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Abstract

This study involves discretizing a continuous-time glycolysis mo-
del to derive its discrete-time equivalent and investigates its dy-
namics using normal form theory and bifurcation analysis. The
discretization employs the forward Euler’s scheme, and through rig-
orous analysis, we delve into codimension two bifurcations, with a
specific focus on the 1:2, 1:3, and 1:4 strong resonances. The 1:2
resonance unveils intricate limit-cycle patterns, the 1:3 resonance
reveals intriguing periodic solutions, and the 1:4 resonance show-
cases co-existing periodic and chaotic regimes. Our research sheds
light on the complex behaviors of the discrete glycolysis model and
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provides valuable insights into its responses under varying paramet-
ric values. Additionally, this study demonstrates the applicability
of normal form theory and bifurcation analysis in understanding
the dynamics of biochemical systems, enriching our comprehension
of the glycolysis process and its discrete dynamics. Moreover, we
present numerical simulations to substantiate and validate our the-
oretical investigations. These simulations offer practical evidence
and reinforce the findings obtained from the analytical study.

1 Introduction

Glycolysis is the metabolic process that converts glucose into pyruvate.

Typically, two molecules of pyruvate are produced for each molecule of glu-

cose consumed during this process. The utilization of pyruvate molecules

culminates in the completion of the Krebs cycle. In essence, glycolysis is a

vital biochemical process that takes place in living cells, enabling them to

extract energy by utilizing glucose as a fuel source, This biochemical pro-

cess lends itself to modeling through a set of differential equations, which

captures its intricate dynamics and behavior [1, 2]:dx
dt = ay − x+ x2y,

dy
dt = b− ay − x2y.

(1)

Where x and y symbolize the dimensionless concentrations of adenosine

diphosphate (ADP) and fructose-6-phosphate (F6P), respectively, and a >

0, b > 0 represent kinetic parameters. For particular combinations of

these kinetic parameters, the biochemical process exhibits a consistent

and stable oscillatory behavior, characterized by a repeating pattern over

time for system (1). Furthermore, the presence of this stable limit cycle

ensures that the biochemical reaction reaches its desired state or stage [3].

For more comprehensive information regarding the glycolysis process and

its mathematical modeling, we recommend referring to the sources [4–7].

Furthermore, references [8–11] delve into the qualitative properties and

conduct bifurcation analysis of glycolysis models. Mickens [14] developed

a nonstandard difference scheme for the system (1), demonstrating the

positivity of solutions and establishing the presence of limit-cycle behavior
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in the discrete-time model.

Notice that, the use of a discrete-time glycolysis model is significant

due to its efficiency in offering valuable insights into the dynamic behav-

ior of the glycolysis pathway.. By discretizing the continuous-time model,

researchers gain the ability to analyze the system’s behavior under diverse

conditions, parameter values, and control strategies. This discrete-time

approach facilitates the application of bifurcation analysis techniques, aid-

ing in the identification of critical points, limit cycles, and chaos, thereby

enhancing our understanding of the glycolysis process. Furthermore, the

discretization process enables the exploration of stability properties and

the development of control strategies to influence the system’s behavior.

The utility of this discrete approach extends beyond biological insights

into glycolysis, finding practical applications in engineering domains such

as biotechnological processes and metabolic engineering. The ability to

control and optimize glycolysis is essential for various industrial and med-

ical applications. Ultimately, a discrete-time glycolysis model serves as a

valuable tool to comprehend the dynamics of this pivotal metabolic path-

way and its potential in driving advancements in both biological and en-

gineering realms [15,16,21].

Subsequently, employing the forward Euler’s scheme yields the follow-

ing discrete-time version of (1):xn+1 = xn + h
(
ayn − xn + x2

nyn
)
,

yn+1 = yn + h
(
b− ayn − x2

nyn
)
.

(2)

where, h represents the step size used in Euler’s scheme. For similar dis-

cretization methods, we suggest referring to sources [12–17].

In [21], Din explored the local stability, period-doubling bifurcation,

and chaos control of the discretized version of system (1) using the forward

Euler’s scheme. The study investigated the dynamical behavior of the

discrete glycolysis model and examined the impact of varying parameters

on stability and bifurcations.

The novel contributions of this paper are outlined as follows:

• The study explores multi-parameter bifurcation phenomena in the
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context of a discrete-time glycolysis model. Investigating the 1:2,

1:3, and 1:4 strong resonance conditions reveals intricate and non-

trivial dynamics, such as limit cycles and chaos, offering a deeper

understanding of how the glycolysis pathway behaves under these

specific resonance states.

• Understanding how discrete dynamics impact the glycolysis process

is a novelty in itself. By discretizing the continuous-time model, re-

searchers can gain insights into how discrete time steps influence the

system’s stability and behavior, which is crucial for comprehending

real-world biochemical processes with inherent discrete nature.

• Studying the coexistence of different resonance regimes provides valu-

able insights into the robustness and sensitivity of the glycolysis

model under varying parameter values. This knowledge is essen-

tial in understanding how the pathway responds to changes in the

environment and internal conditions.

• The research bridges the gap between the fields of nonlinear dynam-

ics, mathematical biology, and biochemical engineering. The insights

gained from studying discrete-time glycolysis models have implica-

tions beyond the specific pathway, potentially benefiting other areas

of research involving dynamical systems and complex networks.

The rest of this paper is structured as follows:

Stability analysis of system 2 is discussed in section 1. Codimension-

two bifurcations(that is, 1:2, 1:3 and 1:4 strong resonances) are studied in

Section 3 and in Section 4 numerical simulations are presented.

2 Stability analysis

It is easy to see that system Eq. 2 has unique positive fixed point E(x∗, y∗)

= (b, b
a+b2 ). Subsequently, we examine the local stability analysis of

E(x∗, y∗) = (b, b
a+b2 ) of system Eq. 2. To investigate the stability, we
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compute the Jacobian matrix FJ of system (2) at E(x∗, y∗) as follow:

FJ(E) =

(
h(b2−a)
a+b2 + 1 h

(
a+ b2

)
− 2b2h

a+b2 1− h
(
a+ b2

) ) .

The characteristic polynomial of FJ at E(x∗, y∗) is given by:

F(ς) = ς2 − τ1(E)ς + τ2(E), (3)

where

τ1(E) = −
(
h
(
a+ b2

))
+

h
(
b2 − a

)
a+ b2

+ 2,

and

τ2(E) = h2
(
a+ b2

)
−

h
(
(2a− 1)b2 + a(a+ 1) + b4

)
a+ b2

+ 1.

The following Lemma is used to explore the stability of fixed point.

Lemma 1. Let F(ς) = ς2 − τ1(E)ς + τ2(E), and F(1) > 0. Moreover, ς1,

varsigma2 are root of 3, then:

(i) |ς1| < 1 and |ς2| < 1 if and only if F(−1) > 0 and τ2(E) < 1;

(ii) |ς1| < 1 and |ς2| > 1 or (|ς1| > 1 and |ς2 < |1)if and only if F(−1) < 0;

(iii) |ς1| > 1 and |ς2| > 1 if and only if F(−1) > 0 and τ2(E) > 1;

(iv) ς1 = −1 and |ς2| ̸= 1 if and only if F(−1) = 0 and τ1(E) ̸= 0, 2;

(v) ς1 and ς2 are complex and |ς1| = 1 and |ς2| = 1 if and only if τ1(E)
2 −

4τ2(E) < 0 and τ2(E) = 1.

(vi) ς1 = −1 and ς2 = −1 if and only if τ1(E) = −2 and τ2(E) = 1;

(vii) ς1 and ς2 are complex and ς1,2 = − 1
2 ± ι

√
3
2 if and only if τ1(E) = −1

and τ2(E) = 1;

(viii) ς1 and ς2 are complex and ς1,2 = ±ι if and only if τ1(E) = 0 and

τ2(E) = 1;

As ς1 and ς2 are eigenvalue of (3), we have the following Topological

type results. The fixed point E(x∗, y∗) is known as sink if |ς1| < 1 and

|ς2| < 1 thus the sink is locally asymptotic stable. The fixed point E(x∗, y∗)

is known as source if |ς1| > 1 and |ς2| > 1, thus source is always unstable.
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The fixed point E(x∗, y∗) is known as saddle point if |ς1| < 1 and |ς2| > 1

or (|ς1| > 1 and |ς2| < 1) and the fixed point E(x∗, y∗) is known as non-

hyperbolic fixed point either |ς1| = 1 and |ς2| = 1.

Thus, by applying Lemma 1, we study the local stability of positive

equilibrium point of system (2) by stating the following proposition.

Proposition 1. The positive equilibrium point E(x∗, y∗) of system (2)

satisfies the following results.

(i) The positive fixed point E(x∗, y∗) is sink if and only if:

h2
(
a+ b2

)
−

2h
(
(2a− 1)b2 + a(a+ 1) + b4

)
a+ b2

+ 4 > 0,

and

h2
(
a+ b2

)
−

h
(
(2a− 1)b2 + a(a+ 1) + b4

)
a+ b2

< 0.

(ii) The positive fixed point E(x∗, y∗) is saddle point if and only if:

h2
(
a+ b2

)
−

2h
(
(2a− 1)b2 + a(a+ 1) + b4

)
a+ b2

+ 4 < 0.

(iii) The positive fixed point E(x∗, y∗) is source if and only if:

h2
(
a+ b2

)
−

2h
(
(2a− 1)b2 + a(a+ 1) + b4

)
a+ b2

+ 4 > 0,

and

h2
(
a+ b2

)
−

h
(
(2a− 1)b2 + a(a+ 1) + b4

)
a+ b2

> 0.

(iv) The positive fixed point E(x∗, y∗) is non-hyperbolic if and only if:


h =

(a+b2)
√

4a2

(a+b2)2
+2(a−3)b2− 4a

a+b2
+(a−1)2+b4+(a+b2)

2
+a−b2

(a+b2)2
,

and

2−
(
h
(
a+ b2

))
+

h(b2−a)
a+b2 ̸= 0, 2.

(4)
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0r 
h = a−b2

(a+b2)2
+ 1,

and(
2−

(
h
(
a+ b2

))
+

h(b2−a)
a+b2

)2

< 4.

(5)

or 
h = 4√

4
√
2b+1+1

,

a = 1
2

(
2
(√

2− b
)
b+

√
4
√
2b+ 1 + 1

)
.

(6)

or a =
3(h2+3h−3)

2h4 ,

b =

√
3
2

√
h2−3h+3

h2 .
(7)

or a = h2+2h−2
h4 ,

b =
√
h2−2h+2

h2 .
(8)

Moreover, for h = 0.915, a ∈ [0.001, 4], b ∈ [0.001, 4], the topological

classification for system (2) is shown in Figure 1.

3 Codimension-two bifurcations

In this section we study the codimension-two bifurcation. It is easy to

see that system (2) has a unique positive equilibrium point (x∗, y∗) =

(b, b
a+b2 ). For an in-depth examination of local stability, co-dimension-1

bifurcation, and chaos control of (2), refer to [21]. In particular, we inves-

tigate the existence of 1:2, 1:3 and 1:4 resonances by implementing normal

form theory and theory of bifurcation. The following curves identify the

occurrence of these resonance points:
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R2 :
h
(
b2 − a

)
a+ b2

− h
(
a+ b2

)
= −4,

R3 :
h
(
b2 − a

)
a+ b2

− h
(
a+ b2

)
= −3,

R4 :
h
(
b2 − a

)
a+ b2

− h
(
a+ b2

)
= −2,

and

NS : h2
(
a+ b2

)
−

h
(
(2a− 1)b2 + a(a+ 1) + b4

)
a+ b2

= 0.

Then, it is easy to observe that NS∩R2, NS∩R3 and NS∩R4 are known

as 1:2 ,1:3 and 1:4 resonance points, respectively. Moreover, for h = 0.915,

a ∈ [0.001, 4], b ∈ [0.001, 4], the topological classification for system (2)

is shown in Figure 1.

Figure 1. Topological classification for system (2).

3.1 1:2 strong resonance

This subsection delves with the investigation of 1:2 strong resonance for

system (2) at its positive equilibrium point. For this, h and a are chosen to

be bifurcation parameters. The Jacobian matrix of system (2) computed at

positive equilibrium has eigenvalue -1 with multiplicity two if the following

conditions holds true:
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h(b2−a)
a+b2 − h

(
a+ b2

)
= −4

Det : h2
(
a+ b2

)
− h((2a−1)b2+a(a+1)+b4)

a+b2 = 0.
(9)

Solving system (9) for h and a yields the following solution (h0, a0):

h0 =
4√

4
√
2b+ 1 + 1

,

and

a0 =
1

2

(
2
(√

2− b
)
b+

√
4
√
2b+ 1 + 1

)
.

Let xn = un + b, yn = vn + b
a+b2 , h = h0 + h̄ and a = a0 + ā, then the

system (2) can be transformed as follows:(
u

v

)
→

(
1 + µ11 −µ12

µ21 1 + µ22

)(
u

v

)
+

(
f1(u, v)

f2(u, v, )

)
, (10)

where h̄ << 1 and ā << 1 are small perturbations,

f1(u, v) = µ13uv + µ14u
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v)) = µ23uv + µ24u
2 +O

(
(|u|+ |v|)3

)
.

µ11 =
h
(
b2 − a

)
a+ b2

, µ12 = −h
(
a+ b2

)
, m21 = − 2b2h

a+ b2
,

µ22 = −h
(
a+ b2

)
, µ13 = 2bh, µ23 = −2bh,

µ14 =
bh

a+ b2
, µ24 = − bh

a+ b2
.

Next, we consider the following transformation:(
u

v

)
= T

(
w

z

)
, (11)
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where T is a nonsingular matrix given by

T =

(
µ12

µ11+2
µ12

(µ11+2)2

1 0

)
.

From (10) and (11), it follows that:

(
w

z

)
→

(
P10 − 1 P01 + 1

Q10 Q01 − 1

)(
w

z

)
+

(
f3(w, z, h, a)

f4(w, z, h, a)

)
, (12)

where

f3(w, z) = P20w
2 + P11wz + P02z

2, f4(w, z) = Q20w
2 +Q11wz +Q02z

2,

P10 =
µ12µ21

µ11 + 2
+ µ22 + 2, P01 =

µ12µ21

(µ11 + 2) 2
− 1,

P20 =
µ12 ((µ11 + 2)µ23 + µ12µ24)

(µ11 + 2) 2
,

P11 =
µ12 ((µ11 + 2)µ23 + 2µ12µ24)

(µ11 + 2) 3
, P02 =

µ2
12µ24

(µ11 + 2) 4
,

Q20 =

(
µ14 − µ23 −

µ12µ24

µ11 + 2

)
µ12 + (µ11 + 2)µ13,

Q11 =
µ13 (µ11 + 2) 2 + µ12 ((µ11 + 2) (2µ14 − µ23)− 2µ12µ24)

(µ11 + 2) 2
,

Q02 =
µ12µ14

(µ11 + 2) 2
, Q01 = µ11 −

µ12µ21

µ11 + 2
+ 2

Q10 = −µ12µ21 − µ11 (µ22 + 2)− 2 (µ22 + 2) .

Next, we assume the following invertible linear transformation:(
w

z

)
= M

(
w̄

z̄

)
, (13)
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where

M =

(
1 + P01(h, a) 0

−P01(h, a) 1

)
.

From (12) and (14), it follows that:(
w̄

z̄

)
→

(
−1 1

ω1 ω2 − 1

)(
w̄

z̄

)
+

(
f5(w̄, z̄, h, a)

f6(w̄, z̄, h, a)

)
, (14)

where

ω1(h, a) = Q10 + P01Q10 − P10Q01,

ω2(h, a) = P10 +Q01,

f5(w̄, z̄, α, r) = P̄20w̄
2 + P̄11w̄z̄ + P̄02z̄

2,

f6(w̄, z̄, α, r) = Q̄20w̄
2 + Q̄11w̄z̄ + Q̄02z̄

2,

Q̄20 =
(P01 + 1)

3
Q20 + P10 (P01 + 1)

[
P10 (Q02 − P11)

P01 + 1

+
+(P01 + 1) (P02 −Q11)

]
+ P02P

3
10

P01 + 1
,

P̄20 =
P02P

2
10

P01 + 1
− P01P11 + P01P20 + P20,

P̄11 = P11 −
2P02P10

P01 + 1
,

Q̄11 = P10

(
−2P02P10

P01 + 1
+ P11 − 2Q02

)
+ (P01 + 1)Q11,

P̄02 =
P02

P01 + 1
,

Q̄02 =
P02P10

P01 + 1
+Q02.

Taking into account ω1 and ω2, we define the following matrix:

ζ(h0, a0) =

(
∂ω1

∂h (h0, r0)
∂ω1

∂a (h0, a0)
∂ω2

∂h (h0, r0)
∂ωω2

∂a (h0, a0)

)
.
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Then by simple calculation detζ(h0, a0) is obtained as follows:

detζ(h0, a0) =
h2
(
(2a+ 5)b2 + (a− 1)a+ b4

)
a+ b2

̸= 0. (15)

Condition (15) is called transversality condition, and it is supposed to be

true. Next, we used ω1(h, a) and ω2(h, a) for the following parametrization

in the neighborhood of h = h0 and a = a0:

γ1 = ω1(h, a), γ2 = ω2(h, a). (16)

Using (16) in (14), we have the following mapping:

(
w̄

z̄

)
→

(
−1 1

γ1 −1 + γ2

)(
w̄

z̄

)
+

(
f7(w̄, z̄, γ1, γ2)

f8(w̄, z̄, γ1, γ2)

)
, (17)

where

f7(w̄, z̄, γ1, γ2) = g20w̄
2(γ1, γ2) + g11w̄z̄(γ1, γ2) + g02z̄

2(γ1, γ2),

f8(w̄, z̄, γ1, γ2) = h20w̄
2(γ1, γ2) + h11w̄z̄(γ1, γ2) + h02z̄(γ1, γ2),

g20(γ, γ2) = P̄20(γ, γ2), g11(γ, γ2) = P̄11(γ, γ2), g11 = P̄11,

h20(γ, γ2) = Q̄20(γ, γ2), h11(γ, γ2) = Q̄11(γ, γ2), h02 = Q̄02.

Then according to Lemma 9.9 [ [22], p. 437], there exists a near identity

map such that system (14) can be transformed as follows:(
x1

x2

)
→

(
−1 1

γ1 −1 + γ2

)(
z1

z2

)
+

(
0

Cz31 +Dz1z2

)
+O(|z1 + z2|4),

(18)
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where

C(γ1, γ2) = g20(γ1, γ2)h20(γ1, γ2) +
1

2
h2
20(γ1, γ2) +

1

2
h20(γ1, γ2)h11(γ1, γ2),

D(γ1, γ2) =
1

2
g20(γ1, γ2)h11(γ1, γ2) +

5

4
h20(γ1, γ2)h11(γ1, γ2)

+ h2
20(γ1, γ2) +

1

2
h2
11(γ1, γ2) + h20(γ1, γ2)h02(γ1, γ2)

+ 3g220(γ1, γ2) +
5

2
g20(γ1, γ2)h20(γ1, γ2)

+
5

2
g11(γ1, γ2)h20(γ1, γ2).

Taking into account theoretical results cited in [22] and the above com-

putations, we have the following result.

Theorem 2. Assume that C(0, 0) ̸= 0, D(0, 0) + 3C(0, 0) ̸= 0, and

detζ(h0, a0) ̸= 0 then system (2) experiences 1:2 strong resonance at its

positive equilibrium point whenever h and a vary in small neighborhoods

of h0 and a0, respectively.

3.2 1:3 strong resonance

In this subsection we study codimension-two bifurcation associated with

1:3 strong resonance. For this, assume that a and b are bifurcation param-

eters. Then characteristic equation of variational matrix of system (2) at

(x∗, y∗) has eigenvalues − 1
2 ± ι

√
3
2 if the following condition holds true:Tr :

h(b2−a)
a+b2 − h

(
a+ b2

)
= −3

Det : h2
(
a+ b2

)
− h((2a−1)b2+a(a+1)+b4)

a+b2 = 0.
(19)

We have the following solution of system (19) for a and b:

a1 =
3(h(h+ 3)− 3)

2h4
,

b1 =

√
3
2

√
(h− 3)h+ 3

h2
.
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Next, assume that un = xn− b, vn = yn− b
a+b2 and a = a1 and b = b1,

then equilibrium point (x∗, y∗) of (2) is shifted at (0, 0). In this case (2)

transformed into the following map:(
u

v

)
→

(
ξ11 ξ12

ξ21 ξ22

)(
u

v

)
+

(
f1(u, v)

f2(u, v, )

)
, (20)

ξ11 =
h
(
b2 − a

)
a+ b2

+ 1, ξ12 = h
(
a+ b2

)
,

ξ21 + − 2b2h

a+ b2
, ξ22 = 1− h

(
a+ b2

)
,

f1(u, v) = r11uv + r02u
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v)) = q11uv + q02u
2 +O

(
(|u|+ |v|)3

)
.

r02 =
bh

a+ b2
, r11 = 2bh,

q02 = − bh

a+ b2
, q11 = −2bh.

The eigenvalues of characteristics equation of Jacobian matrix of sys-

tem (20) are −1
2 ±

√
3
2 ι, let ρ1(a1, b1) and ϱ1(a1, b1) are eigenvector asso-

ciated with Jacobian matrix of (20) and its transpose, respectively and

satisfying ⟨ρ1(a1, b1), ϱ1(a1, b1)⟩ = 1. Then, by simple computation one

has;

ρ1(a1, b1) =

 6i

(3i+
√
3)h−6i

1

 ,

and

ϱ1(a1, b1) =

(
1 + 1

6 i
(
3i+

√
3
)
h

1

)
.
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Further, any Y ∈ R2 can be uniquely described as follows:

Y = wρ1(a1, b1) + w̄ρ̄1(a1, b1), w ∈ C.

Therefore, the complex form for the map (20) can be written as follows:

w −→

(
−1

2
+

√
3

2
ι

)
w +

∑
2≤j+k≤3

1

j!k!
Gjkw

jw̄k, (21)

where

G20 =
2bh

(
2
√
3h− 3

(√
3 + i

)) ((√
3 + 3i

)
h
(
a+ b2

)
− 3i

(
2a+ 2b2 − 1

))((√
3 + 3i

)
h− 6i

)2
(a+ b2)

,

G11 = −
ibh

(
2
√
3h− 3

(√
3 + i

)) (
a(h− 2) + b2(h− 2) + 1

)
((h− 3)h+ 3) (a+ b2)

,

G02 = −
2bh

(
2
√
3h− 3

(√
3 + i

)) ((√
3− 3i

)
h
(
a+ b2

)
+ 3i

(
2a+ 2b2 − 1

))((√
3− 3i

)
h+ 6i

)2
(a+ b2)

,

and G30 = G03 = G12 = G21 = 0.

Next, according to Lemma 9.12 [ [22], p. 448], there exists a smoothly

parameter dependent change of variable such that the map (21) can be

converted into the following form:

z −→

(
−1

2
+

√
3

2
ι

)
z + F (a1, b1)z̄ +K(a1, b1)z|z|2 +

(
|z|4
)
, (22)

where

F (a1, b1) =
1

2
G02,

and

K(a1, b1) =

(
1

2
+

√
3

2
ι

)
G02G11 +

(
1

2
+

−1

2
√
3
ι

)
|G11| .

Next, we consider the following quantities:

F1(a1, b1) =

(
−3

2
+

3
√
3

2
ι

)
F (a1, b1)
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K1(a1, b1) = −3 |F (a1, b1)|2 −
3

2
(1 +

√
3ι)K(a1, b1).

Arguing as in Lemma 9.13 [ [22], p. 450], we have the following result.

Theorem 3. Assume that a = a1, b = b1, ReK1(a1, b1) ̸= 0 and F (a1, b1)

̸= 0 then the system (2) undergoes a 1:3 resonance about its positive fixed

point, ReK1(a1, b1) ̸= 0 determines the stability nature for the bifurcating

closed invariant curve.

3.3 1:4 strong resonance

In this subsection we study codimension-two bifurcation associated with

1:4 strong resonance. For this, assume that a and b are bifurcation param-

eters. Then characteristic equation of variational matrix of system (2) at

(x∗, y∗) has eigenvalues ±ι if the following condition holds true:Tr :
h(b2−a)
a+b2 − h

(
a+ b2

)
= −2

Det : h2
(
a+ b2

)
− h((2a−1)b2+a(a+1)+b4)

a+b2 = 0.
(23)

We have the following solution of system (23) for a and b:

a2 =
h(h+ 2)− 2

h4
,

B2 =

√
(h− 2)h+ 2

h2
.

Next, assume that un = xn− b, vn = yn− b
a+b2 and a = a2 and b = b2,

then equilibrium point (x∗, y∗) of (2) is shifted at (0, 0). In this case (2)

transformed into the following map:(
u

v

)
→

(
θ11 θ12

θ21 θ22

)(
u

v

)
+

(
f3(u, v)

f4(u, v, )

)
, (24)
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θ11 =
h
(
b2 − a

)
a+ b2

+ 1, θ12 = h
(
a+ b2

)
,

θ21 + − 2b2h

a+ b2
, θ22 = 1− h

(
a+ b2

)
,

f3(u, v) = χ11uv + χ02u
2 +O

(
(|u|+ |v|)3

)
,

f4(u, v)) = ς11uv + ς02u
2 +O

(
(|u|+ |v|)3

)
.

χ02 =
bh

a+ b2
, χ11 = 2bh,

ς02 = − bh

a+ b2
, ς11 = −2bh.

The eigenvalues of Jacobian matrix of system (24) are ±ι, let p(a2, b2)

and q(a2, b2) are eigenvector associated with Jacobian matrix of (24) and

its transpose, respectively and satisfying ⟨p(a2, b2), q(a2, b2)⟩ = 1. Then,

by simple computation one has;

p(a2, b2) =

(
1+i

h+(−1−i)

1

)
,

and

q(a2, b2) =

(
1−

(
1
2 − i

2

)
h

1

)
.

Moreover, any Y ∈ R2 can be described uniquely as follows:

Y = wp(a2, b2) + w̄p̄(a2, b2), w ∈ C.

Consequently, the complex form for the map (24) can be written as

follows:

w −→ (ι)w +
∑

2≤j+k≤3

1

j!k!
Ḡjkw

jw̄k, (25)

where
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Ḡ20 =

√
(h− 2)h+ 2(−4 + h(h+ (2− 2i)))

2(h+ (−1− i))h
,

Ḡ11 = −
i
√
(h− 2)h+ 2(h(h+ 2)− 4)

(h+ (−1 + i))h
,

Ḡ02 = −
(h+ (−1− i))

√
(h− 2)h+ 2(−4 + h(h+ (2 + 2i)))

2(h+ (−1 + i))2h
,

and Ḡ30 = Ḡ03 = Ḡ12 = Ḡ21 = 0.

Next, according to Lemma 9.13 [ [22], p. 448], there exists a smoothly

parameter–dependent change of variable such that the map (25) can be

converted into the following form:

z1 −→ (ι) z1 + F2(a2, b2)z1|z1|2 +K2(a2, b2)z
3
1 +

(
|z1|4

)
, (26)

where

F2 = ιḠ11−
1

2
Ḡ11

¯̄G20(1+ ι)+ ¯̄G11Ḡ20+ Ḡ02Ḡ11(ι−1)− 1

2
Ḡ11Ḡ20(1−2ι),

and

K2(a2, b2) =
ι− 1

4
Ḡ11Ḡ02 −

ι+ 1

4
Ḡ11Ḡ20.

Next, we consider the following quantities:

F3(a2, b2) = −4ιF2(a2, b2)

K3(a2, b2) = −4ιK2(a2, b2),

whenever K3(a2, b2) ̸= 0, thus we can write Jacobian matrix J(a2, b2) =
F3(a2,b2)
|K3(a2,b2)| . Arguing as in Lemma 9.15 [ [22], p. 450], we have the following

result.

Theorem 4. Assume that a = a2, b = b2, ReJ(a2, b2) ̸= 0 and ImJ(a2, b2)

̸= 0 then the system (2) undergoes a 1:4 resonance about its positive fixed
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point, ReJ(a2, b2) ̸= 0 determines the stability nature for the bifurcating

closed invariant curve.

4 Numerical simulation

Let (a, b, h) = (0.85424, 2.1, 0.87169), then (x∗, y∗) = (2.1, 0.39891).

In this case eigenvalue of Jacobian Matrix at (x∗, y∗) is −1 with multi-

plicity two. Moreover, det (ζ(h0, a0)) =
h2((2a+5)b2+(a−1)a+b4)

a+b2 = 7.05941,

C(0, 0) = −8.61177 and D(0, 0) + 3C(0, 0) = 79.6377, which shows the

correctness of Theorem 2. Hence, system (2) undergoes codimension-two

bifurcation associated with 1:2 strong resonance whenever h ∈ [0.76, 0.879]

and a ∈ [0.85, 0.88]. Alternatively, the bifurcation diagram in (h, a, xn),

(h, a, yn) spaces and MLE are depicted in Figure 2a, 2b and 2c, respec-

tively.

Next, suppose that (a, b, h) = (1.16598, 1.59302, 0.9), then (x∗, y∗)

= (1.59302, 0.43011). In this case eigenvalues of Jacobian Matrix at (x∗,

y∗) are − 1
2±ι

√
3
2 . Moreover, ReK1(a1, b1) = −19.5329 ̸= 0 and F (a1, b1) =

1.10825 − 0.321837ι ̸= 0 , which shows the correctness of Theorem 3.

Hence, system (2) undergoes codimension-two bifurcation associated with

1:3 strong resonance whenever a ∈ [1.162, 1.3] and b ∈ [1.5930, 1.596].

Alternatively, the bifurcation diagram in (a, b, xn), (a, b, yn) spaces and

MLE are depicted in Figure 3a, 3b and 3c, respectively.

Finally, assume that (a, b, h) = (0.809377, 11.399567, 0.85), then

(x∗, y∗) = (1.399567, 0.505593). In this case eigenvalues of Jacobian

Matrix at (x∗, y∗) are ±ι. Moreover, K3(a2, b2) = 1.98415 + 6.46503i,

Re (J(a2, b2)) = 2.29359 and Im (J(a2, b2)) = 0.0750144 , which shows the

correctness of Theorem 4. Hence, system (2) undergoes codimension-two

bifurcation associated with 1:4 strong resonance whenever a ∈ [0.8, 0.84]

and b ∈ [1.3, 1.5]. Alternatively, the bifurcation diagram in (a, b, xn),

(a, b, yn) spaces and MLE are depicted in Figure 4a, 4b and 4c, respec-

tively.
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(a) Bifurcation dia-
gram for xn.

(b) Bifurcation dia-
gram for yn.

(c) Maximum
Lyaponov Ex-
ponent

Figure 2. Plots of the system (2) for b = 2.1, h ∈ [0.79, 0.879] and
a ∈ [0.85, 0.88] with initial conditions x0 = 2.1 and y0 =
0.398918.

(a) Bifurcation dia-
gram for xn.

(b) Bifurcation dia-
gram for yn.

(c) Maximum
Lyaponov Ex-
ponent

Figure 3. Plots of the system (2) for h = 0.9, a ∈ [1.162, 1.3] and
b ∈ [1.5930, 1.596] with initial conditions x0 = 1.594 and
y0 = 0.430.

(a) Bifurcation dia-
gram for xn.

(b) Bifurcation dia-
gram for yn.

(c) Maximum
Lyaponov Ex-
ponent

Figure 4. Plots of the system (2) for h = 0.85, a ∈ [0.8, 0.84] and b ∈
[1.3, 1.5] with initial conditions x0 = 1.399 and y0 = 0.505.
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5 Conclusion

A glycolysis model is considered for its discretization and qualitative anal-

ysis. By applying the forward Euler scheme the discrete-time glycolysis

model is obtained. By implementing normal form method and bifurcation

theory, it is proved that system (2) undergoes codimension-two bifurcation

associated with 1:2, 1:3 and 1:4 strong resonances at its positive fixed point.

In the case of 1:2 resonance, the system (2) displays the emergence of intri-

cate limit-cycle patterns. This implies that the glycolysis pathway exhibits

oscillatory behavior, where the concentrations of key metabolites undergo

periodic fluctuations. The resonant interaction between the system’s pa-

rameters leads to stable limit cycles, indicating persistent and predictable

oscillations in glycolytic activity. In the case of 1:3 resonance, the system

(2) reveals intriguing periodic solutions. This resonance condition causes

the system to exhibit more complex oscillatory patterns compared to the

1:2 resonance. The system now undergoes three periods of oscillation be-

fore returning to its initial state, highlighting the intricate interplay of

parameters that drive this behavior. Under 1:4 resonance, the system (2)

showcases co-existing periodic and chaotic regimes. This resonance condi-

tion leads to the coexistence of both stable periodic solutions and chaotic

behavior within the system. The presence of chaos implies that the gly-

colysis pathway becomes highly sensitive to initial conditions, resulting in

unpredictable and erratic dynamics.

This study investigates the complex and multi-parameter bifurcation

phenomena observed in a discrete-time glycolysis model. Specifically, it

explores the dynamics of the system under resonances mentioned above.

Through rigorous analysis, the research reveals intricate behaviors, such

as limit cycles and chaos, offering valuable insights into how the glycol-

ysis pathway behaves under these specific resonance states. Understand-

ing the coexistence of different resonance regimes and their sensitivity to

parameter variations provides crucial information for comprehending the

robustness and control of the glycolysis process. By employing advanced

mathematical tools, including normal form theory and bifurcation analy-

sis, this study contributes to the field of mathematical biology and discrete
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dynamical systems, enhancing our understanding of complex biochemical

networks and their responses in both biological and engineering contexts.

Acknowledgment : The authors extend their appreciation to the Dean-
ship of Scientific Research at Northern Border University, Arar, KSA, for
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