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Abstract

In this paper, we are committed to exploring the spatiotempo-
ral oscillation behaviors of an enzyme-catalyzed model under no-flux
boundary conditions. In the absence of spatial diffusion, we conduct
stability analysis and establish the existence of Hopf bifurcation.
Since the system admits periodic solutions when Hopf bifurcation
occurs, we employ the multiple time scales (MTS) method to de-
rive the amplitude equation, thereby determining the stability of
the bifurcating periodic solutions. When diffusion is introduced, we
examine the existence of Turing instabilities for the equilibrium and
bifurcating periodic solution. Numerical simulations are utilized to
validate the theoretical results. Our findings demonstrate that this
enzyme-catalyzed model exhibits temporal, spatial, and spatiotem-
poral oscillations due to the presence of Hopf bifurcation, Turing
instability, and Turing-Hopf bifurcation, respectively.
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1 Introduction

Spatial diffusion plays a crucial role in morphogenesis formation, leading

to more complex dynamic behaviors across various systems, including pop-

ulation dynamics, disease transmission, chemical reactions, and biochem-

ical processes. Numerous researchers have extensively studied reaction-

diffusion models incorporating spatial diffusion, revealing intricate spa-

tiotemporal dynamics. For detailed insights, please refer to [1–4].

Chemical and biochemical systems are widely utilized to simulate mor-

phogenesis within spatial diffusion environments. Meanwhile, biochemical

reaction systems represent a significant class of enzyme-catalyzed systems,

often exhibiting complex nonlinear spatiotemporal phenomena. In this

current paper, we are especially interested in the following diffusive non-

dimensional version of the enzyme-catalyzed reaction system:
∂u
∂t = d1∆u+ α− uv, x ∈ Ω, t > 0,
∂v
∂t = d2∆v + γv

(
u− 1

v+1

)
, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1)

where u = u(x, t) and v = v(x, t) describe the concentrations of two

distinct substrates, they are synthesized by enzyme-catalyzed reaction at

space position x and reaction time t. Two parameters α and γ are positive

kinetics constants. Additionally, d1 > 0 and d2 > 0 are diffusion rates and

they describe the movement speeds of the substrates u and v, respectively.

The notation ∆ is the Laplacian operator in one-dimensional space and

Ω = (0, ℓπ) ⊂ R with ℓ > 0 is a bounded region with its smooth boundary

∂Ω, ν presents an outward unit normal vector. We can recommend the

papers [5–7] for the modified version and known dynamic analysis of (1).

By utilizing the enzyme-catalyzed reaction system (1), our primary

objective is to investigate spatiotemporal oscillation behaviors through bi-

furcation method. Specifically, we establish the existence of Hopf bifur-

cation, Turing instability, and Hopf-Turing bifurcation for system (1). In

the absence of diffusion and by selecting the parameter γ as the bifurca-

tion control coefficient, we demonstrate the occurrence of Hopf bifurcation,
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which directly leads to the emergence of bifurcating periodic solutions. A

critical aspect of this analysis is determining the stability of these periodic

solutions, a problem central to Hopf bifurcation theory. This stability

problem is typically classified into two classical types: supercritical and

subcritical. In the supercritical case, the bifurcating periodic solution is

stable, whereas it is unstable in the subcritical case.

With the advancement of bifurcation theory, numerous techniques have

been developed to study the direction of bifurcations, including center

manifold reduction and normal form theory [8, 9], Crandall-Rabinowitz

local bifurcation theory [10,11], and Lyapunov-Schmidt reduction [12,13],

among others. In contrast to these established methods, we employ the

multiple time scales (MTS) approach (cf. [2,14,15]) to derive the amplitude

equation, thereby addressing the direction problem of the Hopf bifurcation.

A notable feature of this approach is the separation of time into fast and

slow scales through perturbation analysis. The amplitude equation for the

Hopf bifurcation is then obtained by examining the perturbation equations

associated with the slow time scale.

When spatial diffusion is introduced, we focus on the existence of Tur-

ing instability. It is worth noting that the Turing instability problem

has been extensively studied in the literature due to its pivotal role in

guiding the formation of spatial self-organization. For instance, Kumari

et al. [15] demonstrated, based on a nutrient-phytoplankton system, that

cross-diffusion significantly influences Turing instability. Similarly, Song et

al. [16] highlighted that the local stability of a homogeneous equilibrium

can be disrupted by either the topology of multiplex networks or cross-

diffusion, leading to the formation of various Turing patterns. In [17],

Chen and Fu explored the global existence and boundedness of solutions,

revealing that prey evasion can drive Turing instability in predator-prey

systems. Additionally, Manna and Banerjee [18] investigated Turing insta-

bility in an ecological system and derived the cubic Stuart-Landau equation

near the instability threshold using weakly nonlinear analysis. For further

insights into Turing instability, one may refer to the existing works [19–22]

and the references therein. In this study, we not only investigate the

emergence of Turing instability for the equilibrium but also analyze the
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periodic solutions arising from Hopf bifurcation. Specifically, when Turing

instability occurs in the periodic solution, we establish the existence of

Hopf-Turing bifurcation. Through these bifurcation analyses, we identify

spatially homogeneous periodic solutions, nonconstant steady states, and

spatially nonhomogeneous periodic solutions in the enzyme-catalyzed re-

action system (1). Furthermore, numerical experiments are conducted to

visualize the spatiotemporal oscillations of the system (1).

The structure of this paper is organized as follows. In Sec. 2, we

report the Hopf bifurcation for the local system. Section 3 establishes the

existence of Turing instabilities for the unique equilibrium and the periodic

solution. In Sec. 4, we validate our theoretical findings through numerical

simulations. Finally, Sec. 5 summarizes the main conclusions of this study.

2 Hopf bifurcation

2.1 The existence

For the enzyme-catalyzedsystem (1), its local system can be written as:{
du
dt = α− uv,
dv
dt = γv

(
u− 1

v+1

)
.

(2)

Firstly, we are able to obtain the positive equilibrium, say E∗ = (u∗, v∗),

of system (2). By direct compute, one yields

u∗ = 1− α, v∗ =
α

1− α
, 0 < α < 1. (3)

Accordingly, the Jacobian matrix at E∗ is derived as follows:

J0 =

(
α
α−1 α− 1
γα
1−α γα(1− α)

)
.

Naturally, the related characteristic equation is expressed below:

λ2 − T0(γ)λ+D0(γ) = 0, (4)
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where T0(γ) = γα(1− α) + α
α−1 and D0(γ) = γα(1− α) > 0.

In light of (4), we build the following result.

Theorem 1. Suppose that 0 < α < 1 is valid.

(1) If 0 < γ < 1
(1−α)2 , then E

∗ is locally asymptotically stable;

(2) If γ > 1
(1−α)2 , then E

∗ is unstable;

(3) If γ := γH = 1
(1−α)2 , then system (2) enjoys the Hopf bifurcation.

Proof. By utilizing (4), we can easily obtain the eigenvalues as follows:

λ1,2 =
T0(γ)± i

√
4D0(γ)− T 2

0 (γ)

2
:= δ(γ)± iw(γ),

where

δ(γ) = Re{λ1,2} =
T0(γ)

2
, w(γ) = Im{λ1,2} =

√
4D0(γ)− T 2

0 (γ)

2
.

Owing to we have a fact that D0(γ) = γα(1−α) > 0, this implies Re{λ1}
and Re{λ2} share the same sign, where Re{•} denotes the real part of

•. We now discuss the stability of positive equilibrium E∗ under different

conditions. (1) If 0 < γ < 1
(1−α)2 , then one has T0(γ) < 0, namely, we have

Re{λ1} < 0 and Re{λ2} < 0. Therefore, it is concluded that E∗ is locally

asymptotically stable. (2) If γ > 1
(1−α)2 , then we can infer that T0(γ) > 0.

For this case, there are Re{λ1} > 0 and Re{λ2} > 0. That is to say,

the positive equilibrium E∗ must be unstable. (3) If γ := γH = 1
(1−α)2 , it

follows that Re{λ1,2} = δ(γH) = 0 and Im{λ1,2} = w(γH) =
√
D0(γH) =√

α
1−α > 0, where Im{•} describes the imaginary part of •. Obviously, λ1

and λ2 are two purely imaginary eigenvalues of the characteristic equation

(4). On the other hand, we can yield

dRe{λ1,2}
dγ

∣∣∣
γ=γH

=
α(1− α)

2
> 0. (5)

In light of the Poincaré-Andronov-Hopf bifurcation theory, we can conclude

that system (2) meets the Hopf bifurcation. We end the proof.
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2.2 Direction of the Hopf bifurcation

It is observed that the local system (2) may undergo the Hopf bifurcation

at a critical parameter value γ = γH = 1
(1−α)2 . Our subsequent objective is

to determine the direction of this Hopf bifurcation using the multiple time

scales (MTS) method. Now, we first reformulate system (2) as follows:

dU

dt
= J0U+N(U,U), (6)

where U = (u, v)T and

J0 =

(
α
α−1 α− 1
γα
1−α γα(1− α)

)
,

and

N =

(
0

γuv + γ(1− α)3v2 − γ(1− α)4v3

)
+O(4).

To apply the MTS approach, we shall do some perturbations with respect

to ε. Suppose that T0 = t, T2 = ε2t for ε≪ 1, which implies

∂

∂t
=

∂

∂T0
+ ε2

∂

∂T2
. (7)

For the solution U of the problem (6), we assume the expansion

U =ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+O(4). (8)

In addition, for N , we expand it as

N = ε2N2 + ε3N3 +O(4), (9)

where

N2 =

(
0

γu1v1 + γ(1− α)3v21

)
,



611

and

N3 =

(
0

γ(u1v2 + u2v1) + γ(1− α)3v1v2 − γ(1− α)4v31

)
.

It is noticed that system (2) meets Hopf bifurcation at the point γ = γH =
1

(1−α)2 , so for ε > 0, we set γ − γH = ε2δ with δ > 0. As such, the matrix

J0 can be decomposed as

J0 = Ĵ0 + (γ − γH)M = Ĵ0 + ε2δM, (10)

where

Ĵ0 =

(
α
α−1 α− 1
γHα
1−α γHα(1− α)

)
=

(
α
α−1 α− 1
α

(1−α)3
α

1−α

)
,

and

M =

(
0 0
α

1−α α(1− α)

)
.

In the following, we plan to submit (7)-(10) into (6). Then, we get

O(ε):

∂

∂T0

(
u1

v1

)
− Ĵ0

(
u1

v1

)
= 0. (11)

O(ε2):

∂

∂T0

(
u2

v2

)
− Ĵ0

(
u2

v2

)
= N2. (12)

O(ε3):

∂

∂T0

(
u3

v3

)
− Ĵ0

(
u3

v3

)
= − ∂

∂T2

(
u1

v1

)
+ δM

(
u1

v1

)
+N3. (13)

Now, let us investigate the above three perturbation equations, respec-
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tively. Recalling that the characteristic equation (4) has a pair purely

imaginary roots λ1,2 = ±i
√
D0(γH) = ±i

√
α

1−α := ±iψ when γ = γH =

1
(1−α)2 , where ψ =

√
α

1−α . As a result, for the perturbation equation (11),

we can consider the following general solution:(
u1

v1

)
= A(T2)ve

iψT0 + Ā(T2)v̄e
−iψT0 , (14)

where we assume that A(T2) is the complex amplitude and the eigenvector

v takes the form v = (1, vc)
T =

(
1, ψ(i+ψ)α−1

)T
. As such, (14) becomes

(
u1

v1

)
= A(T2)

(
1

vc

)
eiψT0 + Ā(T2)

(
1

v̄c

)
e−iψT0 .

Therefore, when γ = γH , we can get

N2 =

 0

γH [A2(T2)vce
2iψT0 + |A(T2)|2vc]

+γH(1− α)3[(A2(T2)v
2
ce

2iψT0 + |A(T2)|2|vc|2]

+ c.c.,

where c.c. represents the conjugate terms. Keeping this in mind, we can

assume that the particular solution to the problem (12) has the form(
u2

v2

)
=A2(T2)

(
ϑ1

ϑ2

)
e2iψT0 +

(
ϑ3

ϑ4

)
|A(T2)|2

+ Ā2(T2)

(
ϑ̄1

ϑ̄2

)
e−2iψT0 , (15)

where ϑj are undetermined for j = 1, 2, 3, 4. To compute ϑj , we are able

to submit (15) into (12). Thereby, we get

ϑ1 =− γHvcJ12[1 + (1− α)3vc]

3ψ2
, ϑ2 = −γHvc(2iψ − J11)[1 + (1− α)3vc]

3ψ2
,

ϑ3 =
γHvcJ12[1 + (1− α)3v̄c]

ψ2
, ϑ4 = −γHvcJ11[1 + (1− α)3v̄c]

ψ2
,
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where J11 = α
α−1 and J12 = α− 1. Using (14) and (15), one obtains

N3 =


0

γH [C1A3(T2)e3iψT0 + C2A(T2)|A(T2)|2eiψT0 ]

+γH(1− α)3[ϑ2vcA3(T2)e3iψT0 + (vcϑ4 + v̄cϑ2)A(T2)|A(T2)|2eiψT0 ]

−γH(1− α)4[v3cA
3(T2)e3iψT0 + 3vc|vc|2A(T2)|A(T2)|2eiψT0 ]


+ c.c.,

where C1 = ϑ2+ϑ1vc, C2 = ϑ4+ϑ2+vcϑ3+ v̄cϑ1 and c.c. is the conjugate

term. Consequently, the perturbation (13) can be rewritten as follows:

∂

∂T0

(
u3

v3

)
− Ĵ0

(
u3

v3

)
= ΦeiψT0 +NST + c.c., (16)

where NST describes the non-secular terms and Φ = (φ1, φ2)
T with

φ1 = −∂A(T2)
∂T2

, φ2 = −vc
∂A(T2)

∂T2
+ C3δA(T2) + C4A(T2)|A(T2)|2,

where C3 = α[1+vc(1−α)2]
1−α and C4 = γHC2 + γH(1 − α)3(vcϑ4 + v̄cϑ2) −

3γH(1 − α)4vc|vc|2. Taking v† = (v†c , 1)
T =

(
ψ(i+ψ)
1−α , 1

)T
, then (16) has

non-zero solution only if the following Fredholm alternative condition is

satisfied: 〈(
v†c

1

)
,

(
φ1

φ2

)〉
= 0, (17)

where the inner product is defined as < a, b >= 1
ℓπ

∫ ℓπ
0
āT bdx. We obtain

(v̄†c + vc)
∂A(T2)

∂T2
= δC3A(T2) + C4A(T2)|A(T2)|2. (18)

For the Hopf bifurcation, we assume that each amplitude A(T2) in (18)

takes the form A(T2) = ze−iψT2 with z = p+ iq. Hence, we can obtain{
ṗ = −ψq + δ(Re{C5}p− Im{C5}q) + (Re{C6}p− Im{C6}q)(p2 + q2),

q̇ = ψq + δ(Re{C5}q − Im{C5}p) + (Re{C6}q − Im{C6}p)(p2 + q2),

(19)
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where

C5 =
C3

v̄†c + vc
, C6 =

C4

v̄†c + vc
.

Applying the transformations p = ρ cos θ and q = ρ sin θ, then (19) has the

form {
ρ̇ = ρ(δξ1 + ξ2ρ

2) +O(ρ4),

θ̇ = ψ +O(|δ|, ρ2),
(20)

where ξ1 = Re{C5} and ξ2 = Re{C6}.
We should mention that (20) is the amplitude equation of the Hopf

bifurcation bifurcation at the critical point γ = γH . The following result

addresses the direction of the Hopf bifurcation by utilizing this amplitude

equation.

Theorem 2. Suppose that 0 < α < 1 is satisfied.

(1) If ξ1ξ2 > 0, no Hopf bifurcation occurs;

(2) If ξ1ξ2 < 0, the Hopf bifurcation may occur. Specifically, there is

supercritical (resp. subcritical) Hopf bifurcation when ξ1 > 0 (resp. ξ1 < 0)

and the bifurcating solution is stable (resp. unstable).

Proof. The amplitude equation (20) admits a unique solution ρ =
√

−δξ1
ξ2

,

which exists only when ξ1ξ2 < 0 is satisfied owing to δ > 0. On the other

hand, one claims that −2δξ1 is the unique eigenvalue of the amplitude

equation (20). Keeping these in mind, the proof is completed.

Remark 1. We can obtain the precise expression of the amplitude A(T2)

in (18).

A(T2) = ze−iψT2 = (p+ iq)e−iψT2 = (ρ cos θ + iρ sin θ)e−iψT2 = ρei(θ−ψT2),

where ψ =
√

α
1−α > 0. Note that T0 = t, T2 = ε2t, so one gets

A(T2) = ρei(θ−ψT2) = ρei(θ−ε
2ψt).

The following pictures demonstrate that the influence of the amplitude



615

A(T2) on the parameter ε. Specifically, we fix ρ = 0.01, α = 0.38, θ ∈
[0, 2π] and t ∈ [0, 500]. The numerical results indicate that the oscillation

frequency of the amplitude A(T2) increases with the parameter ε within a

fixed time interval, as depicted in Fig. 1.
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Figure 1. The oscillation frequency of the amplitude A(T2) against ε.

3 Turing instability

3.1 Turing instability of the equilibrium

Considering the local linearized system of the enzyme-catalyzed model (1):

∂

∂t

(
u

v

)
= D

(
u

v

)
+ J0

(
u

v

)
, (21)

where

D =

(
d1∆ 0

0 d2∆

)
, J0 =

(
α
α−1 α− 1
γα
1−α γα(1− α)

)
.
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Considering the eigenvalue problem
d1ζxx +

α
α−1ζ + (α− 1)η = λnζ,

d2ηxx +
γα
1−αζ + γα(1− α)η = λnη,

∂ζ
∂ν = ∂η

∂ν = 0,

(22)

where λn denote the eigenvalues of the problem (22) for n ∈ N0 = {0, 1, 2, · · · }.
Moreover, ζ(x) and η(x) are eigenfunctions of (22) and they have the form:

ζ(x) =

∞∑
n=0

an cos
nx

ℓ
, η(x) =

∞∑
n=0

bn cos
nx

ℓ
,

where an and bn are set to be non-zero constants. By using (22), one has

∞∑
n=0

(Jn − λnI)

(
an

bn

)
cos

nx

ℓ
= 0,

where

Jn =

(
α
α−1 − d1

n2

ℓ2 α− 1
γα
1−α γα(1− α)− d2

n2

ℓ2

)
.

In this fashion, one obtains the characteristic equation as follows:

λ2n − Tn(γ, d2)λn +Dn(γ, d2) = 0, for n ∈ N0 = {0, 1, 2, · · ·}, (23)

where{
Tn(γ, d2) = −(d1 + d2)

n2

ℓ2 + α
α−1 + γα(1− α),

Dn(γ, d2) = d1d2
n4

ℓ4 −
[

α
α−1d2 + γα(1− α)d1

]
n2

ℓ2 + γα(1− α),

To obtain the occurrence conditions of the Turing instability of the

enzyme-catalyzedsystem (1), one requires the unique equilibrium E∗ is

locally asymptotically stable for spatially homogeneous local system (2).

To that end, in light of Theorem 1, there must holds

0 < γ < γH , γH =
1

(1− α)2
. (24)
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Remember this restriction, we discuss the following four cases by consid-

ering the ranges of the diffusion rates d1 and d2 in (1).

Case 1. d1 = d2 = d.

If d1 = d2 = d holds, we can get Tn(γ, d2) = −2dn
2

ℓ2 +
α
α−1+γα(1−α) <

0 and Dn(γ, d2) = d2 n
4

ℓ4 − d
[

α
α−1 + γα(1− α)

]
n2

ℓ2 + γα(1 − α). Because

Tn(γ, d2) < 0 for any n ∈ N0, the stability of E∗ uniquely determined

by the sign of Dn(γ, d2). In precise, if Dn(γ, d2) > 0, then all real parts

of eigenvalues of (23) are negative. This implies that the unique equilib-

rium E∗ is locally asymptotically stable. If Dn(γ, d2) < 0, then at least

one eigenvalue of (23) with positive real part. For this case, the unique

equilibrium E∗ is unstable in Turing sense. Recalling (24), one yields
α
α−1 + γα(1 − α) = − α

1−α + γα(1 − α) < − α
1−α + γHα(1 − α) = 0.

Accordingly, for any n ∈ N0, we can infer that Dn(γ, d2) = d2 n
4

ℓ4 −
d
[

α
α−1 + γα(1− α)

]
n2

ℓ2 + γα(1 − α) > d2 n
4

ℓ4 + γα(1 − α) > 0. Hence,

E∗ is locally asymptotically stable. Of course, there is no Turing instabil-

ity.

Case 2. 0 < d1 < d2.

If 0 < d1 < d2 is satisfied, we can first immediately obtain Tn(γ, d2) =

−(d1+d2)
n2

ℓ2 + α
α−1 +γα(1−α) < 0 for any n ∈ N0. Utilizing (24), one has

α
α−1d2+γα(1−α)d1 <

α
α−1d2+γα(1−α)d2 <

α
α−1d2+γHα(1−α)d2 = 0.

So, we can deduce that Dn(γ, d2) = d1d2
n4

ℓ4 −
[

α
α−1d2 + γα(1− α)d1

]
n2

ℓ2 +

γα(1− α) > d1d2
n4

ℓ4 + γα(1− α) > 0. Hence, E∗ is locally asymptotically

stable and there is no Turing instability.

Case 3. 0 < d1 ≤ 1
γ(1−α)2 d2.

Obviously, there holds Tn(γ, d2) = −(d1+d2)
n2

ℓ2 + α
α−1 +γα(1−α) < 0

for any n ∈ N0. Now, if 0 < d1 ≤ 1
γ(1−α)2 d2 is valid, we can immediately

obtain a fact that α
α−1d2 + γα(1 − α)d1 ≤ 0. As a consequence, one has

Dn(γ, d2) = d1d2
n4

ℓ4 −
[

α
α−1d2 + γα(1− α)d1

]
n2

ℓ2 + γα(1− α) ≥ d1d2
n4

ℓ4 +

γα(1− α) > 0 for any n ∈ N0. For this case, E∗ is locally asymptotically

stable and there is no Turing instability.

Case 4. d1 >
1

γ(1−α)2 d2.

If d1 >
1

γ(1−α)2 d2 is true, we know that α
α−1d2 + γα(1 − α)d1 > 0.
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Denote by z := n2/ℓ2 and let

f(z) := d1d2z
2 −

[
α

α− 1
d2 + γα(1− α)d1

]
z + γα(1− α), z > 0.

Clearly, we have Dn(γ, d2) = f(z) with z = n2/ℓ2. In what follows, let us

discuss the sign of f(z) for z > 0. Considering minz>0 f(z) = 0, this is

minz>0 f(z) = − χ(d2)
4d1d2

= 0, where

χ(d2) :=
α2

(α− 1)2
d22 − 2γα(2− α)d1d2 + γ2α2(1− α)2d21.

Accordingly, we can obtain the root’s existence criterion say ∆χ(d2) of

χ(d2) = 0 is ∆χ(d2) = 16γ2α2d21(1−α). It is noticed that we have restricted

0 < α < 1 for the existence of E∗, one has ∆χ(d2) = 16γ2α2d21(1− α) > 0.

It follows that χ(d2) = 0 has two different positive real roots, say d
(1)
2 and

d
(2)
2 , where

d
(1)
2 =

γ(2− α)(α− 1)2 − 2γ(α− 1)2
√
1− α

α
d1 (25)

and

d
(2)
2 =

γ(2− α)(α− 1)2 + 2γ(α− 1)2
√
1− α

α
d1.

Note that d1 >
1

γ(1−α)2 d2, namely, 0 < d2 < γ(1 − α)2d1, we can verify

that

d
(1)
2 − γ(1− α)2d1 =

2γ(1− α)(α− 1)2 − 2γ(α− 1)2
√
1− α

α
d1 < 0

and

d
(2)
2 − γ(1− α)2d1 =

2γ(1− α)(α− 1)2 + 2γ(α− 1)2
√
1− α

α
d1 > 0.

Therefore, one obtains d
(1)
2 < γ(1 − α)2d1 < d

(2)
2 . Keeping this in mind,

it is concluded that χ(d2) > 0 as d2 ∈
(
0, d

(1)
2

)
and χ(d2) ≤ 0 when d2 ∈[

d
(1)
2 , γ(1− α)2d1

)
. Recalling that minz>0 f(z) = − χ(d2)

4d1d2
and Dn(γ, d2) =



619

f(z) with z = n2/ℓ2, we know that the unique positive equilibrium E∗ is

locally asymptotically stable when d2 ∈
[
d
(1)
2 , γ(1− α)2d1

)
and it becomes

unstable and there is Turing instability when d2 ∈
(
0, d

(1)
2

)
. In the se-

quel, let us determine the critical wave number, say nT , for the Turing

instability. Using the critical condition minz>0 f(z) = 0 again and letting

d2 = d
(1)
2 , we can get

n2T =
αℓ2

d1

√
(2− α)(1− α)− 2(1− α)

√
1− α

> 0. (26)

We summarize these results as follows.

Theorem 3. (Turing instability of equilibrium) Assume that 0 < γ <
1

(1−α)2 .

(1) If 0 < α < 1 and 0 < d1 ≤ d2, then E∗ is locally asymptotically

stable and no Turing instability occurs;

(2) If 0 < α < 1 and 0 < d1 ≤ 1
γ(1−α)2 d2, then E

∗ is locally asymptot-

ically stable and no Turing instability occurs;

(3) If 0 < α < 1 and d2 ∈
[
d
(1)
2 , γ(1− α)2d1

)
, then E∗ is locally

asymptotically stable. However, if 0 < α < 1 and d2 ∈
(
0, d

(1)
2

)
, then E∗

becomes unstable and there is Turing instability with the critical number

n = nT , where d
(1)
2 and nT have been defined in (25) and (26), respectively.

3.2 Turing instability of bifurcating periodic solution

Utilizing part (3) of Theorem 1, we deduce that the Hopf bifurcation occurs

when γ = γH = 1
(1−α)2 , leading to the emergence of the periodic solution.

Now, we want to explore the Turing instability of the periodic solution in

the presence of diffusion. When γ = γH = 1
(1−α)2 , we can rewrite system

(1) as follows:
∂u
∂t = d1∆u+ α− uv, x ∈ Ω, t > 0,
∂v
∂t = d2∆v +

v
(1−α)2

(
u− 1

v+1

)
, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.
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As we have discussed before, at the Hopf bifurcation critical point γ =

γH = 1/(1−α)2, the corresponding characteristic equation takes the form:

λ2n − Tn(γH , d2)λn +Dn(γH , d2) = 0, for n ∈ N0 = {0, 1, 2, · · ·}, (27)

where {
Tn(γH , d2) = −(d1 + d2)

n2

ℓ2 ,

Dn(γH , d2) = d1d2
n4

ℓ4 − α
1−α (d1 − d2)

n2

ℓ2 + α
1−α .

We also have two cases to discuss the stability of the periodic solution.

Case 1. 0 < d1 ≤ d2.

If 0 < d1 ≤ d2 is satisfied, clearly, we have Tn(γH , d2) = −(d1+d2)
n2

ℓ2 <

0 and Dn(γH , d2) = d1d2
n4

ℓ4 − α
1−α (d1 − d2)

n2

ℓ2 + α
1−α ≥ d1d2

n4

ℓ4 + α
1−α > 0

for any n ∈ N0\{0}. This means that the periodic solution resulting from

the Hopf bifurcation is stable and there is no Turing instability.

Case 2. d1 > d2.

If d1 > d2 is true, we denote by p := n2/ℓ2 and let

f(p) := d1d2p
2 − α

1− α
(d1 − d2)p+

α

1− α
, p > 0.

That is to say, Dn(γH , d2) = f(p) with p = n2/ℓ2. In a similar fash-

ion, we should discuss the sign of f(p) for p > 0 to obtain the existence

conditions of the Turing instability of the periodic solution. Considering

minp>0 f(p) = 0, this is minp>0 f(p) = − τ(d2)
4d1d2

= 0, where

τ(d2) := αd22 − 2(2− α)d1d2 + αd21.

It is easy to yield the root’s existence criterion say ∆τ(d2) of τ(d2) = 0 is

∆τ(d2) = 16d21(1 − α). Obviously, ∆τ(d2) = 16d21(1 − α) > 0 is valid since

0 < α < 1. As such, τ(d2) = 0 enjoys two different positive real solutions,

say d∗2 and d◦2, where

d∗2 =
2− α− 2

√
1− α

α
d1, d◦2 =

2− α+ 2
√
1− α

α
d1. (28)

It is easy to check that d∗2 < d1 and d◦2 > d1 for 0 < α < 1. However,
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one requires d1 > d2, so there must holds τ(d2) > 0 as d2 ∈ (0, d∗2) and

τ(d2) ≤ 0 when d2 ∈ [d∗2, d1). It is noticed that minp>0 f(p) = − τ(d2)
4d1d2

and

Dn(γH , d2) = f(p) with p = n2/ℓ2, we can infer that the periodic solution

keeps its stability when d2 ∈ [d∗2, d1) and it becomes unstable (in Turing

sense) when d2 ∈ (0, d∗2). In the sequel, let us determine the critical wave

number, say nT∗ , for the Turing instability of the periodic solution. By

employing minp>0 f(p) = 0 again, we get

n2T∗ =
αℓ2

d1

√
(2− α)(1− α)− 2(1− α)

√
(1− α)

> 0. (29)

In conclusion, we can have the following.

Theorem 4. (Turing instability of bifurcating periodic solution) Suppose

that 0 < α < 1 and γ = γH = 1/(1− α)2 are satisfied.

(1) The periodic solution resulting from the Hopf bifurcation is stable

when 0 < d1 ≤ d2;

(2) The periodic solution bifurcating from the Hopf bifurcation is stable

when d2 ∈ [d∗2, d1), whereas for d2 ∈ (0, d∗2), it is Turing unstable with the

wave number n = nT∗ ;

(3) The enzyme-catalyzed system (1) undergoes the Hopf-Turing bifur-

cation when (γ, d2) = (γH , d
∗
2), where d

∗
2 and n = nT∗ can be found in (28)

and (29), respectively.

Proof. Conclusions (1) and (2) follow directly from the previous analysis

and computations. Benefitting from (3) of Theorem 1, one claims that the

local system of (1) exhibits the Hopf bifurcation (0-mode). By employing

part (3) of Theorem 3, we know that enzyme-catalyzed system (1) expe-

riences the Turing bifurcation when d2 = d
(1)
2 and d

(1)
2 = d∗2 as γ = γH .

On the other hand, we shall perform the transversality condition of the

Hopf-Turing bifurcation. To do so, we differentiate the control parameter

d2 of (23), one has

dRe{λn}
dd2

∣∣∣
γ=γH ,d2=d∗2

= −
d1

n2

ℓ2 + α
1−α

d1 + d∗2
< 0.
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Combining this condition with d∗2 = d
(1)
2 as γ = γH . We end the proof.
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Figure 2. The equilibrium E∗ = (0.5500, 0.8182) is locally asymptoti-
cally stable for system (2), where α = 0.45 and γ = 2.5.

4 Numerical simulation

In this section, we perform numerical simulations to validate the theoretical

results established in Theorems 1-4.

Firstly, we are able to fix the parameter α = 0.45, yielding the equi-

librium E∗ = (0.5500, 0.8182) and the threshold of the Hopf bifurcation

γH = 1
(1−α)2 = 3.3058. Now, we select the control parameter 2.5 = γ <

γH . Therefore, we can observe that E∗ = (0.5500, 0.8182) is locally asymp-

totically stable for system (2), as shown in Fig. 2. This figure confirms

the effectiveness of Theorem 1.
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Figure 3. The stable periodic solution emerges in (2) owing to the su-
percritical Hopf bifurcation, where α = 0.45 and γ = 3.3058.

Theorem 2 addresses the direction issue of the Hopf bifurcation. In

fact, we particularly focus on the supercritical type of Hopf bifurcation,
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as it leads to the stable bifurcating periodic solution. To achieve that, let

us continuous choose α = 0.45, one can yield E∗ = (0.5500, 0.8182) and

the critical point of the Hopf bifurcation is γH = 1
(1−α)2 = 3.3058. Addi-

tionally, one obtains C5 = 0.1238 + 0.1368i and C6 = −1.0873 − 2.4374i.

Hence, we get ξ1 = Re{C5} = 0.1238 > 0 and ξ2 = Re{C6} = −1.0873.

According to part (2) of Theorem 2, supercritical Hopf bifurcation emerges,

resulting in the stable periodic solution. This theoretical prediction has

been checked by Fig. 3.

Figure 4. The equilibrium E∗ = (0.5, 1.0) is stable when ℓ = 3, α =
0.5, γ = 2 and d1 = d2 = 0.75.

In what follows, we are ready to confirm the theoretical conclusions

given in Theorem 3 and Theorem 4, respectively. To this end, we shall

fix ℓ = 3, α = 0.5, γ = 2 and d1 = d2 = 0.75. Then our numerical

result shows that E∗ = (0.5, 1.0) is stable, see Fig. 4 for details. Hence,

part (1) of Theorem 3 is true. Now, one chooses ℓ = 3, α = 0.5, γ = 2 and

d2 = 0.5. Accordingly, we get 1
γ(1−α)2 d2 = 1. To fulfill part (2) of Theorem

3, we take the diffusion parameter d1 = 0.85. Then our numerical result

demonstrates that E∗ = (0, 5, 1.0) is stable, as depicted in Fig. 5. That

is to say, part (2) of Theorem 3 is true. To proceed with our numerical

experiments, we take ℓ = 3, α = 0.5, γ = 2 and d1 = 0.85. In this fashion,

one obtains

d
(1)
2 =

γ(2− α)(α− 1)2 − 2γ(α− 1)2
√
1− α

α
d1 = 0.0729.

If we keep the diffusion coefficient 0.02 = d2 < d
(1)
2 , then part (3) of The-

orem 3 is satisfied. For this case, the enzyme-catalyzed system (1) suffers
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from the Turing instability at the equilibrium E∗ = (0.5, 1.0). We can

confirm this judgment, as shown in Fig. 6. It is clear that the equilibrium

E∗ = (0.5, 1.0) becomes unstable because the existence of Turing insta-

bility. The corresponding phase trajectory diagram of Fig. 6 has been

plotted in Fig. 7. It is revealed that enzyme-catalyzed system (1) admits

spatial oscillation.

Figure 5. The equilibrium E∗ = (0.5, 1.0) is stable when ℓ = 3, α =
0.5, γ = 2, d1 = 0.85 and d2 = 0.5.

Figure 6. The equilibrium E∗ = (0.5, 1.0) becomes unstable because
the existence of Turing instability, where ℓ = 3, α = 0.5, γ =
2, d1 = 0.85 and d2 = 0.02.
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Figure 7. The corresponding phase trajectory diagram of Fig. 6. It
shows that enzyme-catalyzed system (2) admits spatial oscil-
lation, where ℓ = 3, α = 0.5, γ = 2, d1 = 0.85 and d2 = 0.02.
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It is noticed that Hopf bifurcation occurs when the parameter γ reaches

its critical value γH , we also want to explore the bifurcating solution of

the enzyme-catalyzed system (1) at this point. To that end, one takes

α = 0.45, which yields γH = 1
(1−α)2 = 3.3058. Meanwhile, we take γ =

3.3058, d1 = 1.65, then we can compute the critical diffusion coefficient

d∗2 =
2− α− 2

√
1− α

α
d1 = 0.2448.

By selecting 0.85 = d2, which is greater than d∗2. Numerical result demon-

strates the emergence of the bifurcating solution in the enzyme-catalyzed

system (1). Specifically, this solution represents the stable spatially ho-

mogeneous periodic solution, as illustrated in Fig. 8. The corresponding

phase trajectory diagram of Fig. 8 has been presented in Fig. 9. We can

observe that enzyme-catalyzed system (1) exhibits temporal oscillation.

Figure 8. The enzyme-catalyzed system (1) admits the spatially homo-
geneous periodic solution, where α = 0.45, γ = 3.3058, d1 =
1.65 and d2 = 0.85.
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Figure 9. The corresponding phase trajectory diagram of Fig. 8. It
shows enzyme-catalyzed system (2) admits temporal oscilla-
tion, where α = 0.45, γ = 3.3058, d1 = 1.65 and d2 = 0.85.
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As clearly demonstrated in Fig. 8, the system exhibits a spatially

homogeneous periodic solution resulting from the Hopf bifurcation. Our

subsequent numerical investigation reveals that this spatially homogeneous

periodic solution transitions into a spatially nonhomogeneous periodic so-

lution due to the emergence of Turing instability. Specifically, maintaining

the parameters α = 0.45, γ = 3.3058, d1 = 1.65 as in Fig. 8, we select

0.233 = d2 which is below the critical value d∗2 = 0.2448. This parameter

choice leads to the formation of a spatially nonhomogeneous periodic so-

lution in the enzyme-catalyzed system (1), as illustrated in Fig. 10. The

corresponding phase trajectory diagram is presented in Fig. 11, confirming

that the enzyme-catalyzed system (1) exhibits spatiotemporal oscillations.

The selected parameter pair (γ, d2) = (3.3058, 0.233) lies in close prox-

imity to the Hopf-Turing bifurcation critical point (γ, d2) = (γH , d
∗
2) =

(3.3058, 0.2448). This strategic parameter selection enables us to observe

the transition between different dynamical regimes. The numerical results

presented in Fig. 8 and Fig. 10 provide strong evidence supporting the

validity of statement (2) in Theorem 4.

Figure 10. The enzyme-catalyzed system (1) admits the spatially
nonhomogeneous periodic solution, where α = 0.45, γ =
3.3058, d1 = 1.65 and d2 = 0.233.
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Figure 11. The corresponding phase trajectory diagram of Fig. 10.
It is shown that enzyme-catalyzed system (1) admits spa-
tiotemporal oscillation, where α = 0.45, γ = 3.3058, d1 =
1.65 and d2 = 0.233.

Spatial Scale Effects on Reaction Oscillations. The influence of spatial

scale on reaction oscillations is systematically investigated for the enzyme-

catalyzed system (1). We consider the system defined on the domain Ω =

(0, ℓπ) ⊂ R with ℓ > 0 represents the spatial scale parameter. Through

numerical simulations with fixed parameters α = 0.38, γ = 2.6, d1 = 1.65

and d2 = 0.173, we examine the system’s oscillatory behavior across dif-

ferent spatial scales. When taking spatial scales ℓ = 20, 30, 40, the system

exhibits stable spatial oscillations, as illustrated in panels (a)-(c) of Fig.

12. However, when extending the spatial scale to ℓ = 50, a notable transi-

tion occurs: the system develops bistable spatial oscillations characterized

by distinct amplitudes, shown in panel (d) of Fig. 12. This bistable be-

havior persists at larger spatial scales, as demonstrated in panels (e) and

(f) for ℓ = 60 and ℓ = 70, respectively. These results clearly demonstrate

that the spatial scale significantly influences the reaction oscillations in

the enzyme-catalyzed system (1), particularly through the emergence of

amplitude-dependent bistable oscillations.
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(c) Ω = (0, 40π)
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(d) Ω = (0, 50π)
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Figure 12. Spatial oscillations of the enzyme-catalyzed system (1) with
different scales, where α = 0.38, γ = 2.6, d1 = 1.65 and
d2 = 0.173.

Figure 13. Spatial oscillation of the enzyme-catalyzed system (1) in a
two-dimensional domain Ω = (0, 30)× (0, 30).
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5 Conclusions

In this study, we investigate the spatiotemporal oscillation behavior of an

enzyme-catalyzed system under no-flux boundary conditions. We first an-

alyze the stability of the equilibrium and establish the existence of Hopf

bifurcation for the diffusion-free system, as detailed in Theorem 1. Since

periodic solutions emerge at the Hopf bifurcation point, we derive a sta-

bility criterion for these solutions using the multiple time scales (MTS)

method. This approach allows us to obtain a concise stability condition,

as presented in Theorem 2. When diffusion is introduced, we rigorously

analyze the existence of Turing instability, this result is important to find

the spatial oscillation of the system. Specifically, we prove the Turing in-

stabilities for equilibrium and bifurcating periodic solution arising from

the Hopf bifurcation, as outlined in Theorem 3 and Theorem 4, respec-

tively. These theoretical results confirm the potential for spatiotemporal

oscillations in the system. Indeed, numerical simulations reveal distinct

oscillation behaviors, including purely temporal, purely spatial, and spa-

tiotemporal oscillations, as illustrated by the snapshot figures in Section 4.

In summary, our findings demonstrate that this enzyme-catalyzed model

exhibits temporal, spatial, and spatiotemporal oscillations due to the pres-

ence of Hopf bifurcation, Turing instability, and Turing-Hopf bifurcation,

respectively. We believe that the findings presented herein provide valuable

insights into the intricate spatiotemporal dynamics governing the enzyme-

catalyzed system. When extending the spatial dimension to two dimen-

sions, for example, setting Ω = (0, 30) × (0, 30), the enzyme-catalyzed

system (1) exhibits significantly more complex spatial oscillation patterns,

as demonstrated in Fig. 13. These higher-dimensional phenomena present

intriguing dynamical behaviors that warrant thorough investigation, which

we plan to address comprehensively in our future research endeavors.
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