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Abstract

Various graph entropy measures derived from classical Shannon
entropy are introduced to characterize the complexity of networks,
among which the degree-based graph entropy is defined by employ-
ing degrees of vertices as a graph invariant. Using graph operations
to explore the properties of the extremal graphs has been demon-
strated a promising method. In this paper, we give conditions for
decreasing the values of the entropy by graph operations, which ex-
tend and improve some known results. As an application, we char-
acterize graphs attaining the minimum values in some connected
dense graphs with given numbers of vertices and edges.

1 Introduction

Based on Shannon’s entropy [10], Rashevsky [8] introduced the concept of
graph entropy to measure the structural complexity of graphs. Since then,
a great deal of research has been focused on entropy measures defined

by using several graph invariants, including number of vertices, number

*Corresponding author.


https://doi.org/10.46793/match.94-3.24724

688

of edges, vertex degrees, and distance-based quantities [3, 5], which cov-
ers areas of information science, graph theory, structural chemistry, and
molecular biology [6].

An (n,m)-graph is a graph with n vertices and m edges. Let G be
an (n,m)-graph with vertex set V(G). For any vertex v € V(G), dg(v)
denotes the degree of v in G. The subscript G is omitted if it is clear in
the context, namely d(v).

Let f be an information functional, a function from V(G) to the set
of positive real numbers. According to Shannon’s entropy formulas, the

graph entropy, defined by Dehmer [4], is

If(G) == Y p(v)logp(v),

veV(G)

where p(v) = % When f(v) = d(v), we get the degree-based

graph entropy [2]:

d(v) d(v)
I4(G) = — lo .
() UG;(G) 2uev(a) dw) ¢ > uev(c) duw)

Since 3, ey (g)d(u) = 2m,

I4(G) = log(2m) — — Z d(v)log d(v

'UGV (@)

For the degree-based graph entropy, the task of determining the mini-
mum values and the graphs attaining the minimum values is complicated
as it requires an understanding of the mathematical properties of the mul-
tivariate function }_, v d(v)logd(v). Extensive studies have been de-
voted to extremal results of special graph families. In [2], Cao et al. tack-
led the problem for trees, some cyclic graphs and chemical graphs, and
afterwards, Ghalavand et al. [7] extended some extremal properties. More
recently, the minimal graphs for cacti were characterized in [9]. For gen-
eral graphs, the topological structure of graphs attaining the minimum
values was described as a graph formed by connecting vertices of a clique

and vertices of an independent set in a certain way [11]. And a conjecture
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to determine the extremal values for connected graphs with m < 2n — 3
was proposed in the same reference. Two years later, Cambie and Maz-
zamurro [1] proved the conjecture. To further investigate the extremal
properties, Yan and Guan [12] defined two graph operations and proved
that these operations can decrease the entropy under the conditions of
so-called being ‘proper’. This paper extends and improves the result, and
as an application, we characterize graphs attaining the minimum values in
(n,m)-graphs with m > 1(n+5)(n — 6) for n > 8, m > 11 for n = 7, and
m > 9 for n = 6. It implies that the structure of the extremal graphs is

related to the density of edges.

2 Preliminary definitions and results

N¢(v) denotes the neighbour set of a vertex v in a graph G. G is called
a K,T graph if V(G) can be partitioned into two disjoint sets S and T,
such that S is a clique of a vertices and T is an independent set with
Ng(v) € Ng(u) for d(u) > d(v), where u,v € T. It is reasonable to
assume that d(t) < a—1 for any ¢t € T, since if d(t) = a, we still get a K,T
graph by moving ¢ to S. In [11], graphs attaining the minimum value of I
are characterized as K,T graphs, which means that the discussion of the

extremal properties only needs to be carried out for such a graph family.

Theorem 1. [11, Theorem 4] Any connected graph attaining the minimum

value of Iy must be isomorphic to a K, T graph.

Let S = {vy,v2,...,0,} with d(vy) > d(vy) > -+ > d(v,). From the
definition of K, T graphs, we must have Ng(t) = {v1,v2,...,vq)} for any
vertex t € T, and v; (1 < ¢ < a) is adjacent to all the vertices whose
degrees are not less than ¢ in 7. Hence, for (n,m)-graphs, if the size of
the clique is given, a K,T graph is determined uniquely by the degrees of
the vertices in 7" up to isomorphism. Hereby, we denote a K,T graph by
[171,292 ... (a — 1)%a-1]g, , where [12,292 ... (a — 1)%°-1] is the degree

sequence of T'. That is, for any integer ¢ with 1 < i < a — 1, if there is a

a?

vertex of degree ¢ in T', then ¢; is the number of such vertices; otherwise,
g; = 0. Obviously, Z?:_ll gi = |T|. Note that % with ¢; = 0 does not
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occur in the sequence for a certain graph. Now we can give the degrees of
V1,V2, ...,V @ — 1+27:_11ql,a— 1—&—27:_21%,...,@— 1. IfZ;:qul <1,
that is, there is at most one vertex of degree greater than 1 in 7', then
such graphs are called L*. For given n and m, since L* (also denoted by

L*(n,m)) achieves the maximum of a, L* is determined.

accumulate from 7y, /,to #3

—_—

123 Vi )

V4 Vi

(2% 3%, L'(8, 16)

Figure 1. Transformations from K,T graphs to L*.

In [12], two graph operations are defined to explore extremal topological
properties for (n, m)-graphs. Let G = [191,2% ... (a—1)% -]k, andi,j, k
be three positive integers. If k < i < j <a—1, ¢; # 0, and ¢; > k, then
there must exist a vertex ¢ of degree ¢ and k vertices t1, ¢, ..., t; of degree
j. The operations of deleting the edges tv;, tv;_1,...,tv;_r+1 and adding
the edges t1v41,t20j41, - - -, trVj41 in G are called a distribution from t to
t1,t2,...,tr. We say that a distribution is proper when there is no vertex
with degree greater than i—k and less than j+1 in T of the resulting graph.
Ifl<i<j<a—-k, g >k and ¢; # 0, we assume that t;,¢a,..., ¢
are vertices of degree ¢ and t is a vertex of degree j in 7. Then the
operations of deleting the edges tiv;,t2v;,...,txv; and adding the edges

tvji1,tvj42,. .., 04 in G are called an accumulation from ti,ta,..., ¢
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to t. An accumulation is proper when there is no vertex with degree
greater than ¢ — 1 and less than j + k in T of the resulting graph. We see
that edges are moved from vertices with smaller degree to those with lager
degree after a distribution or an accumulation. Figure 1 illustrates the
transforms from [3%]x, and [22, 3%, to L* by such operations, in which,
except the distribution from ¢; to t3,t4, the other operations are proper.

Theorem 2 and 3 suggest that I;(G) is decreased after a proper operation.

Theorem 2. [12, Theorem 2] Let G = [19,292,...,(a— 1)k, and G’
be the graph resulted from G by a distribution from a vertex of degree i to
k vertices of degree j. If Z{:i—k+1 q =k+1, then I4(G) > I;(G").

Theorem 3. [12, Theorem 3| Let G = [191,2%2, ..., (a—1)%~]g, and G’
be the graph resulted from G by an accumulation from k vertices of degree
1 to a vertex of degree j. If ZJ+k Ya=k+1, then I(G) > I;(G)).

3 Main results

In this section, we improve Theorem 2 and 3 by extending the conditions
of being ‘proper’. Recall the formula:

I4(G) = log(2m) — — Z d(v)log d(v
'UGV (@)

Let g(z) = zlogz. Then
1
14(6) = log(2m) — 5 37 glv)
veV(G)

Note that we always assume d(v1) > d(vg) > -+ > d(v,) for the clique
S ={vy1,va,...,v,} of a K,T graph.

Theorem 4. Let G = [19,22,... (a — 1)%-1]k, and G’ be the graph
obtained by a distribution from a vertex of degree i to k vertices of degree
Gan G IS o < (=) + (k+ 1), then I4(G) > I4(G").

Proof. We prove the theorem by distinguishing two cases.
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Case 1. j<a—1

Then G' = [191,...,(i — k)%i-c+L  qai—1 0=k (j 4 1)%G+1Fk (g —
1)%-1]g,, where ellipses denote the terms that are identical to those in
G. It is noted that G/ =[191,..., (i —k)%i—+t1 . qai—k=1 (G4 1)%1tk (g —
1)%a-1]x for ¢ = j, and the following discussion remains valid.

Then dg/(vp) = dg(vy) — 1 = a—2—|—2?:_plql fori—k+1<p<q;
da (Vi) =dg(vjp) +k=a—-1+k+ Z?;;H qi; and the degree of any

other vertex in S stays the same. Then we have

where

%

a—1 a—1
A=Y gla-1+Ya]-gla-2+Da]|.
I=p l=p

p=i—k+1

a—1 a—1
B=g a—l—i—k—i—qu -9 a—1+qu )
I=j+1 1=j+1

C=Fklg(G+1)—g()l,

D =g(i) — g(i — k).

Since g(x) — g(x — 1) is an increasing function of z,

AngaH 5 ql>g<a2+ 5 qﬂ )

l=i—k+1 l=i—k+1
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Since Z{:i_kﬂ q < j—1i+k+1 by the assumption,

a—1 a—1
A<k|glat+i—i+tk+ D> a|-glati—itk-14+ > q
I=j+1 I=j+1

Let X1 =a+j—i+k+3; @, Xa=j+1,and h=j—i+1. Then

A-B<k[g(X1) —g(Xi =] = [g(X1 —h) —g(X:i —h = k)], 2)

C—D=k[g(X2) —g(X2 = )] = [9(X2 = h) — g(X2 — h — K)]. (3)

Since the derivative of k [g(z) — g(z — 1)]—[g(x — h) — g(x — h — k)] with respect
to x equals k[log z —log(z —1)] — [log(z —h) —log(z —h—k)] = k(é — é), where
& € (x—1,z) and & € (x —h—k,x— h), this function is strictly decreasing with
mbyk(é—é) < 0. And since X7 > Xofori<a—landk>1, A—B<C-D,
and thus I4(G) > I4(G").

Case 2. j=a—1.

We obtain G/ = [19,...,(i — k)%—+TL 9= (¢ — 1)9a—17F gF]p |
Thus, dg/(va) = da(va) + k = a — 1 + k, and the other vertices in S have the
same degrees as they are in G’ of Case 1. We have

1

I(G) — I(G") = 5

[(A-B)—(C-D),

where A and D are the same here asin Case 1, B=g(a—1+4+k)—g(a — 1), and
C = kl[g(a)—g(a—1)]. It follows from the assumption that Z;:ilfkﬂ @ < a—i+k.
Hence by inequality (1), we have

A<k[gRa—i+k—1)—gRa—i+k—2)].

Now let X1 =2a—i+ k —1, Xo2 = a, and h = a — ¢, which makes inequalities
(2) and (3) hold as well. Since X1 > X2, I4(G) > I4(G").
The proof is complete. u

Theorem 5. Let G = [191,22, ... (a — 1)%-1]k, and G’ be the graph
obtained by an accumulation from k vertices of degree i to a vertex of

degree j in G. If I F 1 gy < (5 —i) + (k4 1), then 14(G) > I(G").

Proof. There are two cases to be considered.
Casel. j+k<a-—1.
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We have G = 191, ..., (i—1)%-1tFk =k 501 G4k G+t (a—
1)%a-1]g . Noted that G/ = [191,..., (i — 1)G-1FF jai=k=1 (4 k)%i+rt1

(a — 1)9a-1]x, when ¢ = j, and it makes no difference to the subsequent
discussion. For any vertex v, in the independent set S of G, if j +1 <
p<j+k,de(vy) =dglv,)+1=a+ Z?:_pl qi; dev(v;) = dg(vi) — k =
a—1-—k+ Z?:_Zl qi; der (vp) = dg(vp) for the rest vertices. Let

a—1 a—1
A:g<a_1+§jm>_g<a_1_k+§jm>7
=1 =1

Jj+k a—1 a—1
B= Y |gla+d a|-gla=1+> a||,
p=j+1 l=p l=p

C=g0+Fk) —90),

D = k[g(i) — g(i = 1)].

Then

1)~ 1u(G) = —5-[(A~ B) — (C - D)},

m

Since Z{;—’cfl a<j—i+k+1,

a—1 a—1
A<y a+j—i+k+2ql -9 a+j—z'+qu
I=j+k I=j+k

On the other hand, since g(z) — g(z — 1) is strictly increasing,

a—1 a—1
B>klgla+ > a]|-gla—1+ > a
I=j+k I=j+k

Let Xy =a+j7—1+ E;:;Hc q, Xo = j, and h = j — i. Together, these
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two inequalities yield

A-B<[g(Xy+k)—g(X0)] = klg(Xs —h) —g(Xs —h=1)]. (4
In addition,

C—D=[g(Xs+k) - g(Xa)] = k[g(X2 —h) —g(Xo —h—1)].  (5)

Taking the derivative of [g(x + k) — g(z)] — k[g(z — h) — g(z — h —1)] as we
have done in Theorem 4, we can show that [g(z + k) — g(x)] — k[g(x — h) —
g(x —h—1)] is strictly decreasing with x. Since X; > Xo, A—B < C—D,
and hence, I4(G) > I;(G").

Case 2. j+k=a.

Then ¢/ = [191,..., (i —1)%-1Fk 0=k (a—k)da—k"1 . (a—1)%—1 a]k,.
We treat the case & > 2 as the case k = 1 is similar. Since the only
difference is that there is no point v, with a —k+1 < p < a — 1 when
k=1,B =0and A, C, D stay the same, but this does not affect the result.
For v, € S, da/(vp) = dg(vp)+1 = a—l—Z?:_pl q whena—k+1<p<a-—1,
de/(ve) = dg(ve) + 1 = a, and the rest vertices are the same as they are
in G’ of Case 1. Let

a—1 a—1 a—1
B= > lgla+d a|-gla=1+> a||+ls@) —gla-1),
p=a—k+1 l=p l=p

C=g(a) —gla—Fk),

and A, D still denote the same expressions as in Case 1. Then

1

1(G) = 1a(@') = =5 ~[(A= B) = (C = D)].

m

We infer that

k—1)[g(a+qa—1) — gla =1+ ga—1)] + [9(a) — g(a —1)]

B> (
> klg(a) — g(a —1)]
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In addition, from the assumption of Z?:_il q < a—1i+1, it follows that
A<g(2a—1)—g(2a—1i—k).

Let X1 =2a—t1—k, Xo =a—Fk,and h =a —k — 1. It is easy to check
that equalities (4) and (5) still hold. Since X; > X5, A— B < C — D, and
so I4(G) > I4(G").

The proof is complete. |

4 An application

In this section, we characterize the minimal graphs for some dense graphs
as an application of Theorem 4 and 5. To avoid the interference of 1-degree
vertices, let T>o = {t € T'|d(t) > 2}.

Theorem 6. For any connected (n,m)-graph G with m > %(n+5)(n—6)
forn>8, m>11 forn=7, and m > 9 for n =6, we have

14(G) = 1a(L*(n, m)),

where the equality holds if and only if G is isomorphic to L*(n,m).

Proof. By Theorem 1, it suffices to prove this for K,7T graphs. We first

prove two preliminary claims.

Claim 1. If m > %(n+5)(n — 6) for a K,T graph, then |T| < 4.
Suppose, to the contrary, |T'| > 5, namely a < n—>5. Since a K,T graph

with n vertices attains the maximum number of edges only if each vertex in

T is adjacent to a—1 vertices in K,, we havem < 1a(a—1)+(n—a)(a—1) =

(—a+1)(§ —n). Since (—a + 1)(§ — n) is an increasing function of a on

[1,n] and a <n —5, m < (n+5)(n — 6), a contradiction.

Claim 2. a > 4 for any K,T graph satisfying the hypotheses.

Otherwise, there is a K,T graph with a < 3. Since |T'| < 4 by Claim
1, n < 7. But then m < 11 when n =7, and m <9 whenn = 6. It is a

contradiction.
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By Claim 1, we have |T>o| < 4. If [Tso| = 0 or 1, G is just L*; if

|T>2| = 2, we can get L* after performing a distribution from one vertex
to the other, and I4(G) > I4(L*) by Theorem 4.

Next we suppose |T>2| = 3. If there exist two vertices v and v of G

with d(u) < d(v), distribute from u to v repeatedly until the degree of
u decreases to 1, or the degree of v increases to a. Since the inequality

zdgz)(u) qi < d(v) —d(u) + 2 always holds in the process, we have I4(G) >
I4(G") for the resulting graph G’ by Theorem 4. In addition, |T>o| < 2
in G’ and so, as we have proved, I4(G’) > I4(L*). Thus, I4(G) > I4(L*).
Now let all three vertices in T>o have the same degree d. Let G’ be
the graph obtained by a distribution from one vertex to the other two as
d > 3, or an accumulation from two vertices to the other one as d = 2. By
Theorem 4 and 5, I4(G) > I;(G’). On the other hand, we see that either
there exist vertices with different degrees in T>5 or [T>2| < 2 for G’, and
so I4(G") > I4(L*). Hence, 14(G) > I4(L*).

Now let |T>o| = 4. We start with a useful claim.

Claim 3. If there are two vertices u and v in T> of G with d(u)—d(v) > 2,
then I;(G) > I;(L*).

Let G’ be the graph obtained by distributing from u to v repeatedly
in G as we did above. Since Zfiléz)(u) q < 4 < d(v) —d(u) + 2 for each
operation, I4(G) > I4(G') by Theorem 4. So I4(G) > I4(G’") > I4(L*) for
|T>2| < 3in G'.

Hence by Claim 3, we only need to deal with graphs in the form of
G = [i%, (i + 1)%+]g,, where ¢ > 2 and ¢; + ¢;+1 = 4. There are three
distinct cases.

Case 1. ¢; = 2.

Perform a distribution between two vertices with the same degree. By
Theorem 4, the operation decreases I4(G). And since there are vertices
whose degrees differ by at least two in T>o or [T>2| < 3 in the resulting
graph, we have I;(G) > I;(L*).

Case 2. ¢; =1or ¢; = 3.

Then G = [i, (i + 1)®]k, or [i%,i + 1]k, . If i > 3, then distribute from
a vertex of degree i to another two vertices with the same degree. The
resulting graph G’ = [i — 2,i + 1, (i + 2)?|k, or [i — 2, (i + 1)3]k,. Since
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the distribution satisfies the condition of Theorem 4, I;(G) > I4(G’). For

similar reasons as in Case 1, I4(G’) > I;(L*), and thus I;(G) > I4(L*).
Otherwise, i = 2. We first consider the case of a = 4. Then G =

2,33k, or [23,3]k,. By a simple calculation, we have I;(G) > I4(L*).

Now assume that a > 5. We accumulate from two vertices with the same
degree to another vertex of degree 3 and get G’ = [23, 5], or [12,2,5]x, .
Since the accumulation satisfies the condition of Theorem 5, I4(G) >
I;(G"). Furthermore, I4(G") > I;(L*) from Claim 3 so I4(G) > I4(L*).
Case 3. ¢; = 4.

If ¢ > 4, then distribute from one vertex to the other three vertices.
We have I4(G) > I4(L*).

Otherwise, i = 2 or 3, that is, G = [2%]k, or [3%]k,. If a > 5 for [2%]k,
and a > 6 for [3%],, accumulate from three vertices to the other one. We
have I4(G) > I4(L*). And it is easy to see that the inequality also holds
for [24)k,, [3%]k,, and [3%k,.

The proof is complete. |
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