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Abstract

A cyclic chain is a plane graph whose all inner faces are cycles
and its inner dual is isomorphic to a path. In this paper, the transfer
matrix technique using the k-matching vector is developed to com-
pute the number of k-matchings in an arbitrary cyclic chain. This
extends similar methods developed earlier in two papers for ben-
zenoid chains and for octagonal chains. The method is illustrated
on the flourene molecule.

1 Introduction

Matchings play an important role in chemical graph theory. This is in
particular evident from the fact that perfect matchings are chemically
termed Kekulé structures. More precisely, these structures are diagrams
for hydrocarbon molecules that identify the location of single and double
carbon bonds. The location of these double bonds thus corresponds to
a perfect matching for a graph, cf. [2]. For the theory on the Kekulé

structures in benzenoid hydrocarbons we recommend the book [4].
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The number of perfect matchings in a molecular graph describes the
extent of its aromatic property and is also used in the analysis of reso-
nance energy and stability of certain chemical compounds, cf. [§8]. Now,
the Hosoya index [7] of a (molecular) graph is the total number of its
matchings. Since its introduction, the index has received a great deal of
attention. As a starting point, we suggest the recent papers [5,10], refer-
ences therein, and the survey paper [17].

The transfer matrix technique goes back to [14, 15], where it was de-
signed to investigate the matching polynomial, the Hosoya index, the char-
acteristic polynomial, and the Wiener index of benzenoid chains. The
essence of the technique is to assign a vector v to the corresponding ben-
zenoid system and then, by multiplying v with an appropriate transfer
matrix, obtain the desired invariant for the benzenoid system with one
more hexagon. In [3], Cruz, Marin and Rada followed by introducing the
Hosoya vector to apply the transfer matrix technique to the Hosoya index
of catacondensed hexagonal systems.

In [12], Oz and Cangul modified the transfer matrix technique by in-
troducing the k-matching vector to compute the number of k-matchings
in an arbitrary benzenoid chain; summing over all £ we of course get the
Hosoya index of the chain. The method was adopted in [1] to work on
chains consisting of 8-cycles. In [11] Oz further extended the method to
be applicable on arbitrary catacondensed benzenoid systems, that is, also
in the branched case. Using this approach, Shi and Deng [16] proved that
the number of maximal matchings of a benzenoid chain with n hexagons
equals to the product of n certain matrices, and also obtained the num-
ber of perfect matchings of all benzenoid chains. Moreover, in [13] the
method was applied to primitive coronoid systems, and in [6] to specific
classes of pericondensed benzenoid systems. We also mention that in [9], a
method to compute the number of k-matchings in hexagonal systems was
presented for k < 5.

In this paper we demonstrate that the transfer matrix method which
uses the k-matching vector can be extended to arbitrary cyclic chains. This
generalizes and unifies the method from [12] which works on benzenoid

chains and the method from [1] which works on octagonal chains.
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In the next section concepts needed are formally introduced, a couple
of known results recalled, and the essence of the transfer matrix method
explained. In Section 3, the transfer matrix method to compute the
k-matching vector of an arbitrary cyclic chain is developed. The trans-
fer matrices corresponding to all possible situations/edges, where the next
cycle of the cyclic chain will be attached to the present cyclic chain, are
derived in three theorems. In the final section the method developed is

illustrated on a chemical graph corresponding to the fluorene molecule.

2 Preliminaries

Let G = (V(G), E(GQ)) be a graph. A matching of G is a set of edges
M C E(G) such that no two edges from M share a vertex. If |M| = k, then
M is a k-matching. The Hosoya index Z(G) of G is the total number of
different matchings of G. Denoting by p(G, k) the number of k-matchings
of G we have Z(G) = > ,~,p(G, k). A cyclic chain is a plane graph whose
all inner faces are cycles and its inner dual is isomorphic to a path. For

examples of cyclic chains together with their inner duals see Fig. 1.

o e

Figure 1. Examples of cyclic chains and their inner duals (paths).

We next recall two straightforward, but utmost useful lemmas.

Lemma 1. If ab is an edge of a graph G, then

p(G, k) =p(G —ab k) +p(G—a—bk—1).
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Lemma 2. If G is a graph consisting of two components G1 and G2, then

k
p(G,k) = p(G1UGa,k) =Y p(Gr,i)p(Ga, k — i) .

=0

To conclude the preliminaries we briefly describe the transfer matrix
method applied to cyclic chains. The key concept of the method is the
following vector. If ab is an edge of a graph G, then the k-matching vector
papr(G, k) of G with respect to ab is the vector

p(G, k)
p(G,k—1)

p(G,0)
p(G — a,k)
p(G—a,k—1)

p(G - a 0)
p(G — b, k)
p(G—-0bk—1)

pab(G7 k) =

p(Gfva)
p(G —a—b,k)
p(G—a—bk—1)

p(G —a—b,0)

Let now G be a cyclic chain consisting of ¢ consecutive cycles C(),
i € [t], and let v'v' be the edge shared by C*~1) and C®. Let further
G’ be the cyclic chain consisting of the ¢ — 1 cycles C®, i € [t — 1].
Then we aim to find a matrix X, called a transfer matriz, such that
Puv(G, k) = X - puryr (G, k). Here the edge uv of C® is conceived as the
edge to which we will attach a new cycle to extend G to a cyclic chain

consisting of ¢t + 1 cycles.
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3 Determining the transfer matrices

As said, our goal is to use the transfer matrix method to compute the
k-matching vector of an arbitrary cyclic chain. For this sake, we need
to determine the transfer matrices corresponding to all possible situa-
tions/edges, where the next cycle of the cyclic chain will be attached to
the present cyclic chain. All possible cases are collected in three theo-
rems, where we will denote the consecutive vertices of an attached cycle
as ai,ds,...,a,. In all the cases we are going to determine pq,q, (G, k),
that is, the edge aja, is considered at the edge at which the next cycle of
the cyclic chain will be attached.

To describe the transfer matrices that will occur in a reasonable way,
the following auxiliary matrices are useful. For a predefined positive integer
k, we define M (G), 0M(G), and 00M (G) as the upper triangular Toeplitz
matrices of dimension (k4 1) x (k + 1), whose first rows are respectively

as follows:

[p(G,0),p(G,1),p(G,2),...,p(G, k)],
[0,]9(G, O)ap(Ga 1)7p(G7 2)3 e 7p(Ga k — 1)} )
[0,0,p(G,0),p(G,1),p(G,2),...,p(G, k—2)].

an—2 4343
Gp—1
Qn
ai
as

as a;—2

Figure 2. Graph used in Theorem 1.
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Theorem 1. Let S be a graph, and let G be obtained from the disjoint
union of S and C,, by identifying the edge a;a;11, © € {2,3,...,n— 2} of
C,,, with an edge of G, see Fig. 2. Then

Paian, (Gv k) = Am *Paja;iq (Sa k) )

where Ay, is the 4(k + 1) x 4(k + 1) matriz with the block structure as
shown in Fig. 3.

1
M (Pp_2) I OM (Pp_3) I OM (Pp_3) I 00M (Py, _4)

OM(P;_3UP,_,;_92) OM(P;_oUP,_,;_3) 0O0M(P; _3UP,_,;_3)

Figure 3. Matrix Ay, .

Proof. To begin consider the p(G, k), first component of p,,q, (G, k). Set-
ting X = p(G, k) and applying Lemmas 1 and 2 we can compute in the

following way:

X =p(G —a;—1a; — aip1ai42,k)

+p(G —ai—1 —a; — ajy10542,k — 1)
+p(G —a;—16; — aiy1 — aiy2, k— 1)
+p(G—a;—1 —a; — ajy1 — aiz2, k —2)

=p(SUP,—2,k) +p((S—ai)UP,3,k—1)
+p((S — ai41) U Ppos, kb — 1)
+p(S—a; —aj41 UPy_yg, k—2)

= (P(Pa2,0), p(Pa2,1),p(Pa2,2), .. p(Pu 2, k),
0.5(Pa-.0).p(Pacs, 1), p(Paa k= 1),
0,p(Pn—3,0),p(Pn—3,1),...,p(Pr—3,k — 1),
0,0,p(Pa-1,0), - P(Pa-tsk = 2) ) Paary (S, ).

The obtained vector corresponds to the first row of the matrix A,,.
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The above proof similarly holds for the second component of the vector

Dayay (G, k), therefore we can state:

p(Gk =1) = (0.p(Pa=,0),p(Pazs, 1) p(Pam2 b = 1),
0,0,p(Pn-3,0),p(Pr_3,1),...,p(Pr_3,k —2),
0,0,p(Pn—3,0),p(Pn-3,1),...,p(Pn—3,k — 2),
0,0,0,p(Pas,0), . p(Passk = 3))Pava s (S, ).

In a similar manner, we obtain the remaining £k — 1 components of the
form p(G, i), where 0 < i < k — 1. Thus, we have obtained four upper
triangular Toeplitz matrices of dimension (k+ 1) x (k + 1) which lie above
in the matrix A,,.

Analogous to the calculation of p(G, k), setting X1 = p(G — a1, k),
X, =p(G — an, k), and X1, = p(G — a1 — an, k), we proceed to compute
X1, X, and X,, as follows.

X1 =p(G—a1 —ai—1a; — ait1ai42, k)
+p(G — a1 — ai—1 — a; — Ait1Gi42,k — 1)
+p(G — a1 — ai—1a; — aip1 — @i,k — 1)
+p(G—a1—ai—1 — a; — ai+1 — Git2, k — 2)
= p(SUP_3UPu_i_1,k)

£ p((S—ai)UP,_3UPa_i1,k—1)

+p((S—air1) UP—oUPr_i_2,k—1)

+p(S—a; —ait1UP_3UP,_i_2,k—2)
= (P(Pim2 U Pamim1,0),p(Pr—2 U Pacim1,1), o, p(Pia U Pacica, ),

0,p(Pi—3U Pr—i—1,0),...,p(Pi—3 U Ph_ij_1,k — 1),
0,p(Pi—2 U Pp—i—2,0),...,p(Pica U P_j_2,k — 1),

0,0,p(Pi-3U Pni2,0),...,p(Pi3UPr i 2,k— 2)) “Pajai1 (S, k)

Xn = (p(PZ,1 U Pn*i7270)7p(Pi71 U Pn7i727 1), e 7p(P¢71 U Pnfi—kaL

O7p(Pi_2 U Pn_i_g,o), e ,p(Pi_Q U Pn_i_g, k — 1),
0,p(Pi—1 U Pr—i—3,0),...,p(Pic1 U Pr_i_3,k — 1),
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0,0,p(Pi—2 U Pn—i-3,0),...,p(Pi—aUPy_i_3,k— 2)) “Pazaii1 (5, K) .

Xin = (p(Pi_z UPyi—2,0),p(Pi—a UPn_i_2,1),...,p(Pi2 U Pr_i_2,k),
0,p(P7;_3 U Pn_i_Q, 0)7 e ,p(Pi_3 U Pn_i_Q, k— 1),
0,p(Pi—2 U Pn—i—3,0),...,p(Pi—2 U Pp—j—3,k — 1),

07 O,p(Pi_g U Pn_i_g, 0), e ,p(Pi_g U Pn—i—37 k’ — 2)) . paiai+1 (S, k’) .

The same reasoning applies to the three computed components as it
did for the first k+1 components. Thus, we obtain the remaining matrices
that form the matrix A,,.

We can conclude that pg,q, (G, k) = Ay, - Pasais, (S, k), where A, is
the matrix shown in Fig. 3. |

We continue with our second main result, which reads as follows.

Theorem 2. Let S be a graph, and let G be the graph obtained from the
disjoint union of S and C, by identifying the edge aias of Cy, with an
edge of G. Then

Paian, (G, k) = Apn, * Payas (S, k),

where A, is the 4(k + 1) x 4(k 4+ 1) matriz shown in Fig. 4.

M(P,_3) | OM(Pyn_3) | OM(P,_3) l 00M (Py_s)
0 Ml 0 oM
| 0 Loyl 0
o e | 0oy

Figure 4. Matrix An,.

Proof. Setting X = p(G,k), X1 = p(G — a1,k), X,, = p(G — an, k) and
X1n = (G — a1 — ap, k), we can compute as follows:

X =p(G — a1a, — azas, k) + p(G — a1 — a,, — azag, k — 1)



653

+p(G — ara, —as —az, k—1)

+p(G—a,—a; —as —az, k—2)
=p(SUP,_2,k) +p((S—a1) U P, 3,k —1)

+p((S —a2) U Pz, k —1)

+p((S—a1 —az) UP,_4,k—2)
~(P(Pa=2,0) p(Pa2, 1), p(Pa2,2), - p(Pa2, ),

0,p(Pn-3,0),p(Pn—3,1), ..., p(Pp3,k — 1),

0,p(Pp-3,0),p(Pp-3,1),...,p(Pp-3,k — 1),

0,0,p(Pa—1,0), PPtk = 2)) - Payas (S, K).

X1 =p(G— a1 —azas, k) +p(G — a1 —az —as, k—1)
=p((S—a1)UP,_2,k)+p((S—ay1 —a) UP,_3,k—1)
:(0, 0, 0, ..., 0
p(Pn—2,0),p(Pn—2,1),p(Pp—2,2) ..., p(Pn—2,k),

0o, 0, 0, ..., 0,
0,0(Pa-5,0),0(Pa-5,1); -+ p(Pa-g = 1)) Pasas (S, 1)
X, =p(G —a, — azas, k) + p(G — a, —az —az, k—1)
=p(SUP,_3,k)+p((S—az) UP,_4,k—1)
= (P(Pa-5,0),p(Pu-,1),0(Pa3,2) .., p(Pa-s, k),
0, 0, 0, ..., 0,
0,p(Pp-1,0),p(Pp—1,1),...,p(Ppa,k — 1),
0, 0, 0, <oy 0) Puas(S.K).
Xln:(o, 0, 0, ... 0

p(Pn—3>O)7p(Pn—3a 1)7p(Pn—37 2) N ap(PTL—3a k)v
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0, 0, 0, ... 0
Oap(Pn—470)ap(Pn—4a 1)7 ce 3p(Pn—47 k — 1)) *Pajas (Sa k) .
Therefore, it holds that pa,a, (G, k) = Apn, - Pajas (S, k), where A, is the

matrix shown in Fig. 4. |

Our final main result is the following.

Theorem 3. Let S be a graph, and let G be the graph obtained from the
disjoint union of S and C, by identifying the edge a,_1a, of Cy, with an
edge of G. Then

Payan, (Ga k) = Ann_l *Pan_1an (Sv k) ;

where A, _, is the 4(k + 1) x 4(k 4+ 1) matriz shown in Fig. 5.

M(P,_3) | OM(P,_3) | OM(P,_3) l 00M (Pp_s)
ey My 0 L0
0L 0 e | oiey
S0 0 M o

Figure 5. Matrix Ay, .

Proof. Setting X = p(G,k), X1 = p(G — a1,k), X, = p(G — an, k) and

X1, = p(G — a1 — ap, k), we can compute as follows:

X =p(G —ap—say_1 —anar, k) + p(G —apn_9 — an_1 — anar, k — 1)
+p(G—ap_san_1—a, —ay,k—1)
+p(G—ap—2—an_1 —a, —a,k—2)
=p(SUP,_2,k)+p((S—an_1)UP,_3,k—1)
+p((S — an) U Py_3,k—1)
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+p((5 = a1 = an) U Paoa, = 2)

= (P(Pa-2,0) p(Pa2, 1), p(Pa2,2), - p(Pa2, ),
0,p(Pn—3,0),p(Pp-3,1),...,p(Pn—3,k — 1),
0,p(Pa-3,0),p(Pa—, 1), -, p(Pa-s. k= 1),
0,0,p(Pa—1,0), PPtk = 2)) Pa, 10, (S.).

Xl = p(G —a; — apn—2ap-—1, k) +p(G —a; —ap—2 — Gp-1, k — ]-)
= p(S U Pn—37 k‘) +p((5 - a/n—l) U Pn—47 k - 1)

:(p(Pn,?,, 0)7p(Pn737 1)7p(P’rL73a 2) e ,p(Pn,?,, k)7

Oup(Pn7470)7p(P’n747 1) e 7p(Pn747k - 1)7

0, 0, 0, ..., 0,

0, 0, 0, .., 0) Do (S,K).

Xn=p(G—a, —apn—1an-2,k) +p(G—ap, —ap—1 —an_o,k—1)
=p((S—an) U Py 2,k) +p((S—an1—an)UPr3k—1)
:(0, 0, ... 0,

0, 0, O, , 0,

p(PTLan O)7p<Pn727 1)7 e ’p(Pn727 k>7
0,p(Pa-3,0), -+, p(Pa-s,k = 1)) * Py s, (S,K) .

p(Pn,?,, O)7p(Pn737 1)7 e ,p(Pn,?,, k)7
07p(Pn7470>7 e 7p(Pn747 k— 1)) . panfla"(sa k) .

Therefore, pa,a, (G k) = An,_, * Pa,_1a, (S, k), where A, _, is the matrix
shown in Fig. 5. |
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Due to the symmetry of the cycles, A, _, = R-A,, - R, where R is the

following 4(k + 1) x 4(k + 1) dimensional matrix:

Ii;i 0O 0 0
0 0 Iy O
0 g1 O 0
0 0 0 I

4 An example

For an example how the method developed in this paper works, consider

the graph F' of the fluorene molecule, see Fig. 6.

Y

Figure 6. The graph F' of fluorene and its maximum matching.

Denoting by pap(F, 6)|+1 the vector pap(F, 6) restricted to its first k+1

components, we have:

Pab(F, 6)|k+1 = (As, - As, - A6y - Doy (P2,6)) k41
= [22,141,273,220,84,15,1]" |

where the matrix Ag, is the same as the matrix @ in [12], and the matrix
As, can be computed using Theorem 1 as follows:

| | |
M(P3) | OM (P2) | 0M(P2) | 00M (Py1)
7777777 e E e I
| | |
M(Po @] P2) | OM(P_1 UPQ) | OM(PO U P1) | OOM(P_1 U Pl)
Ay = |- - - ---- - - -==-=-=-- == == === - === === ==
| | |
M(Pl U P1) | OM(PO UP1) | OM(Pl @] Po) | OOM(PO U Po)
7777777 e
| | |
M(Po U Pl) | OM(P,1 UP1) | OM(PO @] Po) | OOM(P,1 U Po)
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It is important to note that p(Py) = 1 and that p(P_;) = 0 for i € N7.

Given that the largest graph which appears within the adjacency matrix

As, is Ps, it suffices to compute just 1-matchings. Therefore, setting the
first row of matrices M(a,b), 0M (a,b) and 00M (a,b) respectively as:

[a,b,0,...,0], [0,a,b,0,...,0], [0,0,a,b,0,...,0],

the matrix As, can be written as follows:

M(1,2) | OM(1,1) | OM(1,1) | 00M(1,0)

————— Fem——t——— - - - - — -

Note that since pas(F, 6)|rs1 = [22,141,273,220,84,15,1]7, we can con-
clude that Z(F) =22 + 141 + 273 + 220 + 84 + 15 4+ 1 = 756.

Acknowledgment: Sandi Klavzar acknowledges the financial support
from the Slovenian Research Agency ARIS (research core funding P1-0297
and projects N1-0285, N1-0355).
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