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Abstract

Various graph entropy measures derived from classical Shannon
entropy are introduced to characterize the complexity of networks,
among which the degree-based graph entropy is defined by employ-
ing degrees of vertices as a graph invariant. Using graph operations
to explore the properties of the extremal graphs has been demon-
strated a promising method. In this paper, we give conditions for
decreasing the values of the entropy by graph operations, which ex-
tend and improve some known results. As an application, we char-
acterize graphs attaining the minimum values in some connected
dense graphs with given numbers of vertices and edges.

1 Introduction

Based on Shannon’s entropy [10], Rashevsky [8] introduced the concept of

graph entropy to measure the structural complexity of graphs. Since then,

a great deal of research has been focused on entropy measures defined

by using several graph invariants, including number of vertices, number
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of edges, vertex degrees, and distance-based quantities [3, 5], which cov-

ers areas of information science, graph theory, structural chemistry, and

molecular biology [6].

An (n,m)-graph is a graph with n vertices and m edges. Let G be

an (n,m)-graph with vertex set V (G). For any vertex v ∈ V (G), dG(v)

denotes the degree of v in G. The subscript G is omitted if it is clear in

the context, namely d(v).

Let f be an information functional, a function from V (G) to the set

of positive real numbers. According to Shannon’s entropy formulas, the

graph entropy, defined by Dehmer [4], is

If (G) = −
∑

v∈V (G)

p(v) log p(v),

where p(v) = f(v)∑
u∈V (G) f(u)

. When f(v) = d(v), we get the degree-based

graph entropy [2]:

Id(G) = −
∑

v∈V (G)

d(v)∑
u∈V (G) d(u)

log
d(v)∑

u∈V (G) d(u)
.

Since
∑

u∈V (G)d(u) = 2m,

Id(G) = log(2m)− 1

2m

∑
v∈V (G)

d(v) log d(v).

For the degree-based graph entropy, the task of determining the mini-

mum values and the graphs attaining the minimum values is complicated

as it requires an understanding of the mathematical properties of the mul-

tivariate function
∑

v∈V (G) d(v) log d(v). Extensive studies have been de-

voted to extremal results of special graph families. In [2], Cao et al. tack-

led the problem for trees, some cyclic graphs and chemical graphs, and

afterwards, Ghalavand et al. [7] extended some extremal properties. More

recently, the minimal graphs for cacti were characterized in [9]. For gen-

eral graphs, the topological structure of graphs attaining the minimum

values was described as a graph formed by connecting vertices of a clique

and vertices of an independent set in a certain way [11]. And a conjecture
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to determine the extremal values for connected graphs with m ≤ 2n − 3

was proposed in the same reference. Two years later, Cambie and Maz-

zamurro [1] proved the conjecture. To further investigate the extremal

properties, Yan and Guan [12] defined two graph operations and proved

that these operations can decrease the entropy under the conditions of

so-called being ‘proper’. This paper extends and improves the result, and

as an application, we characterize graphs attaining the minimum values in

(n,m)-graphs with m > 1
2 (n+ 5)(n− 6) for n ≥ 8, m > 11 for n = 7, and

m > 9 for n = 6. It implies that the structure of the extremal graphs is

related to the density of edges.

2 Preliminary definitions and results

NG(v) denotes the neighbour set of a vertex v in a graph G. G is called

a KaT graph if V (G) can be partitioned into two disjoint sets S and T ,

such that S is a clique of a vertices and T is an independent set with

NG(v) ⊆ NG(u) for d(u) ≥ d(v), where u, v ∈ T . It is reasonable to

assume that d(t) ≤ a−1 for any t ∈ T , since if d(t) = a, we still get a KaT

graph by moving t to S. In [11], graphs attaining the minimum value of Id

are characterized as KaT graphs, which means that the discussion of the

extremal properties only needs to be carried out for such a graph family.

Theorem 1. [11, Theorem 4] Any connected graph attaining the minimum

value of Id must be isomorphic to a KaT graph.

Let S = {v1, v2, . . . , va} with d(v1) ≥ d(v2) ≥ · · · ≥ d(va). From the

definition of KaT graphs, we must have NG(t) = {v1, v2, . . . , vd(t)} for any

vertex t ∈ T , and vi (1 ≤ i ≤ a) is adjacent to all the vertices whose

degrees are not less than i in T . Hence, for (n,m)-graphs, if the size of

the clique is given, a KaT graph is determined uniquely by the degrees of

the vertices in T up to isomorphism. Hereby, we denote a KaT graph by

[1q1 , 2q2 , . . . , (a − 1)qa−1 ]Ka , where [1q1 , 2q2 , . . . , (a − 1)qa−1 ] is the degree

sequence of T . That is, for any integer i with 1 ≤ i ≤ a − 1, if there is a

vertex of degree i in T , then qi is the number of such vertices; otherwise,

qi = 0. Obviously,
∑a−1

i=1 qi = |T |. Note that iqi with qi = 0 does not
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occur in the sequence for a certain graph. Now we can give the degrees of

v1, v2, . . . , va: a− 1 +
∑a−1

l=1 ql, a− 1 +
∑a−1

l=2 ql, . . . , a− 1. If
∑a−1

l=2 ql ≤ 1,

that is, there is at most one vertex of degree greater than 1 in T , then

such graphs are called L∗. For given n and m, since L∗ (also denoted by

L∗(n,m)) achieves the maximum of a, L∗ is determined.
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Figure 1. Transformations from KaT graphs to L∗.

In [12], two graph operations are defined to explore extremal topological

properties for (n,m)-graphs. Let G = [1q1 , 2q2 , . . . , (a−1)qa−1 ]Ka and i, j, k

be three positive integers. If k < i ≤ j ≤ a − 1, qi ̸= 0, and qj ≥ k, then

there must exist a vertex t of degree i and k vertices t1, t2, . . . , tk of degree

j. The operations of deleting the edges tvi, tvi−1, . . . , tvi−k+1 and adding

the edges t1vj+1, t2vj+1, . . . , tkvj+1 in G are called a distribution from t to

t1, t2, . . . , tk. We say that a distribution is proper when there is no vertex

with degree greater than i−k and less than j+1 in T of the resulting graph.

If 1 < i ≤ j ≤ a − k, qi ≥ k, and qj ̸= 0, we assume that t1, t2, . . . , tk

are vertices of degree i and t is a vertex of degree j in T . Then the

operations of deleting the edges t1vi, t2vi, . . . , tkvi and adding the edges

tvj+1, tvj+2, . . . , tvj+k in G are called an accumulation from t1, t2, . . . , tk
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to t. An accumulation is proper when there is no vertex with degree

greater than i− 1 and less than j + k in T of the resulting graph. We see

that edges are moved from vertices with smaller degree to those with lager

degree after a distribution or an accumulation. Figure 1 illustrates the

transforms from [34]K5 and [22, 32]K4 to L∗ by such operations, in which,

except the distribution from t1 to t3, t4, the other operations are proper.

Theorem 2 and 3 suggest that Id(G) is decreased after a proper operation.

Theorem 2. [12, Theorem 2] Let G = [1q1 , 2q2 , . . . , (a− 1)qa−1 ]Ka and G′

be the graph resulted from G by a distribution from a vertex of degree i to

k vertices of degree j. If
∑j

l=i−k+1 ql = k + 1, then Id(G) > Id(G
′).

Theorem 3. [12, Theorem 3] Let G = [1q1 , 2q2 , . . . , (a− 1)qa−1 ]Ka and G′

be the graph resulted from G by an accumulation from k vertices of degree

i to a vertex of degree j. If
∑j+k−1

l=i ql = k + 1, then Id(G) > Id(G
′).

3 Main results

In this section, we improve Theorem 2 and 3 by extending the conditions

of being ‘proper’. Recall the formula:

Id(G) = log(2m)− 1

2m

∑
v∈V (G)

d(v) log d(v).

Let g(x) = x log x. Then

Id(G) = log(2m)− 1

2m

∑
v∈V (G)

g(v).

Note that we always assume d(v1) ≥ d(v2) ≥ · · · ≥ d(va) for the clique

S = {v1, v2, . . . , va} of a KaT graph.

Theorem 4. Let G = [1q1 , 2q2 , . . . , (a − 1)qa−1 ]Ka and G′ be the graph

obtained by a distribution from a vertex of degree i to k vertices of degree

j in G. If
∑j

l=i−k+1 ql ≤ (j − i) + (k + 1), then Id(G) > Id(G
′).

Proof. We prove the theorem by distinguishing two cases.
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Case 1. j < a− 1.

Then G′ = [1q1 , . . . , (i − k)qi−k+1, . . . , iqi−1, . . . , jqj−k, (j + 1)qj+1+k, . . . , (a −

1)qa−1 ]Ka , where ellipses denote the terms that are identical to those in

G. It is noted that G′ = [1q1 , . . . , (i−k)qi−k+1, . . . , iqi−k−1, (i+1)qi+1+k, . . . , (a−

1)qa−1 ]Ka for i = j, and the following discussion remains valid.

Then dG′(vp) = dG(vp) − 1 = a − 2 +
∑a−1

l=p ql for i − k + 1 ≤ p ≤ i;

dG′(vj+1) = dG(vj+1) + k = a− 1 + k +
∑a−1

l=j+1 ql; and the degree of any

other vertex in S stays the same. Then we have

Id(G)− Id(G
′) = − 1

2m

 ∑
v∈V (G)

g(v)−
∑

v∈V (G′)

g(v)


= − 1

2m
[(A−B)− (C −D)] ,

where

A =

i∑
p=i−k+1

g
a− 1 +

a−1∑
l=p

ql

− g

a− 2 +

a−1∑
l=p

ql

,

B = g

a− 1 + k +

a−1∑
l=j+1

ql

− g

a− 1 +

a−1∑
l=j+1

ql

 ,

C = k [g(j + 1)− g(j)] ,

D = g(i)− g(i− k).

Since g(x)− g(x− 1) is an increasing function of x,

A ≤ k

[
g

(
a− 1 +

a−1∑
l=i−k+1

ql

)
− g

(
a− 2 +

a−1∑
l=i−k+1

ql

)]
. (1)
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Since
∑j

l=i−k+1 ql ≤ j − i+ k + 1 by the assumption,

A ≤ k

g
a+ j − i+ k +

a−1∑
l=j+1

ql

− g

a+ j − i+ k − 1 +

a−1∑
l=j+1

ql

 .

Let X1 = a+ j − i+ k +
∑a−1

l=j+1 ql, X2 = j + 1, and h = j − i+ 1. Then

A−B ≤ k [g(X1)− g(X1 − 1)]− [g(X1 − h)− g(X1 − h− k)] , (2)

C −D = k [g(X2)− g(X2 − 1)]− [g(X2 − h)− g(X2 − h− k)] . (3)

Since the derivative of k [g(x)− g(x− 1)]−[g(x− h)− g(x− h− k)] with respect

to x equals k[log x− log(x−1)]− [log(x−h)− log(x−h−k)] = k( 1
ξ1

− 1
ξ2
), where

ξ1 ∈ (x−1, x) and ξ2 ∈ (x−h−k, x−h), this function is strictly decreasing with

x by k( 1
ξ1

− 1
ξ2
) < 0. And since X1 > X2 for i ≤ a−1 and k ≥ 1, A−B < C−D,

and thus Id(G) > Id(G
′).

Case 2. j = a− 1.

We obtain G′ = [1q1 , . . . , (i − k)qi−k+1, . . . , iqi−1, . . . , (a − 1)qa−1−k, ak]Ka .

Thus, dG′(va) = dG(va) + k = a − 1 + k, and the other vertices in S have the

same degrees as they are in G′ of Case 1. We have

Id(G)− Id(G
′) = − 1

2m
[(A−B)− (C −D)] ,

where A and D are the same here as in Case 1, B = g (a− 1 + k)−g (a− 1), and

C = k[g(a)−g(a−1)]. It follows from the assumption that
∑a−1

l=i−k+1 ql ≤ a−i+k.

Hence by inequality (1), we have

A ≤ k [g (2a− i+ k − 1)− g (2a− i+ k − 2)] .

Now let X1 = 2a − i + k − 1, X2 = a, and h = a − i, which makes inequalities

(2) and (3) hold as well. Since X1 > X2, Id(G) > Id(G
′).

The proof is complete.

Theorem 5. Let G = [1q1 , 2q2 , . . . , (a − 1)qa−1 ]Ka
and G′ be the graph

obtained by an accumulation from k vertices of degree i to a vertex of

degree j in G. If
∑j+k−1

l=i ql ≤ (j − i) + (k + 1), then Id(G) > Id(G
′).

Proof. There are two cases to be considered.

Case 1. j + k ≤ a− 1.
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We have G′ = [1q1 , . . . , (i−1)qi−1+k, iqi−k, . . . , jqj−1, . . . , (j+k)qj+k+1, . . . , (a−

1)qa−1 ]Ka . Noted that G′ = [1q1 , . . . , (i− 1)qi−1+k, iqi−k−1, . . . , (i+ k)qi+k+1, . . . ,

(a − 1)qa−1 ]Ka when i = j, and it makes no difference to the subsequent

discussion. For any vertex vp in the independent set S of G, if j + 1 ≤
p ≤ j + k, dG′(vp) = dG(vp) + 1 = a +

∑a−1
l=p ql; dG′(vi) = dG(vi) − k =

a− 1− k +
∑a−1

l=i ql; dG′(vp) = dG(vp) for the rest vertices. Let

A = g

(
a− 1 +

a−1∑
l=i

ql

)
− g

(
a− 1− k +

a−1∑
l=i

ql

)
,

B =

j+k∑
p=j+1

g
a+

a−1∑
l=p

ql

− g

a− 1 +

a−1∑
l=p

ql

,

C = g(j + k)− g(j),

D = k[g(i)− g(i− 1)].

Then

Id(G)− Id(G
′) = − 1

2m
[(A−B)− (C −D)].

Since
∑j+k−1

l=i ql ≤ j − i+ k + 1,

A ≤ g

a+ j − i+ k +

a−1∑
l=j+k

ql

− g

a+ j − i+

a−1∑
l=j+k

ql

 .

On the other hand, since g(x)− g(x− 1) is strictly increasing,

B ≥ k

g
a+

a−1∑
l=j+k

ql

− g

a− 1 +

a−1∑
l=j+k

ql

 .

Let X1 = a + j − i +
∑a−1

l=j+k ql, X2 = j, and h = j − i. Together, these
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two inequalities yield

A−B ≤ [g(X1 + k)− g(X1)]− k[g(X1 − h)− g(X1 − h− 1)]. (4)

In addition,

C −D = [g(X2 + k)− g(X2)]− k[g(X2 − h)− g(X2 − h− 1)]. (5)

Taking the derivative of [g(x+k)− g(x)]−k[g(x−h)− g(x−h− 1)] as we

have done in Theorem 4, we can show that [g(x+k)− g(x)]−k[g(x−h)−
g(x−h−1)] is strictly decreasing with x. Since X1 > X2, A−B < C−D,

and hence, Id(G) > Id(G
′).

Case 2. j + k = a.

Then G′ = [1q1 , . . . , (i−1)qi−1+k, iqi−k, . . . , (a−k)qa−k−1, . . . , (a−1)qa−1 , a]Ka .

We treat the case k ≥ 2 as the case k = 1 is similar. Since the only

difference is that there is no point vp with a − k + 1 ≤ p ≤ a − 1 when

k = 1, B = 0 and A, C, D stay the same, but this does not affect the result.

For vp ∈ S, dG′(vp) = dG(vp)+1 = a+
∑a−1

l=p ql when a−k+1 ≤ p ≤ a−1,

dG′(va) = dG(va) + 1 = a, and the rest vertices are the same as they are

in G′ of Case 1. Let

B =

a−1∑
p=a−k+1

g
a+

a−1∑
l=p

ql

− g

a− 1 +

a−1∑
l=p

ql

+ [g(a)− g(a− 1)],

C = g(a)− g(a− k),

and A, D still denote the same expressions as in Case 1. Then

Id(G)− Id(G
′) = − 1

2m
[(A−B)− (C −D)].

We infer that

B ≥ (k − 1)[g(a+ qa−1)− g(a− 1 + qa−1)] + [g(a)− g(a− 1)]

≥ k[g(a)− g(a− 1)]
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In addition, from the assumption of
∑a−1

l=i ql ≤ a− i+ 1, it follows that

A ≤ g(2a− i)− g(2a− i− k).

Let X1 = 2a − i − k, X2 = a − k, and h = a − k − i. It is easy to check

that equalities (4) and (5) still hold. Since X1 > X2, A−B < C −D, and

so Id(G) > Id(G
′).

The proof is complete.

4 An application

In this section, we characterize the minimal graphs for some dense graphs

as an application of Theorem 4 and 5. To avoid the interference of 1-degree

vertices, let T≥2 = {t ∈ T |d(t) ≥ 2}.

Theorem 6. For any connected (n,m)-graph G with m > 1
2 (n+5)(n−6)

for n ≥ 8, m > 11 for n = 7, and m > 9 for n = 6, we have

Id(G) ≥ Id(L
∗(n,m)),

where the equality holds if and only if G is isomorphic to L∗(n,m).

Proof. By Theorem 1, it suffices to prove this for KaT graphs. We first

prove two preliminary claims.

Claim 1. If m > 1
2 (n+ 5)(n− 6) for a KaT graph, then |T | ≤ 4.

Suppose, to the contrary, |T | ≥ 5, namely a ≤ n−5. Since aKaT graph

with n vertices attains the maximum number of edges only if each vertex in

T is adjacent to a−1 vertices inKa, we havem ≤ 1
2a(a−1)+(n−a)(a−1) =

(−a + 1)(a2 − n). Since (−a + 1)(a2 − n) is an increasing function of a on

[1, n] and a ≤ n− 5, m ≤ 1
2 (n+ 5)(n− 6), a contradiction.

Claim 2. a ≥ 4 for any KaT graph satisfying the hypotheses.

Otherwise, there is a KaT graph with a ≤ 3. Since |T | ≤ 4 by Claim

1, n ≤ 7. But then m ≤ 11 when n = 7, and m ≤ 9 when n = 6. It is a

contradiction.
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By Claim 1, we have |T≥2| ≤ 4. If |T≥2| = 0 or 1, G is just L∗; if

|T≥2| = 2, we can get L∗ after performing a distribution from one vertex

to the other, and Id(G) > Id(L
∗) by Theorem 4.

Next we suppose |T≥2| = 3. If there exist two vertices u and v of G

with d(u) < d(v), distribute from u to v repeatedly until the degree of

u decreases to 1, or the degree of v increases to a. Since the inequality∑d(v)
l=d(u) ql ≤ d(v)− d(u) + 2 always holds in the process, we have Id(G) >

Id(G
′) for the resulting graph G′ by Theorem 4. In addition, |T≥2| ≤ 2

in G′ and so, as we have proved, Id(G
′) ≥ Id(L

∗). Thus, Id(G) > Id(L
∗).

Now let all three vertices in T≥2 have the same degree d. Let G′ be

the graph obtained by a distribution from one vertex to the other two as

d ≥ 3, or an accumulation from two vertices to the other one as d = 2. By

Theorem 4 and 5, Id(G) > Id(G
′). On the other hand, we see that either

there exist vertices with different degrees in T≥2 or |T≥2| ≤ 2 for G′, and

so Id(G
′) ≥ Id(L

∗). Hence, Id(G) > Id(L
∗).

Now let |T≥2| = 4. We start with a useful claim.

Claim 3. If there are two vertices u and v in T≥2 of G with d(u)−d(v) ≥ 2,

then Id(G) > Id(L
∗).

Let G′ be the graph obtained by distributing from u to v repeatedly

in G as we did above. Since
∑d(v)

l=d(u) ql ≤ 4 ≤ d(v) − d(u) + 2 for each

operation, Id(G) > Id(G
′) by Theorem 4. So Id(G) > Id(G

′) ≥ Id(L
∗) for

|T≥2| ≤ 3 in G′.

Hence by Claim 3, we only need to deal with graphs in the form of

G = [iqi , (i + 1)qi+1 ]Ka
, where i ≥ 2 and qi + qi+1 = 4. There are three

distinct cases.

Case 1. qi = 2.

Perform a distribution between two vertices with the same degree. By

Theorem 4, the operation decreases Id(G). And since there are vertices

whose degrees differ by at least two in T≥2 or |T≥2| ≤ 3 in the resulting

graph, we have Id(G) > Id(L
∗).

Case 2. qi = 1 or qi = 3.

Then G = [i, (i+ 1)3]Ka
or [i3, i+ 1]Ka

. If i ≥ 3, then distribute from

a vertex of degree i to another two vertices with the same degree. The

resulting graph G′ = [i − 2, i + 1, (i + 2)2]Ka
or [i − 2, (i + 1)3]Ka

. Since
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the distribution satisfies the condition of Theorem 4, Id(G) > Id(G
′). For

similar reasons as in Case 1, Id(G
′) ≥ Id(L

∗), and thus Id(G) > Id(L
∗).

Otherwise, i = 2. We first consider the case of a = 4. Then G =

[2, 33]K4 or [23, 3]K4 . By a simple calculation, we have Id(G) > Id(L
∗).

Now assume that a ≥ 5. We accumulate from two vertices with the same

degree to another vertex of degree 3 and get G′ = [23, 5]Ka or [12, 2, 5]Ka .

Since the accumulation satisfies the condition of Theorem 5, Id(G) >

Id(G
′). Furthermore, Id(G

′) > Id(L
∗) from Claim 3 so Id(G) ≥ Id(L

∗).

Case 3. qi = 4.

If i ≥ 4, then distribute from one vertex to the other three vertices.

We have Id(G) > Id(L
∗).

Otherwise, i = 2 or 3, that is, G = [24]Ka or [34]Ka . If a ≥ 5 for [24]Ka

and a ≥ 6 for [34]Ka , accumulate from three vertices to the other one. We

have Id(G) > Id(L
∗). And it is easy to see that the inequality also holds

for [24]K4 , [3
4]K4 , and [34]K5 .

The proof is complete.

References

[1] S. Cambie, M. Mazzamurro, Resolution of Yan’s conjecture on entropy
of graphs, MATCH Commun. Math. Comput. Chem. 89 (2023) 389–
404.

[2] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph en-
tropies, Inf. Sci. 278 (2014) 22–33.

[3] K. C. Das, Y. Shi, Some properties on entropies of graphs, MATCH
Commun. Math. Comput. Chem. 78 (2017) 259–272.

[4] M. Dehmer, Information processing in complex networks: graph en-
tropy and information functionals, Appl. Math. Comput. 201 (2008)
82–94.

[5] M. Dehmer, N. Barbarini, K. Varmuza, A. Graber, A large scale
analysis of information-theoretic network complexity measures using
chemical structures, PLoS One 4 (2009) #e8057.

[6] M. Dehmer, A. Mowshowitz, A history of graph entropy measures,
Inf. Sci. 181 (2011) 57–78.



699

[7] A. Ghalavand, M. Eliasi, A. R. Ashrafi, First degree-based entropy of
graphs, J. Appl. Math. Comput. 59 (2019) 37–46.

[8] N. Rashevsky, Life, information theory, and topology, Bull. Math.
Biophys. 17 (1955) 229–235.

[9] W. Li, J. Li, J. Zhang, W. He, On extremal cacti with respect to the
first degree-based entropy, Open Math. 21 (2023) #20230108.

[10] C. E. Shannon, A mathematical theory of communication, Bell Syst.
Tech. J. 27 (1948) 379–423.

[11] J. Yan, Topological structure of extremal graphs on the first degree-
based graph entropies, MATCH Commun. Math. Comput. Chem. 85
(2021) 275–284.

[12] J. Yan, F. Guan, Graph operations decreasing values of degree-based
graph entropies, MATCH Commun. Math. Comput. Chem. 89 (2023)
405–414.


	Introduction
	Preliminary definitions and results
	Main results
	An application

