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Abstract

A double hexagonal chain is a hexagonal system constructed by
successive triple-edge fusions of naphthalenes. Oz and Cangul com-
puted the Merrifield-Simmons index of the double hexagonal chain
by utilizing Merrifield-Simmons vector defined at a path of double
hexagonal chain. In this paper, inspired by Oz and Cangul’s idea,
by applying the perfect matching vector and maximal matching vec-
tor at a path of double hexagonal chain, we obtain the numbers of
perfect matchings and maximal matchings of a double hexagonal
chain with n naphthalenes.

1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). A subset
M C E(G) consisting of independent edges or edges with no common end-
vertex is called a matching of G. If a vertex of G is incident with an edge

in M, then we say that the vertex is covered by M, otherwise, uncovered
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by M. In general, we are interested in matchings with the largest size. A
matching M of G is called a mazimum matching if it has the maximum
size over all matchings in G. If each vertex of G is covered by M, then M is
called perfect matching. Obviously, perfect matchings must be maximum
matchings, but not vice versa. The perfect matching corresponds to the
Kekulé structure in organic chemistry, its enumeration plays an important
role in the study of benzenoid hydrocarbons [3,11]. For some backgrounds
on matching theory we refer the reader to the famous book by Lovész and
Plummer [13].

Another way to characterize large matchings is based on set inclusion.
A matching M in a graph G is mazimal if it is not contained in any
other matchings of G. A maximum matching is obviously also maximal,
but the converse is generally not true. Maximal matchings are much less
known and researched than their maximum and perfect counterparts. The
structures of maximal matchings have been studied for benzenoids [7],
fullerenes [2, 5], nanocones and nanotubes [22,23]. We also refer the in-
terested reader to papers [9,12,24] etc. In a sense, maximal matchings
are feasible models to solve several physical and technical problems such
as the block-allocation of a sequential resource and adsorption of dimers
on a structured substrate or a molecule. The enumeration of maximal
matchings plays a crucial role in the application of these models [8]. Re-
cently, the number of maximal matchings in benzenoid chains, polyspiro

and linear polymers have been researched, see [6,8, 21].

-
8

Figure 1. T'wo types of triple-edge fusion of two naphthalenes.
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A 2-connected plane graph with every interior face bounded by a
regular hexagon of side length one is called a hexagonal system or ben-
zenoid system. Hexagonal systems are of great importance for theoretical
chemistry since they are the graphs representing the carbon-atom skeleton
of benzenoid hydrocarbons [3,11]. A vertex of a hexagonal system be-
longs to at most three hexagons. For a hexagonal system H, if there
exist three hexagons sharing a common vertex, then H is called peri-
condensed, otherwise, H is called cata-condensed. A hexagonal chain is a
cata-condensed hexagonal system in which every hexagon is adjacent to at
most two hexagons. A double hexagonal chain is a peri-condensed hexago-
nal system which is constructed by successive triple-edge fusions of naph-
thalenes. There are two types of triple-edge fusion of two naphthalenes
as depicted in Fig. 1, that are called a-type fusing and S-type fusing re-
spectively. The double hexagonal chains have been much studied in other
areas of mathematical chemistry, we refer the reader to see [1,4,17-20,25].
Recently, Oz and Cangul [16] computed the Merrifield-Simmons index of
the double hexagonal chain by introducing the Merrifield-Simmons vector
defined at a path of double hexagonal chain. Inspired by their methods, in
this paper, by utilizing the perfect matching vector and maximal matching
vector at a path, we obtain the numbers of perfect matchings and maximal

matchings of a double hexagonal chain with n naphthalenes.

2 Counting perfect matchings in double

hexagonal chains

A double hexagonal chain with n naphthalene units, denoted by D2, can
be obtained from a naphthalene by a stepwise triple-edge fusion of new
naphthalenes, and each type of fusion is a-type or S-type fusing. For
convenience, we write D?L = 010503 ---60,,_1, where 6; denotes a-type or
B-type fusing, according to the fusion process of naphthalenes (see Fig. 2
(a) for D2).

Note that a naphthalene has five vertices on the left sides and five on

the right sides. See Fig. 2 (a), starting from the first naphthalene unite
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(b)

Figure 2. (a) D? := aafBafB with 7 naphthalenes, (b) D3.

on the left in D2, we label the five vertices on its left sides by a,b,c,d, w

respectively. For the i-th (i € {2,3,---,n}) naphthalene unite in D2,
we label the five vertices on its left sides by a;_1,b;—1,¢i—1,d;—1,w;—1
successively. In particular, the vertices of D? are labeled as depicted in
Fig. 2 (b).

For X ={z1,--- ,zx} CV(GQ), let G— X or G — 21 — -+ — x} be the
graph obtained by deleting all vertices z1, - - - , 2% from graph G. Let ®(G)
denote the number of perfect matchings of G.

Definition 1. For the path abcdw in D2 (see Fig. 2), the following vector

o(D})
®(D% —a—b)
Bupedaw(D2) = | ®(D2 —a—d)
®(D2 —d—w)
®(D2 —b—w)

is called the perfect matching vector of D2.
Proposition 1. @54, (D?) = (3,2,1,2,1)7.

Proof. As shown in Fig. 2 (b), D? is a hexagonal chain with exactly two
hexagons. It is easy to check that ®(D?) = 3. By the symmetry, it is
not difficult to verify that ®(D? —a —b) = ®(D? —d — w) = 2 and
@(D%—a—d):(I)(D%—b—w)zl. |

The following two 5 x 5 matrices play an important role in the sequel
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discussion.
1 1.1 0 0 10 0 00
01 100 0 00 1O
A=|0 0 1 0 0|, P=]0 0 0 0 1
110 0 0 01 000
10 0 0 O 0 01 0O

Theorem 2. Let D? := 010503 ---0,,_1 be a double hexagonal chain with
n > 2 naphthalene units. Then

A"I)alblcldlﬂh(D?z—l)v 01 = o

(I)abcdw(Di) = { 9
P'A'P'©a1b161d1701(Dn—1)7 '91 :ﬂ

Proof. We first show the case when #; = «. Note that there are three
edges eg,es,e3 in the first naphthalene unit on the left side of D? (see
Fig. 2 (a)), and all the perfect matchings of D2 can be divided into three
categories: M = {M|M is a perfect matching of D2, and e, ez, e3 & M},
My = {M|M is a perfect matching of D2, and e1,ea € M and ez ¢ M},
M3z = {M|M is a perfect matching of D2, and e;,e3 € M and ey ¢ M}.
We have

®(D2) =| M| + [Ma| + | Ms]
=®(D7 )+ ®(D;_; —a1 —b1) +®(D; | — a1 —dy)

n—1

:(1, ].7 ]., 0, 0) X ¢a1b161d1w1 (Difl)

Since edge e; belongs to each perfect matching of D2 —a—b, all the perfect
matchings of D2 — a — b can be divided into two categories according to
whether including edge e;. If e; is contained in a perfect matching M
of D2 —a — b, then dw € M and the number of such perfect matchings
in D2 —a —bis ®(D2_; —a; — by). If ez is not contained in a perfect
matching M of D2 —a—b, then cd, e3 € M and the number of such perfect
matchings in D? —a — b is ®(D2_; — a; — dy). Hence

®(D? — a —b) = ®(D?

n n—1

—a; — bl) + @(Difl —ay — dl)
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= (07 1a la 07 O) X (ba1b1c1d1w1 (Di—l)
Similarily, we have

¢(‘D72L —a-— d) Z@(D271 —ai — dl) = (07 0, 17070) X Dby cydywy (D’?Lfl)’
(D} —d —w) =®(D;_,) + ®(D;_; — a1 — by)

:(17 1703()’0) X (I)alblcldﬂm (Di—l)a
@(D’i —-b-— w) :q)(D?zfl) = (170707070) X Dby cydywy (Dngl)‘

To sum up, we have @ peqw (D2) = A - Py ey dyw, (D2 ) if 01 = .

For the case 61 = 3, according to Definition 1 and the symmetry of
DEL, we have (I)abcdw(Dy%) =P. (I)wdcba(DzL) =P-A- (I)w1d1c1b1a1 (D'rQLfl) =
P.A.P.Qalblcldlwl(D’ifl)' u

Theorem 3. Let D% = 010505 ---0,_1 be a double hexagonal chain with
n > 2 naphthalene units. Then

®(D2) = (1,0,0,0,0) - X1+ Xp -+ X1+ (3,2,1,2,1)7,

where X, = Aif,=aand X;=P-A-Pif6,=8,i=1,2,...,n—1.

Proof. By Definition 1, ®(D2) = (1,0,0,0,0) - ®apeaw(D?). Applying The-

orem 2 repeatedly, and by Proposition 1, we get
Papeaw (D7) = X1+ Xz X1 - (3,2,1,2,1)7,

where X; = Aif6;,=aand X; =P-A-Pif0,=5,i=1,2,...,n— 1.

Hence the conclusion holds. [ |

Example 1. Let D2 := 010203 ---0,_1 be a double hexagonal chain with
n > 2 naphthalene units, where #; = 6, = --- = 6,1 = «. Then now

D? denotes a benzenoid parallelogram with 2 x n hexagons, and ®(D?) =
(n+1)(n+2)
s

Proof. According to Theorem 3,

®(D2) = (1,0,0,0,0)- A" (3,2,1,2,1)"
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1 n—1 . 0 0\ /3

0 1 n—1 0 0| |2

=(1,0,0,0,0)- [0 0 1 00 |1
n—2)(n+1

1 n—1 &) g gf f2

1 n—2 020D o o) \1

:(n+1)(n+2). -
2
The above conclusion is coincident with the result given by Gutman

[10].

Example 2. Let D2 := 010,03 ---0,_1 be a double hexagonal chain with
n > 4 naphthalene units, where 0; = « if ¢ is odd, otherwise 6; = 3,
i=1,2,...,n—1. Then now D? denotes a double zigzag chain with 2 x n

hexagons, and

®(D?) = {3a11(n —1) +2a14(n — 1) +a15(n — 1), nis odd;

6a11(n —2) + bara(n — 2) + 3a15(n — 2), nis even.

Here the sequence a1;(n)(j = 1,4,5) has the recursion relation aq;(n) =
2a1;(n — 1) + a1;(n — 2) — aq;(n — 3) with the initial values a11(1) =
1,a11(2) = 3,a11(3) = 6, a14(1) = 1,014(2) = 2,a14(3) = 5 and a;15(1) =
1,a15(2) = 1,a15(3) = 3.

Proof. We can check that

(AP)" = 2(AP)"™! + (AP)""2 — (AP)" 3

1 0 0 1 1 3 0 0 2 1

. Lo L o 0o 0 1 1 2 0 0 1 0
with the initial conditions AP =|0 o o o 1|, (AP)?2=[1 o o o o,

1 0 0 1 0 2 0 0 2 1

1 0 0 0 0 1 0 0 1 1

6 0 0 5 3

3 0 0 3 2
(AP)S—

—|1 0 0 1 1

5 0 0 4 2

3 0 0 2 1
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Let
air(n) 0 0 as(n) ais(n)
asi(n) 0 0 agq(n) ags(n)
(AP)" = [asi(n) 0 0 agzs(n) ass(n)
agzz(n) 0 0 ags(n) ass(n)
asi(n) 0 0 asa(n) ass(n)

By Theorem 3, if n is odd, then

®(D;) = (1,0,0,0,0) - (AP)" " (3,2,1,2,1)"
=3a11(n—1) 4+ 2a14(n — 1) + a15(n — 1).

If n is even, then

(D7) = (1,0,0,0,0) - (AP)"2A-(3,2,1,2,1)"
= 6a11(n — 2) + baga(n — 2) + 3ais(n — 2).

Hence the conclusion holds. [ |

Table 1. The number of perfect matchings of double zigzag chains.

n |1]2[3]4]5] 6 7] 8] 9
®(DZ) [3]6 | 14 [ 31 | 70 | 157 | 353 | 793 | 1782

The above recurrence relation is in accordance with the result given by
Ohkami and Hosoya [14]. Table 1 displays some initial values of the number
of perfect matchings of 2 x n double zigzag chains as the n entries, which
is the sequence A006356 on OEIS [15]. In fact, Cyvin and Gutman [3] had
already provided an effective algorithm for counting the number of perfect

matchings of double hexagonal chains in early years.

3 Counting maximal matchings in double

hexagonal chains

The number of maximal matchings of a graph G is denoted by ¥(G). If G
has two connected components Gy and Ga, then ¥(G) = ¥(G1) x ¥U(G2)
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since any maximal matching of G consists of a maximal matching of G

and a maximal matching of Go. In general, we have the following result.

Proposition 4. [8] Let G be a graph consisting of k connected components
Gl,Gg,~ o ,Gk. Then \I’(G) = \I/(Gl) X \I’(Gg) X X \I/(Gk)

By the definition of maximal matching, the following useful result is

obvious.

Proposition 5. Let G be a graph with a 1-degree vertex v and uwv € E(G).

Then u is covered by any maximal matching of G.
For the special case when G is a path, we have the following conclusion.

Proposition 6. [8] Let P, be a path with n > 4 vertices. Then VU(P,) =
U(P,—2) + V(P,—_3) with initial values ¥(Py) = U(Py) =1,V (P3) = 2.

For zy, -+ ,x € V(G), we use ¥(G|xy,--- ,x)) to denote the number
of maximal matchings of G with xy, -,z all covered. For S C E(G),
U~5(G) denotes the number of maximal matchings of G' with all edges
in S avoided. If S contains only one edge, say xy, then ¥~%(G) can be
written as ¥~*Y(@). In order to count the number of maximal matchings

in double hexagonal chains, we introduce the following novel vector.

Definition 2. For the path abcdw in D? (see Fig. 2), the vector

w;,(D3)
Ui, (D2 —a)
Vaveaw(Dy) = | U34(D2]a)
‘I’Zb(Di —w)
W, (D7 w)

is called the maximal matching vector of D2, where

ba(D) = (¥(D7), ¥ (D}, = b), ¥(D;, — d), ¥(D;; — b~ d), ¥(D;b),
W(D2|d), W(D2[b,d), W(D3 — bld), W(D2 - dJb))",

—a—10),¥(D? —a—d),

n n

ri(DE—a) = (¥(D2 —a),¥ (D2
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U(D? —a—b—d),¥(D2 — alb), ¥(D? — ald),
U(D2 — alb,d), (D% — a—b|d), ¥(D2 —a —db))"
Wia(Dila) = (¥(Djla), W(D} — bla), ¥(Dj — dla), ¥(Dj;, —b— dla),
V(D2a,b), ¥(Djla,d), ¥(Dz|a,b,d), ¥(D;, — bla,d),
W(D2 — dla,b))",
V(D —w) = (¥(D; —w), (D —w —d), ¥(Dj —w —b),
V(D;; —w —d —b),¥(D;, —wl|d), ¥(D;, —wlb),
W(D? — w|d,b), ¥(D2 —w — djb), ¥(D2 — w - bld))",
Wi (D [w) = (¥(D} |[w), ¥(D;; — d|w), ¥(D;; — blw), (D} — d — blw),
V(D2|w, d), ¥(D}|w,b), ¥(D} |w,d,b), ¥ (D} - d|w,b),
W(D? — blw,d))".

Proposition 7. For the double hexagonal chain D? (see Fig. 2 (b)), we
have Wapeqn (D?) = (20,12,12,8,15,15,11,10,10,11,8,6,5,5,8,3,7, 4, 17,
7,10,5,12,13,9,6,8,11,8,6,5,5,8,3,7,4,17,7,10,5,12, 13,9, 6,8)7.

Proof. By the Definition 2, we first calculate ¥;,(D?). Since D7 is a
hexagonal chain with two hexagons (see Fig.2 (b)), by the conclusions in
papers [6] and [21], ¥(D?) = 20.

The maximal matchings in D} — b can be classified into two classes
according to containing edge bic; or not. Let M7 be a maximal matching
in D7 —b. If byc; € My, then aa; € My and M;\{aay,bic;} is a maximal
matching of the path cdwwid;. By Proposition 6, D? — b has three such
maximal matchings. If byc; ¢ M, by Proposition 5, then W—b1¢1(D? —p) =
Uy (D2 b—ag—a))+V (D2 —b—ay —b) =V (D?~b—a—a; —
bilei) + V¥ (D? —b—a—a; —b1))=4+5=9. So ¥(D? —b) =3+9 = 12.
By the symmetry of b and d in D7, we have ¥(D? —d) = ¥(D? —b) = 12.

By Proposition 5, the maximal matchings in D? —b—d can be classified
into three classes according to how the vertex c; is covered. Let M, be
a maximal matching in D? — b — d. If cc; € My, then the number of
such maximal matchings is equal to ¥(D? —b —d — ¢ — ¢;). Note that
D? —b—d —c—c; is a graph consisting of two disjoint paths aa;b; and
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ww1dy, by Propositions 4 and 6, U(D —b—d—c—c;) = U(P3) x ¥(P3) =
2 x 2 =4. If byjc; € Ms, then the number of such maximal matchings is
equal to U(D? —b—d—b; —c1) = ¥(aar) x ¥(wwid)) x ¥(c) = 1x2x1 = 2.
If dyec; € M,, then the number of such maximal matchings is equal to
U(D? —b—d—dy —c1) =2. Hence V(D3 —b—d) =4+2+2=38.

The maximal matchings of D7 covering b can be divided into two types
according to containing edge ba or be. So W(D?|b) = ¥(D? —b—a)+¥(D?—
b—c) = 8+W(P) = 15. By the symmetry of b and d in D?, then ¥(D%|d) =
15. Similarly, we can obtain that U(D?|b,d) = 11, ¥(D? — b|d) = ¥ (D} —
d|b) = 10. Hence ¥}, (D2?) = (20,12,12,8,15,15,11,10,10)7.

As above, we can compute W} ,(D? — a) and U},(D?|a) as follows.

U(D?—a)=¥(D}—a—c—b)+¥(D?—a—c—c1)+¥(D}—a—c—d) =
5+2+4=11.

U(D}i—a—b) = U(D?—a—b—by—a1)+¥(Di—a—b—b;—c1) = 5+3 = 8.

V(D?—a—d) = V(D?—a—d—b;—a;)+¥(Di—a—d—b;—c;) = 4+2 = 6.

U(Di-a—b—d) = ¥(D?—a—b—d—b;—a;)+¥(D?—a—b—d—b;—c1) =
3+2=05.

\IJ(D2 —alb) =V(D? —a—b—c)=U(P;) =5.

U(D? —ald) =V (D? —a—d—c)+¥(D? —a—d—w)=8.

U(D? —alb,d) =¥(D? —a—b—c—d—w)=VY(P5) =3.

U(D? —a—bld) =U(D}—a—b—d—c)+U(D? —a—b—d—w)=T.
U(D? —a—db)=U(D? —a—d—b—c)=U(Ps) =4

\P(D2|a) U(D?—a—b)+Y(D}—a—a)=8+9=1T7.

U(D? —bla) =¥ (D} -b—a—a1)=T.

V(D? —dla) =V(D? —d—a—ay) + ¥ (D} —d—a—b) = 10.

U(D? —b—dla)=¥(D}-b—d—a—a;)=5.

\I/(D2|ab) U(D?—a—-b)+¥(D}—a—a;—b—c)=8+4=12.

V(D3a,d) =¥ (D}—a—a; —d—w)+¥(D?—a—a; —d—c)+ ¥ (D} —
a—b—d—c)+¥(D}-a—b—d—w)=13.

V(D3 a,b,d) =¥(D? ~a—a; —b—c—d—w)+¥(D? —a—b—d—
c)+¥(D}—a—-b—d—w)=09.

V(D?-bla,d) = ¥V(D}-b—a—a;—d—c)+¥(D?—b—a—a;—d—w) = 6.

U(D? —dla,b) =V (D? —~d—a—b)+¥(D}—d—a—a; —b—c)=8.
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Therefore ¥} ,(D? — a) = (11,8,6,5,5,8,3,7,4)T and ¥} ,(D?|a) = (17,7,
10,5,12,13,9,6,8)7.

By the symmetry of a and w, b and d in D}, we have ¥%, (D} — w) =
U7, (D? —a) and ¥, (D?|w) = W},(D?|a). Thus the conclusion holds. M

Let
By B2 Biz 0 0 Q1 0 0 0
B=|Bs1 Bs; Bss 0 0],Q=1]0 0 0 Iy
Bsi Bse Bss 0 0 0 0 Is 0 O

Here Iy is an identity matrix of order 9, Q1 and B;;(i = 1,2,3,4,5,5 =
1,2,3) are all square matrices of order 9 (see Appendix). B and @ are

essential in the following discussions.

Theorem 8. Let DTQL = 010505 ---0,_1 be a double hexagonal chain with
n > 2 naphthalene units. Then

B'\Ilalblcldlwl(D'?z—l)v 01 = a;

\Ijabcdw(Di) = { 9
Q B Q ’ \Pa1b101d1w1 (Dn—1)7 01 = ﬂ

Proof. Suppose 1 = a. Then all the maximal matchings of D? can be
classified into eight categories according to the way that they containing
the three edges e1, ez and es (seeing Fig. 2 (a)). So

V(D) =wteveread (DR 4 gt} (DR -V (es)) + w0 (D] -
V(ez)) + 012N (D] — V(er)) + U (D;) = V(ea) = V(es))
+UT2(D2 —V(er) — V(es)) + ¥ (D2 — V(er) — V(ea))+
U(D;, = V(er) = V(e2) = V(es)). (1)

Let My = {M | M is a maximal matching of D2, and e1,e2,e3 ¢ M}.
Then W—{eve2esk(D2) =| M, |. Note that D2 — e; — ey — e3 has exactly
two connected components, one is a path Ps with six vertices, another
is D2_,. Let M € M;. Then M N E(Ps) is a maximal matching in
Ps and M N E(D? 2

< 1) is a maximal matching in D;_,. However, the
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union of a maximal matching in Ps; and a maximal matching in D2_;
may be not a maximal matching of D2. According to the structures of
the four maximal matchings of Ps, we have w—{e1e2.es}(D2) — w(D2_)) +
(D7 _1|dy) + U(D7 1las, bi) + W(D7 a1, dy).

Similar to the discussions of W—{¢1¢2¢s}(D2) we can compute that

v} (DE = V(es)) = 29(Di g — di) + W(D; 1 — dafaa),

T{enes (D2 — Viey)) = W(D2_; — by) + U(D2_, — bi|ar),

vlezes (DR —V(er)) = (D7 - 1—al|d1)+‘1’(Dn 1—a1]b) +¥(D7 1 —ax),

U= (Dy = V(ea) — Ves)) =¥ b1 —dilar) + U(D2_4 — by — dy),
U=2(D} — V(er) — V(es)) =2 ( n—1 — a1 — d1),
U3 (D} — V(er) — V(ea)) = U(Di_y — a1 — by),

U(D; —V(er) — V(e2) — V(es)) = W(Dj_y — a1 — by — da).
According to Eq. (1) and Definition 2, we have

(D7) =(U(D5_1) + W(Dn_y = b1) +2W(D; g —di) + U(D; g — by — du)
+qz(Di_1|dl)) (¥(D}_1 —a1) + (D2 — a1 —by)
+2U(D2_y —a1 —di) +U(D2_y — a1 — by —dy)
+U(D:_y —ai|b) + U(D;_y — aild1)) + (¥(D7_; — bias)
+U(Di_y — diar) + U(Dj_y — by — difar) + ¥(D;_]a1,b)
+¥(D:_4la1,d1)) = (1,1,2,1,0,1,0,0,0) x ¥} 4, (Di_;)
+(1,1,2,1,1,1,0,0,0) x ¥; 4 (D, — a1)
+(0,1,1,1,1,1,0,0,0) x ¥; 4 (Da_1|a1).

Similar as the above computation of ¥(D2), we can obtain the other
components of U ,(D2) as follows.

(D) —b) =¥ {evezesh(D2 _p)
+ w2l (D2 V(es)) + WS (D2 — b - V(e2))

+ 0t (D2 — b~ V(er)) + U N(D) —b— V(ez) — V(es))
+ U 2(D2 —b—V(er)—V(es)) + ¥ (D2 —b—V(er)
—V(e2)) +U(DZ —b—V(er) — V(ea) — V(es))

=U(Di_y|d1) +U(Di_y|bi) + U(Di_y —di) +¥(Di_y —by)
+W(D2_y —aild) + (D2 , —ai|by) + U(D2_y — by —dy)
+W(D} a1 —di) +W(Di — a1 —by)
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—|—\1/(D 1 — a1 — b1 — d1)
:(0, 1,1,1,1,1,0,0, 0) X \I/Zldl (D?L_l) + (0, 1,1,1,1,1,0,0, 0)
X Wp, 4, (D1 — ax). (2)

U(D2 —d) =U(D2_1|a1,bi,d1) + ¥(D2_y|di) + ¥ (D2_, —dy)
+W(D2_ —dilay,by) + U(DZ_, —bi|ar) + W (D2_; —by)
U(D2_y —aild1) + U(D2_y — a1|bi,dy)
U(Dp_y — b1 —difar) + U(Dj_y — by — di)
( —d1|b1)+‘11(D721 1—a1—di)
w(D;,_ 1—a1—bl|d1)+‘11( n—1 — a1 — b1 —d1)
=(0,1,1,1,0,1,0,0,0) x ¥; 4 (Di_;)
+1(0,0,1,1,0,1,1,1,1) x ¥; 4 (D_; — a1)
+(0,1,0,1,0,0,1,0,1) x ¥; 4 (Da_1]a1). (3)
U(D; —b—d) =W(D;,_q|br,dr) + U(Di_y — di|br) + W(D;_y — bilda)+
V(D2 —ailbr,d) + U (D2_, — by —d1) + V(D2 —aa
—di|b) 4+ U(Di_y — a1 — bi|di) + ®(Da_y — a1 — by —dy)
=(0,0,0,1,0,0,1,1,1) x ¥; 4 (D7_;)
+1(0,0,0,1,0,0,1,1,1) x ¥; 4 (D7, — a1). (4)
W(D2|b) =¥(D2 —a —b) 4+ ¥ (D2 —b—c)
=U(D:_1|a1,d1) + U(D2_1la1,bi) + ©(D%_y — dila:)
+W(D2_y — b))+ V(D2 —ai|di) 4+ W(D2_; —ay|by)
( - 1\a1)+\11( 1 — a1 — dl)—i—\I/( o1 — a1 — b1)
W(D; ) —a1 — by —di) +U(Dp_y) +¥(D;_y —di)
( —al)—l—\II(Dn 1 —ar—di)
=(1,1,1,0,0,0,0,0,0) x ¥; 4 (Da_;)
+(1,1,2,1,1,1,0,0,0) x ¥; 4 (Da_y — a1)
+v(1,0,1,0,1,1,0,0,0) x W}, 4, (Dp_y|a1). (5)
W(D2|d) =W(D. —d—c¢) +¥(D: —d—w)
=U(D;_ila1,d1) + U(Dy_y|dy) + U (Dj_y — difar)
+W(D2_y —dy)+ YDy —ai|d) + U (D2 | — a1 —dy)
+ U(Dj_1lar,br) + W(Dp_y) + U(Dp_y — biax)
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+U(Dhy = b1) + (D g —a1) + ¥(D;_y — ax|br)
+U(D2_ — a1 —b) (6)
=(1,1,1,0,0,1,0,0,0) x ¥; 4 (Di_,)
+(1,1,1,0,1,1,0,0,0) x ¥; 4 (Da_; — a1)
+(0,1,1,0,1,1,0,0,0) x W; 4 (Di_4]a1). (7)
W(D2|b,d) =¥ (D2 —b—a—d—c)+¥(D:—b—a—d—w)
+U(D2 —b—c—d—w)=W(D;_i|a1,ds)
+ (D2 —airld) +U(Di_y —dilar) + U (D) — a1 — di)
+\Il( no1lai,b1) +\I!( - 1—a1|b1)+‘I/(D _1 —bijar)
+W(D2_ ) —ay — b))+ W(D2_,)+W(D2_; —by)
+W¥(Di_y —a1) = (1,0,0,0,0,0,0,0,0) x ¥; 4 (Da_1)
+(1,1,1,0,1,1,0,0,0) x ¥; 4 (Da_; — a1)
+(0,1,1,0,1,1,0,0,0) x W; 4 (D} _4]a1). (8)
U(D2 —bld) =¥(D2 —b—d—c)+¥(D2 —b—d—w)
=W(D2_1|di) 4+ W(D2_ —di) + ¥(D%_y — ai|dy)
+ (D) — a1 —div) + U(DZ_1|b1) + W(DZ_; — a1|b)
+W(D2_y — b))+ U(D2 | —a1 —by)
=(0,1,1,0,1,1,0,0,0) x W; 4 (D2_4) + (0,1,1,0,1,1,0,0,0)x

\Ijzldl (D?’L—1 - al). (9)
(D2 —dJb) =¥(D2 —d—b—a)+ V(D2 —d—b—c)
:\I/(D _1\a1,bl,d1)+‘I/(D _ —d1|a1’b1)

+\Il( 1—bl|a1,d1)+\IJ( _1 —a1|b1,d1)

( n— 17a17b1|d1)+\I/(Dn 1 — a1 —di]b1)

( o1 — b1 —di]a1) —i-\Il( h_1—a1 — b1 —di)
U(DE_y|dy) + (D} y — ai|dy) + (D24 —di)

U(D}_y — a1 —di) = (0,0,1,0,0,1,0,0,0) x ¥; 4 (Da_;)
+(0,0,1,1,0,1,1,1,1) x W} 4 (D21 —a1)

+ (07070,17070,17171) X \Ijbldl (Dn,1|a1). (10)

By Eqgs. (2_10)7 we have \I’Zd(DTQl) = (Bi1, B12,B13,0,0) X Va,b,c1dyw; (Dgz—l)'
Similarly, we can compute the other components of \Ilabcdw(Di) as
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follows.

U(D;, —a) =¥(D;_yla1) + ¥(Dj_yla1,d) + 20 (D — difar)
+W(D2_ —bila1) + W(D2_ — b))+ U(DZ_; —ay)
+‘I’( 1—a1|d1)+\11( 1 — b1 —di]ar)
+20(D2_ —a1 —dy) + (D2, — a1 — by)
+W(D:_y —a1—bi —di) = (0,1,0,0,0,0,0,0,0)

X Up 4 (D2_1) +(1,1,2,1,0,1,0,0,0) x
Up 4, (Di 4 —a1) +(1,1,2,1,0,1,0,0,0)
x Wy, (D371|a1). (11)
U(D% —a—b) =U(D}_1|a1,dr) + ¥(D2_1|ar,b1) + U(D2_1 — di|ay)
+W(D2_y — b))+ V(D2 —ai|d) + ¥(D2_1v —a1|by)
—l—\I/( - 1|a1)+\I/(Dn 1 —ay — d1)+\I’(Dn 1 —ai —bi)
+ (D} —a1—bi —di) = (0,1,0,0,0,0,0,0,0)x
Uh 4, (Dp 1) +(0,1,1,1,1,1,0,0,0) x
Uy 4, (Di 4 —a1) +(1,0,1,0,1,1,0,0,0)
X W4, (D _1]ar). (12)
U(D; —a—d) =%(D;_1|ar,bi,di) + ¥(Dn_y — dilas)
+W(D2_y —bilay,dy) + U(D2_; — ai|dy)
"’\I’( 1 —b1 — d1\a1)+\11( 1 —a1 —di)+
W(D2_y —ay —bi|dy) +U(D2_; —ay — by —dy)
=(0,0,1,1,0,1,0,1,0) x W} 4 (D2_; — a1)
+(0,0,1,1,0,0,1,1,0) x ¥; 4 (Da_;|a1). (13)
U(DZ —a—b—d) =U(D2_1|ar,bi1,d1) + (D2 , — a1 —di|b1)

+\I/(Dn 17a17b1|d1)+\I/(Dn 17a17b1 dl)
+ ‘I’(Dn 1 —dilar,br) + W(Di 1 — bilai, dr)
+U(Dy_y —ailbi,dy) + W(D;_y — by — di]ar)

=(0,0,0,1,0,0,1,1,1) x ¥; 4 (Ds_y — a1)
+(0,0,0,1,0,0,1,1,1) x ¥; 4 (D2 _4|a1). (14)
W(D2 —alb) =¥ (D2 —a—b—c)=U(D2_i|a1) + ¥(D2_; — di]ar)
+W(Dhoy —a1) + ¥(Dh_y — a1 —du)
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U (D2 — ald)

V(D7 — alb,d)

U (D2 — a — b|d)

U (D2 —a — d|b)

=(1,0,1,0,0,0,0,0,0) x ¥; 4 (D2_; —a1)
+(1,0,1,0,0,0,0,0,0) x ¥; 4 (Da_y|a1). (15)
=U(D2—a—d—c)+ V(D2 —a—d—w)
=W(D2_1|ar,dy) + V(D2 | —ai|d) + ¥(D2_; —dy|as)
+¥(D;_y — a1 —di) + U(D;_i]ar) + ¥(D;_; — ax)
+W(D2_y —bijar) + W(D2_ — a1 —by)
=(1,1,1,0,0,1,0,0,0) x W} 4 (D2_; — a1)
+(1,1,1,0,0,1,0,0,0) x ¥; 4 (Da_;|a1). (16)
:\I/(D2 —a—-b—c—d—w) =U(D2_, —a)
+W(D}_y — |a1) = (1,0,0,0,0,0,0,0,0)
X Wy 4 (D24 —a1) + (1,0,0,0,0,0,0,0,0) x

Uh 0, (Di_q|ar). (17)
=U(D2 —a—-b—d—c)+¥(D2—a—b—d—w)
=U(D;_1lar,dr) + ¥(Dj_y — ax|di) + U(Dj_y — daar)

+U(D2_) — a1 — d1)+\I'(Dn Lla1,br)
+U(D2_y —a1|by) + ¥(Di_y — bilar)
+W(D2_; —a1 —b) =(0,1,1,0,1,1,0,0,0)
x W 4, (D2 —a1) +(0,1,1,0,1,1,0,0,0)

X U 4 (D2 _|as). (18)
=U(D2 —a—d—b—c)=U(D2_i|a1,d1)
+U(Dy_y — aildy) + W(D;_y — difar)

—|—\IJ(D a1 —di) = (0,0,1,0,0,1,0,0,0)
X \I/Zldl (DrZL—l - a’l) + (0703 1,0,0,1,0,0, 0)
X \Ijzldl (Di,1|a1). (19)

By Eqs (11-19), we obtain \I/;d(DEL — a) = (Bgl7 Bzz, B23, 07 0)

2
X \Ilalblcldlwl (Dn—

U(Drla)

1)-

=W(D2_ 1)+@(Di dy) +20(D2_, —di) +W(D2_; —by)

+\I/( 1 — b1 — d1)+\I/(Dn,1|a1,d1)+\I/(Dn,1|a1,b1)
+ \p(Dn L —dila) + W(D2_ — b))+ U(D2_; —ay|dy)
+W(D2_; —ailby) + U(D:_y|a1) + ¥(D;_y — a1 —d1)
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U (D2 — bla) =V

V(D2 —d|a) =

U(D2 —b—dla) =

+\I/(D al—b1)+\I/(D 1—a1—b1 dl)

:(1,2,2,0,0, 1,0,1,0) x U3 4, (Dp_4)

+(0,1,1,1,1,1,0,0,0) x ¥; 4 (D, — a1)
+(1,0,1,0,1,1,0,0,0) x ¥; 4 (Da_y|a1). (20)
(Di_1|d1) + U(Di_1|b1) + ¥(Di_y —di)
+W(Dh_y —bi) +W(Dh_y — b1 —dy)
=(0,1,1,1,1,1,0,0,0) x W} 4 (Da_,). (21)
( o 1|a1,b1,d1)+\I/(Dn 1 fdl\al,bl)
+ 9 (D;, 1—b1|a1,d1 +9(D;, 1—a1|b1,d1)
+‘IJ(D 1 —ay —bi|di) +W(D2_; —ay —dy|b1)
+ U(D,, 2 1—b— d1|a1)+\I/(D 1 —a1— b —d1)
+W(D2_|d) + W(D2_1 —by|dy) + U (DZ_, —dy)
+W(D:_y —by —di) =(0,0,1,1,0,1,0,1,0)
X Uy 4, (D2_1) +(0,0,0,1,0,0,1,1,1)
X Uy 4, (Di_y —a1) +(0,0,0,1,0,0,1,1,1)
X ‘I’Zldl (DZ?1|a1). (22)
W(D2_|b1,d1) + U(Di_y —bi|di) + W(DZ_y — di|br)
+W(D2_y —by —di) = (0,0,0,1,0,0,1,1,1)

X Wp,a,(Di_1). (23)
U(Djla,b) =U(D; —a —b) + U(Dy_y) + U(Dj_; —di)
=WU(D2_4|ar,di) + (D2 _|a1,b1) + U(DZ_, — di]ar)
+U(Di_y —b1) +U(Di_y —ai|dr) + U(Di_1 — a1|br)
+‘~If( o 1|a1)+\I/(Dn 1 —ay — d1)+‘1/(Dn 1 —a1—bi)
+U(D;_y — a1 —bi —di) + U(D; 1) + ¥(Di_y — da)
=(1,1,1,0,0,0,0,0,0) x W} 4 (Dz_1) + (0,1,1,1,1,1,0,0,0)
X Wy 4, (Di_y —a1) +(1,0,1,0,1,1,0,0,0)
X Wh,a, (Dh_1]a1). (24)
U(D:la,d) =V(Di_y —d1) + U(D:_1|d1) + U(D}_1) + (D5, — b)

+W(D;_ 1|a15d1)+\1/(D3L 1 —dalar) + W(D;_y — ax|da)
+W(D2 ) —ay —di) +Y(D}_i]a1,b1) + (D2, —ailbr)
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+U(D2_; —bi|ar) + U(D2_1 — a1 — b1)
=(1,1,1,0,0,1,0,0,0) x W; 4 (D7 _1) + (0,1,1,0,1,1,0,0,0)

x Wy 4, (D3 —a1) +(0,1,1,0,1,1,0,0,0)

X Wp, 4, (Di_1]ax). (25)

U(D2a,b,d) =U(Di_1|a1,d1) + U(D2_y — ai|dr) + U(D:_y — di|ar)

+W(D2_y —a1 —di)+ U(D2_1]a,by) +U(D2_| —ai|b)

+W(D:_y —bilar) + U(D:_y —a1 —by) +9(D:_y)
=(1,0,0,0,0,0,0,0,0) x W} 4 (D7_1) + (0,1,1,0,1,1,0,0,0)

x Uy 4, (D34 —a1) +(0,1,1,0,1,1,0,0,0)

X \pgldl (D2_1]a1). (26)
W(DZ —bla,d) =W(D2_y —d1) + W(D2_1|d1) + U(DZ_1 —by) + U(DZ_41]b1)
:(0517170715170707 0) X \I}bldl (anl)' (27)

U (D2 — dla,b) =U(D?_1|a1,b1,d1) + ¥(D:_1 — dila, br)

+U(D;_y —bilar,di) + U(Da_y — ai|bi,dr)
W(D;_ ) — a1 —bild) + U(Dj_y — a1 — di|b1)
U(D2_y — b1 —dilar) + ¥(Da_y — ay — by — di)
U(D;_ydi) + W (D} |d1)

=(0,0,1,0,0,1,0,0,0) x Wy 4 (D7 1)+ (0,0,0,1,0,0,1,1,1)
X Wi 4 (Di_y —a1) +(0,0,0,1,0,0,1,1,1)
X W a, (D _1|ax). (28)

By Egs. (20-28), we have ¥} ,(D2|a) = (Bs1, Bs2, B33,0,0) X Uq b, c1dywy (D2_1).

U(DZ —w) =W(D2_1|a1) +20(D2_1) +20(D2_; —a1)
+W(D;_y —bilar) + ¥ (D;_y —b1)
+U(D2_ —a1 —b)
=(2,1,0,0,0,0,0,0,0) x ¥y 4 (D)
+(2,1,0,0,0,0,0,0,0) x ¥; 4 (Da_; — a1)
+(1,1,0,0,0,0,0,0,0) x ¥y 4 (Da_;|a1). (29)
U(DE —w—d) =U(D2_y) + W(D2_1|ar,b1) + ¥(D2_y — bilar)
+U(Di_y —b1) + ¥(Di_y —ai|br) + ¥ (Di_y —a1)
+ (D} ) —a1 —b1) = (1,1,0,0,0,0,0,0,0)



678

X Uy 4, 1)+ (1,1,0,0,1,0,0,0,0)

(Dn
X \Ilbldl( —CL1)+(0,1,0,O71,0,0,O70)
(D

)

X \Ilbld

1 n— 1|a1)

W(D2 —w—0b) =U(D2_))+W(D2_ —b1) +¥(D2_1 —a1)
+9(D2_; —a1 —b1) =(1,1,0,0,0,0,0,0,0)
x Up 4, (D2_1) +(1,1,0,0,0,0,0,0,0)

X \Ilzldl(Difl —ai).

(31)
U(D2 —w—b—d) =W(D2_1|by) +W(D2_1 —by)+U(D2_; —ai|by)

+¥(D_y — a1 —b) =(0,1,0,0,1,0,0,0,0)
X U 4, (D2_1) +(0,1,0,0,1,0,0,0,0)
X ‘Ijzldl(Diﬂ —ai).

U(D. — w|d) =¥ (D7 _y]ar) + ¥(Da_y) + U(Di_y — a1)

=(1,0,0,0,0,0,0,0,0) x ¥; 4 (D7 1)
+(1,0,0,0,0,0,0,0,0) x ¥; 4 (Da_; — a1)

+(1,0,0,0,0,0,0,0,0) x Wy 4 (D?_|a1).

U(D2 — w|b) =¥(D. —b—a) + (D2 —b—c)=WU(D:_|a1)
+U(D2_ —a1) + (D2 —bi|ar)

(33)

+U(Di_y —a1 —b) +Y(Di_y —a1) +9(Di_y)
=(1,0,0,0,0,0,0,0,0) x ¥; 4 (D7_;)

+(2,1,0,0,0,0,0,0,0) x ¥; 4 (D3, — a1)
+(1,1,0,0,0,0,0,0,0) x ¥; 4 (Da_;|a1).

(34)
) =U(D2 —w—d—c—b—a)

U(D: — wlb, d)

7\I/(Dn 1 — al) + ‘I’(Dn 1|(11)
=(1,0,0,0,0,0,0,0,0) x ¥} 4 (D3, — a1)

+ (17070507070705070) X ‘Ij?;ldl (D721—1|a’1)'

(35)
U(D? —w —d|b) =¥(D}

—w—d—b—c)+U(D2 —w—d—b—a)
=U(D;_1la1,br) + W(D;_y — a|br) + ¥(Dj_1 — bifar)
+W(D2_y —a1 — b))+ ¥(D: 1)+ U(D?

=(1,0,0,0,0,0,0,0,0) x W} 4 (D2_;)
+(1,1,0,0,1,0,0,0,0) x ¥; 4 (Ds_y — ay)

_1—a1)
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+(0,1,0,0,1,0,0,0,0) x Wy 4 (Di_y|a1). (36)
W(D2 —w—bld) =U(D2 —w—b—d—c)=U(D2_)+¥(D2_| —ai)
=(1,0,0,0,0,0,0,0,0) x ¥y 4 (D ;)
+(1,0,0,0,0,0,0,0,0) x ¥; 4 (Di_y — a1). (37)

By Egs. (29-37), we obtain ¥}, (D2 — w) = (Ba1, Baz2, Bus, 0, 0)

X ‘Ijalblcldlwl (Difl)'

U (D2 |w) =¥(D2 —w —d) + (D —w — di)
=W(D2_y|a1,b1) + W(D2_,) + U(D:_; — bilar)
+W(D5_y —b1) +¥(Dh_y —a1) + U(Di_1 — a1]br)
W(D2 ) —ar —b) +Y(D2_, —dy)
U(Dj_y — dilar) + W(D;_y — di)
(D} _y — b1 — di]ax)
( d1)+2\11( 1 — a1 —dy)
+ (D} —a1 — b1 —di) = (1,1,2,1,0,0,0,0,0)
x Uy 4 (D2 1) +(1,1,2,1,1,0,0,0,0)
X Up 4, (D2_y —a1) +(0,1,1,1,1,0,0,0,0)
(Di-1lar). (38)
W(D2 —djw) =0(D2 —d—w—dy) = W(D%2_; —dilay,by) + U(D2_, —dy)
+W(DZ_ ) — by —dilar) + ¥(D}_, — by — dy)
—|—\IJ(Dn 1 —a; — dl)—i—\I/(Dn 1 — a1 —di|b)
+W(D% 1 —a1 — by —dy) =(0,0,1,1,0,0,0,0,0)
x Uy 4, (D7_1) +(0,0,1,1,0,0,0,0,1)x
Up 4, (Di_y —a1) +(0,0,0,1,0,0,0,0,1)
X Wy 4, (Di_yar). (39)
U (D2 —blw) =U(D2 —b—w—d) + V(D2 —b—w—di)
=U(D5_1|b1) + U(Di_y —arlbr) + U(Di_y —by)
+W(D2_y —a1 —b)+Y(D2_, —di)
+U(D: ) —ar—di)+U(D} | — by —di)
+¥(D}  —a1—b —di) =(0,1,1,1,1,0,0,0,0)
x Uy 4 (D2 1) +(0,1,1,1,1,0,0,0,0)

*
X \I}bldl
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X Wy, 4, (D1 — ax). (40)
U(DZ —b—dlw) =U(D2_, —di|by) + ¥(DZ:_y —di — by)
+U(D2_ —dy —ai|b1) + U (D2_1 — a1 — by — d1)
=(0,0,0,1,0,0,0,0,1) x ¥; 4 (Da_) + (0,0,0,1,0,0,0,0,1)
X Wy, 4, (D1 — ax). (41)
V(D |w,d) =W (D5 _y|a1,b1) + ¥(Dy_y) + U(D;_y — bifas)
+U(D2_, —b1)+ ¥(DZ_ 1—(11)—1—\11( o1 — a1]b1)
+W(D2_y —a1 —b)+U(D2_ —ay —d)
+W(D;_y — diar) + U(Dj_y — di)
=(1,1,1,0,0,0,0,0,0) x ¥; 4 (Da_;) +(1,1,1,0,1,0,0,0,0)
X ‘Ijzldl(Diﬂ —ar)
+(0,1,1,0,1,0,0,0,0) x Wy 4 (Da_;|a1). (42)
U(D2|w,b) =¥(D2 —b—a—w—d)+¥(D2 —b—a—w—d)
+W(D2—b—c—w—d)+¥(D2—b—c—w—d)
:\I’( mo1la1,b1) + ‘I’(Di 1 —ailby) + \I’(Dn 1 — bila1)
+U(D2_y — a1 —bi) +U(Di_y —dila1)
+W(D%_y —a1 —di) 4+ U(D2_; — by —di]ar)
+ \Il(Dn 1—a1—bi—di)+ W(Difl —a1)+
U(D% )+ W(D2_y —dy) +U(D2_ | —a1 —dy)
=(1,0,1,0,0,0,0,0,0) x ¥y 4 (D7 ;)
+(1,1,2,1,1,0,0,0,0) x ¥; 4 (Da_; — a1)
+(0,1,1,1,1,0,0,0,0) x Wy 4 (D3 _4]a1). (43)
W(D2|w,b,d) =V(D2: —b—c—d—w)+¥(D: —b—a—d—w)
+U(D2 —b—a—d—c—w—di)=U(D:_; —a1)
(Di 1)+ ¥(D7_1lar, bi) + ¥ (D51 — ar|br)
W(D:_y —bilar) + (D2_y — a1 —b1)
( e 1fdl|a1)+\IJ(D7L 1—a1—di)
=(1,0,0,0,0,0,0,0,0) x W} 4 (D2_,)
+(1,1,1,0,1,0,0,0,0) x ¥; 4 (Da_; — a1)
+(0,1,1,0,1,0,0,0,0) x W; 4 (D?_4|a1). (44)
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U(DZ — djw,b) =U(Di —b—c—w—di)+P(Di —b—a—w—di)
=W(D2_y —di)+ V(D | —di —a1) +U(D:_; —dilai,b)
+W(D2_ —di—ai|b) +W(D2_, —dy — bi|ar)
+W(D%_y —a1 — by —dy)
=(0,0,1,0,0,0,0,0,0) x ¥y 4 (D7 ;)
+(0,0,1,1,0,0,0,0,1) x ¥; 4 (Da_; — a1)
+(0,0,0,1,0,0,0,0,1) x W; 4 (D3 _4]a1). (45)
U(D2 — blw,d) =¥(D; —b—d—w)+¥(Di —b—d—c—w—d)
=U(D}_,|b1) + ¥(D}_, — ai|br) + ¥ (D}, — by)
+U(D:_y —a1—b1) +U(D2_| —di)
+‘I‘( w1 — a1 —d1)
=(0,1,1,0,1,0,0,0,0) x U} 4 (D7_;)
+(0,1,1,0,1,0,0,0,0) x ¥; 4 (Da_y — a1). (46)

By Egs. (38-46), we obtain W}, (D2 |w) = (Bs1, Bsa, Bs3, 0,0) x
o by ey dywy (D2 ) In summary, we show that ¥.peqw(D2) =
B Vo pierdyun (DE_1) if 01 = .

For the case §; = (3, by Definition 2 and the symmetry of D2,
have Vapeaw(D2) = Q - Vwacsa(DE) = Q- B Vudyerbya (Dao1) = Q- B - Q-
Waybyerdyw; (Dn_1)- u

Theorem 9. Let D? := 010203 ---0,,_1 be a double hexagonal chain with
n > 2 naphthalene units. Then

\I}(DQ) C-Y1-Yo-oe-- Y17,

whereY; =B if0;=a, andY; =Q-B-Q if0, =0 (i=1,2,...,n—1),
¢ is the first row of Iis and 1 = VU peqw (DF).

Proof. Applying Theorem 8 repeatedly, and by Proposition 7, we get
\Ijabcdw(Di) - Yl : Y2 """ Yn—l -1,

where Y; = B if §; = «, otherwise Y; = Q - B+ Q. Since ¥(D?) is the first

component of vector W ypeq. (D?), the conclusion holds. |
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Example 3. For the 2 x n benzenoid parallelogram in Example 1, by

Theorem 9, we have
W(D2) = B,

Table 2. The number of maximal matchings of 2 X n benzenoid
parallelograms.

n 1 2 3 4 5 6 7
U(D2) | 20 | 175 | 1630 | 15234 | 143254 | 1349460 | 12710345

The Table 2 gives the first several values of the number of maximal
matchings of 2 X n benzenoid parallelograms as the n entries, this novel

sequence is not on OEIS [15].

Example 4. For the 2 x n double zigzag chain in Example 2, by Theorem
9, we get
C-(BQ)" .-, n is odd;
Wz = {0
¢-(BQ)"?-B-n, niseven.

Table 3. The number of maximal matchings of double zigzag chains.

n 1 2 3 4 5 6 7
W(D2) [ 20 | 175 | 1476 | 12698 | 109355 | 939709 | 8075439

The Table 3 gives some initial values of the number of maximal match-
ings of 2 x n double zigzag chains as the n entries, the new sequence is not
on OEIS [15].
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Appendix

B11 =

By2

Bs1

Bs3

0
0

Biz =

Ba1 =

Bag =

B3z =

Ba1

By3z

Bs2
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