∑

y∈N(u)\{x}

√
d2u + d2y + dudy

−
∑

y∈N(u)\{x}

√
(du − 1)2 + d2y + (du − 1)dy

> 0.

This confirms that the Euler Sombor index of G strictly exceeds that

of G∗, i.e., EU(G) > EU(G∗).

Lemma 2 ( [13]). Among all unicyclic graphs with n ≥ 3 vertices, the

unique graph that attains the minimum Euler Sombor index is the cycle

Cn, and the minimum value is 2
√
3n.

In light of Lemma 2, our focus in this paper will be on unicyclic graphs

that contain at least one pendent vertex.
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Theorem 1. Let G be a unicyclic graph with n vertices and diameter d,

where d ≥ 3 and n ≥ d+ 2. Then the following inequality holds:

EU(G) ≥ EU(H1) = 3
√
19 +

√
7 + 2

√
3(n− 4),

where H1 denotes the graph constructed by attaching a path of length 2d−
n+ 1 to a vertex of the cycle C2n−2d−1.

Proof. Because G has at least one pendent vertex, we divide our discussion

into three separate cases.

Case 1: G has exactly one pendent vertex.

The graph G consists of a path P with m ≥ 1 edges and a cycle Cl with

l ≥ 3. The cycle Cl and path P share a common vertex of degree 3 in G.

Thus,

EU(G) = EU(Cl) + EU(P ). (1)

First, let m ≥ 2 and l ≥ 4. The path P contains

• (m− 2) edges of d-coordinate (2, 2) for i = 1, 2,

• one (1, 2)-edge,

• one (2, 3)-edge.

Hence, we get

EU(P ) =
√
19 +

√
7 + 2

√
3(m− 2) (2)

On the other hand, the cycle Cl contains l − 2 edges of d-coordinate

(2, 2) and two (2, 3)-edges. Therefore, we have

EU(Cl) = 2
√
19 + 2

√
3(l − 2). (3)

By substituting equations (2) and (3) into equation (1), we get

EU(G) = 3
√
19 +

√
7 + 2

√
3(m+ l − 4).

Since n = l +m, we obtain

EU(G) ≥ 3
√
19 +

√
7 + 2

√
3(n− 4) ≥ EU(H1).
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If m = 1 and l ≥ 4, then n = l + 1 and EU(P ) =
√
13. Therefore,

EU(G) = 2
√
19 +

√
13 + 2

√
3(l − 2)

≥ (n− 3)
√
8 + 2

√
13 +

√
10 ≥ EU(H1).

If l = 3 and m ≥ 2, then n = m + 1 and the Euler Sombor index

reaches the minimum bound:

EU(G) = 3
√
19 +

√
7 + 2

√
3(n− 4) = EU(H1).

Case 2: The graph G has precisely two pendent vertices.

In this scenario, G comprises two distinct paths, P and P ′, with m1 ≥ 1

and m2 ≥ 1 edges, respectively. Furthermore, the graph includes a cycle

Cl where l ≥ 3. Without loss of generality, we may assume that Cl shares

a vertex with P , and that P ′ is connected either to a vertex on Cl or to

an internal vertex of P .

Subcase 2-1: We consider the case where P and P ′ do not intersect.

EU(G) = EU(Cl) + EU(P ) + EU(P ′).

First, let l ≥ 4 and m1,m2 ≥ 2. Each path P and P ′ contains:

• (mi − 2) edges of d-coordinate (2, 2) for i = 1, 2,

• one (1, 2)-edge,

• one (2, 3)-edge.

This gives:

EU(P ) =
√
19+

√
7+2

√
3(m1−2), EU(P ′) =

√
19+

√
7+2

√
3(m2−2).

If P and P ′ are connected to non-adjacent vertices of Cl, then the

cycle contains four (2, 3)-edges and (l − 4) edges of d-coordinate (2, 2), so

we have

EU(Cl) = 4
√
19 + 2

√
3(l − 4). (4)
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On the other hand, if P and P ′ are connected to adjacent vertices of

Cl, then the cycle has:

• two (2, 3)-edges,

• one (3, 3)-edge,

• and (l − 3) edges of d-coordinate (2, 2).

Therefor we get

EU(Cl) = 2
√
19 + 3

√
3 + 2

√
3(l − 3). (5)

Since n = l +m1 +m2 and expression (4) is greater than (5), we deduce

the following inequalities:

EU(G) ≥ 2
√
3(l +m1 +m2 − 7) + 4

√
19 + 2

√
7 + 3

√
3

≥ 2
√
3(n− 7) + 4

√
19 + 2

√
7 + 3

√
3

≥ 2
√
3(n− 4) + 3

√
19 +

√
7.

If l ≥ 4 and m1 = 1, m2 ≥ 2, then n = l +m2 + 1, and EU(P ) =
√
13

and

EU(P ′) = 2
√
3(m2 − 2) +

√
19 +

√
7.

Hence we have

EU(G) ≥ 2
√
3(l +m2 − 5) + 3

√
19 + 3

√
3 +

√
13 +

√
7

≥ 2
√
3(n− 6) + 3

√
19 + 3

√
3 +

√
13 +

√
7

≥ 2
√
3(n− 4) + 3

√
19 +

√
7.

If l ≥ 4 and m1 = m2 = 1, then n = l + 2 and EU(P ) + EU(P ′) = 2
√
13.

This implies that

EU(G) ≥ 2
√
3(l − 3) + 2

√
19 + 2

√
13 + 3

√
3

≥ 2
√
3(n− 5) + 2

√
19 + 2

√
13 + 3

√
3

≥ 2
√
3(n− 4) + 3

√
19 +

√
7.
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When l = 3 and m1,m2 ≥ 2, then n = m1 + m2 + 3 and EU(Cl) =

2
√
19 + 3

√
3. Thus,

EU(G) = 2
√
3(m1 +m2 − 4) + 4

√
19 + 3

√
3 + 2

√
7

= 2
√
3(n− 7) + 4

√
19 + 3

√
3 + 2

√
7

≥ 2
√
3(n− 4) + 3

√
19 +

√
7.

If l = 3 and m1 = m2 = 1, then d = 3 and n = 5. We get

EU(G) = 2
√
19 + 2

√
13 + 3

√
3

> 2
√
3 + 3

√
19 +

√
7

= 2
√
3(n− 4) + 3

√
19 +

√
7.

Finally, when l = 3 and m1 = 1, m2 ≥ 2, then n = m2 + 4. Thus, it

can be concluded that

EU(G) ≥ 2
√
3(m2 − 2) +

√
7 +

√
13 + 3

√
19 + 3

√
3

= 2
√
3(n− 6) + 3

√
19 +

√
7

≥ 2
√
3(n− 4) + 3

√
19 +

√
7.

Subcase 2-2: Suppose P∩P ′ ̸= ∅, and there exists a diametral pathH

that contains both pendent vertices of the graph G. Under this condition,

the inclusion H ⊆ P ∪ P ′ holds.

If both paths P and P ′ are attached to a vertex of the cycle Cl, then

an interior vertex on H, say u, must have degree 4 in the graph G. Alter-

natively, if P ′ is joined to an internal vertex of P , then one of the interior

vertices on H, labeled u, has degree 3 in G.

Now, assuming that u is not adjacent to any pendent vertex along H,

the following inequalities can be derived:

EU(H) ≥ 2
√
3(d− 4) + 2

√
7 + 2

√
19

or

EU(H) ≥ 2
√
3(d− 4) + 6

√
7.
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It follows that the lesser value provides a valid lower bound for the

Euler Sombor index of the graph G:

EU(H) ≥ 2
√
3(d− 4) + 2

√
7 + 2

√
19. (6)

Let u be the neighbor of a pendent vertex of H. Then we get

EU(H) ≥ 2
√
3(d− 3) + 3

√
7 +

√
21. (7)

Observe that in this particular case, the condition d ≥ 4 holds. Conse-

quently, inequality (6) provides a tighter lower bound than inequality (7),

leading to the conclusion that:

EU(H) ≥ 2
√
3(d− 4) + 2

√
7 + 2

√
19.

Furthermore, the graphG contains the cycle Cl, which includes a vertex

of degree 3 or 4. Hence, we get

EU(Cl) ≥ 2
√
3(l − 2) + 2

√
19

or

EU(Cl) ≥ 2
√
3(l − 2) + 4

√
7 > 2

√
3(l − 2) + 2

√
19.

Since n = l + d, we obtain

EU(G) ≥ EU(Cl) + EU(H)

≥ 2
√
3(d+ l − 6) + 4

√
19 + 2

√
7

= 2
√
3(n− 6) + 4

√
19 + 2

√
7

≥ EU(H1).

Subcase 2-3: Assume that P ∩ P ′ ̸= ∅ and there exists a diametral path

H in G that contains exactly one pendent vertex. In this situation, since

the other pendent vertex does not lie on H, Lemma 1 ensures the existence

of a unicyclic subgraph G∗ ⊂ G such that only one pendent vertex lies on
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H, and the following conditions are satisfied:

d(G∗) = d(G) and EU(G) > EU(G∗).

Based on Case 1, the following inequality then holds:

EU(G∗) ≥ EU(H1).

Case 3: Let the graph G have no fewer than three pendent vertices.

Assume that H is a diametral path in G. It is evident that H can

include at most two of the pendent vertices. Given that G has m ≥ 3

pendent vertices, it follows that at least m− 2 of them are not situated on

H.

According to Lemma 1, one can construct a unicyclic subgraph G∗ ⊂ G

which retains only those pendent vertices that lie on H, and satisfies the

following properties:

d(G∗) = d(G) and EU(G) > EU(G∗).

By applying the same reasoning as in Case 1, we obtain:

EU(G∗) ≥ EU(H1).

Theorem 2. Let G be a unicyclic graph with diameter d ≥ 3 and n ≥ 2d.

Then we have

EU(G) ≥ EU(H2) = 2
√
3(n− 3) + 2

√
19 +

√
13,

where H2 is the graph obtained by attaching a pendent vertex to one vertex

of the cycle C2d−1.

Proof. Suppose that G has exactly one pendent vertex. In this case, we

have n = 2d, and it follows that G ∼= H2, which verifies the statement.

Next, consider the situation whereG has precisely two pendent vertices.

Under this condition, the number of vertices satisfies n = 2d or n = 2d+1.

In the case of n = 2d, there exists a diametral path H in G that

includes only one of the pendent vertices. Applying Lemma 1, we obtain
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a unicyclic subgraph G∗ ⊂ G that retains only the pendent vertex lying

on H, and satisfies the following:

d(G∗) = d(G) and EU(G) > EU(G∗).

Hence, we conclude:

EU(G) > EU(G∗) ≥ EU(H2) = 2
√
3(n− 3) + 2

√
19 +

√
13.

If n = 2d+1, then G is the graph obtained by connecting two pendent

vertices to the cycle C2d−1.

If both pendent vertices are connected to the same vertex of G, we get

EU(G) = (2d− 3)
√
8 + 2

√
20 + 2

√
17

= 2
√
3(n− 4) + 4

√
7 + 2

√
17

≥ 2
√
3(n− 3) + 2

√
19 +

√
13

= EU(H2).

If the pendent vertices are connected to two different vertices of G, we

have

EU(G) = 2
√
3(2d− 4) + 2

√
19 + 2

√
13 + 3

√
3

or

EU(G) = 2
√
3(2d− 5) + 4

√
19 + 2

√
13.

Hence,

EU(G) ≥ 2
√
3(2d− 4) + 2

√
19 + 2

√
13 + 3

√
3

= 2
√
3(n− 5) + 2

√
19 + 2

√
13 + 3

√
3

≥ 2
√
3(n− 3) + 2

√
19 +

√
13

= EU(H2).

Alternatively, if G has three or more pendent vertices, then at most two

of these can be located on the diametral path H. Applying Lemma 1,

one can find a unicyclic subgraph G∗ ⊂ G that includes only the pendent
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vertices that lie on H, satisfying the following:

d(G∗) = d(G) and EU(G) > EU(G∗).

As a result, the following inequality holds:

EU(G) > EU(G∗) ≥ EU(H2).

Theorem 3. Let G be a unicyclic graph with diameter d = 2, then:

EU(G) ≥ 4
√
3d.

Proof. The unicyclic graphs G with diameter d = 2 fall into one of the

following categories: they are either the cycle C4 with Sombor index

EU(G) = 8
√
3, the cycle C5 with EU(G) = 10

√
3, or a graph obtained by

attaching at least one pendent vertex to a vertex of the cycle C3.

Let V (C3) = {x1, x2, x3}, and suppose that y1, y2, . . . , yk are pendent

vertices connected to x1. In this case, the path x2x1y1 forms a diametral

path in G.

By Lemma 1, there exists a unicyclic subgraph G∗ ⊂ G which contains

only the pendent vertex y1, and satisfies:

d(G∗) = d(G) and EU(G) > EU(G∗).

It follows that:

EU(G∗) = 2
√
3 + 2

√
19 +

√
7.

Therefore, we obtain:

EU(G) ≥ 8
√
3 = 4

√
3d.

3 Conclusions

In this study, the minimum Euler Sombor index for unicyclic graphs with

diameter d ≥ 2 was presented. The results contribute to the character-
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ization of structures that minimize the Euler Sombor index among such

graphs. In future work, some lower and upper bounds on the Euler Sombor

index of a graph G in terms of various graph parameters (such as clique

number, chromatic number, number of pendant vertices, etc.) are intended

to be established, and the extremal graphs that attain these bounds will

be characterized.
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