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Abstract

The Euler Sombor index of a graph G is a recently introduced
topological index, defined as

EU(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 + d(u)d(v),

where d(u), d(v) are the degrees of the vertices u, respectively v of
G. The purpose of this paper is to determine the first, second and
third minimal and maximal unicyclic graphs of order n with respect
to the Euler Sombor index for all n ≥ 5.

1 Introduction

Following standard notations in graph theory [1], let G = (V (G), E(G)) be

a simple, undirected, and connected graph with V (G) the set of its vertices
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and E(G) the set of its edges. Let u ∈ V (G) be a vertex and denote by

NG(u) the set of its neighbors and by d(u) its degree. If a vertex has

degree equal to one, we say that it is pendent. We use the notation Cr for

a cycle with r edges. The path [x1, x2, ..., xk] with d(x1) ≥ 2 and d(xi) = 2

for all 1 < i < k is called pendent if d(xk) = 1 and internal if d(xk) ≥ 2.

Moreover, where there is no danger of confusion, the notation Px1xk
is

used.

The Euler Sombor index given by

EU(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 + d(u)d(v),

first alluded to in [5], and fully introduced in [4], is the most recently

defined topological index based on a novel geometric approach proposed

by I. Gutman [3] and intensely studied in recent years [9]. This approach

produces an increasing set of graph invariants, collectively known as the

Sombor topological indices, which includes the Sombor index, the reduced

Sombor index and the average Sombor index, the elliptic Sombor index

and the newly introduced Euler Sombor index, with great applicability in

mathematical chemistry [3–5].

Recent research established several properties of the elliptic Sombor

index and its generalization [2, 10–12], and of the Euler Sombor index [4,

6,8,13]. Due to the high correlation with previous well-known indices, the

Euler Sombor index was shown to be useful for predicting physicochemical

properties of substances [13].

In this paper, we extend the study of the Euler Sombor index by de-

termining the top three minimal and maximal unicyclic graphs of order n

for all n ≥ 5.

2 Maximal unicyclic graphs with respect to

the Euler Sombor index

In what follows, we denote by Un the set of unicyclic graphs of order n, by

Un,p the set of unicyclic graphs of order n with a cycle of length p and by
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Ũn,p the subset of Un,p that contains unicyclic graphs in which any edge

that does not belong to the cycle is pendent.

First, we introduce the next result, given in a particular form in [8]:

Lemma 1. [13] Let G be a simple, connected graph and a path Px1xk
=

[x1, x2, ..., xk] with k ≥ 2, d(x1) ≥ 2, d(xk) ≥ 2, d(xi) = 2 for 1 < i < k.

Let G′ the graph obtained by transforming the internal path Px1xk
into a

pendent path: G′ = G− {xky | y ̸= xk−1}+ {x1y | y ∈ NG(xk)− {xk−1}}
(Fig. 1). Then EU(G′) > EU(G).
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Figure 1. Transforming an internal path into a pendent path

Remark. Let U ∈ Un,p be a unicyclic graph. By applying p− 3 times the

transformation from Lemma 1 for any edge situated on the graph’s cycle,

we obtain a graph U ′ ∈ Un,3, where every cycle’s vertex is incident to a

(possibly empty) tree. Furthermore, by applying the same transformation

to every internal edge of these trees, we obtain a new graph U ′′ ∈ Ũn,3

where every cycle’s vertex is the center of a (possibly empty) star tree.

According to Lemma 1, EU(U ′′) ≥ EU(U) with equality if and only if

U ∈ Ũn,3 (meaning that no transformation was applied to U).

The next lemma gathers some technical results that will be used re-

peatedly throughout this section.

Lemma 2. (i) x <
√
x2 + a < x+ a

2x for all x > 0, a > 0.

(ii) Let N > 0, D1 = D2 = [0, N ], D3 = (0, N) and fi : Di → R
for 1 ≤ i ≤ 3 given by f1(x) = N2 − x(N − x), f2(x) = x2 + (N − x)

2
,
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f3(x) =
1

x(N−x) . Then, for 1 ≤ i ≤ 3, fi strictly decreases in Di ∩ [0, N
2 ],

strictly increases in Di∩ [N2 , N ] and is symmetric around N/2 in the sense

that fi(x) = fi(N − x) for all x ∈ Di.

(iii) Let α ≥ 0 and xi ≥ α for 1 ≤ i ≤ 3. Then
∑3

i=1 x
2
i ≤ (x1 + x2 +

x3 − α)2 − α2 with equality if and only if xi = α for 1 ≤ i ≤ 3.

Proof. (i) Obvious by squaring. For (ii) the monotonicity follows by es-

tablishing the sign of the derivative of f1, f2, and x → x(N − x), respec-

tively, and the symmetry follows by direct checking. For (iii) observe that

(x1+x2+x3−α)2−α2 =
∑3

i=1 x
2
i +2

[
x1(x2−α)+x2(x3−α)+x3(x1−α)

]
.

Before we give the following lemma, we note that any graph U in Ũn,3

is completely characterized by a triplet of whole numbers (p1, p2, p3) with

0 ≤ p1 ≤ p2 ≤ p3 and p1 + p2 + p3 = n − 3 representing the number of

pendents at each vertex of the length three cycle of U . We denote such a

graph by Up1,p2,p3 .

Lemma 3. If n ≥ 7, then the first, second and third greatest graphs in

Ũn,3 with respect to the EU index are U0,0,n−3, U0,1,n−4, and respectively

U0,2,n−5.

Proof. A direct computation gives

EU(U0,0,n−3) = (n− 3)
√
n2 − n+ 1 + 2

√
n2 + 3 + 2

√
3,

EU(U0,1,n−4) = (n − 4)
√
n2 − 3n+ 3 +

√
n2 − n+ 7 +

√
n2 − 2n+ 4 +√

13 +
√
19, and

EU(U0,2,n−5) = (n− 5)
√
n2 − 5n+ 7 +

√
n2 − 2n+ 13 +

√
n2 − 4n+ 7 +

2
√
7 + 2

√
21.

Applying Lemma 2 (i) to each non-constant square root term of each

equality we have

EU(U0,0,n−3) > (n− 3)(n− 1

2
) + 2n+ 2

√
3 > n2 − 3

2
n+ 4.96, (1)

EU(U0,1,n−4) > (n−4)(n− 3

2
)+2n− 3

2
+
√
13+

√
19 > n2− 7

2
n+12.46, (2)

EU(U0,2,n−5) > (n−5)(n− 5

2
)+2n−3+

√
28+

√
84 > n2− 11

2
n+23.95, (3)
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and

EU(U0,1,n−4) <(n− 4)
(
n− 3

2
+

3

4(2n− 3)

)
+
(
n− 1

2
+

27

4(2n− 1)

)
+(

n− 1 +
3

2(n− 1)

)
+
√
13 +

√
19

≈ n2 − 7

2
n+

3(n− 4)

8(n− 3
2 )

+
27

4(2n− 1)
+

3

2(n− 1)
+ 12.464

< n2 − 7

2
n+ 13.62,

(4)

EU(U0,2,n−5) <(n− 5)
(
n− 5

2
+

3

4(2n− 5)

)
+
(
n− 1 +

12

2(n− 1)

)
+(

n− 2 +
3

2(n− 2)

)
+
√
28 +

√
84

< n2 − 11

2
n+

3(n− 5)

8(n− 5
2 )

+
6

n− 1
+

3

2(n− 2)
+ 23.956

< n2 − 11

2
n+ 25.64

(5)

for all n ≥ 7.

Since n2− 7
2n+13.62 < n2− 3

2n+4.96 for all n ≥ 7, by using inequalities

(1) and (4) we have that EU(U0,0,n−3) > EU(U0,1,n−4). Similarly, since

n2 − 11
2 n + 25.64 < n2 − 7

2n + 12.46 for all n ≥ 7, by using inequalities

(2) and (5) we have that EU(U0,1,n−4) > EU(U0,2,n−5). It remains to

be proven that EU(U0,p2,p3
) < EU(U0,2,n−5) for all 3 ≤ p2 ≤ p3 with

p2+p3 = n−3 and EU(Up1,p2,p3
) < EU(U0,2,n−5) for all 1 ≤ p1 ≤ p2 ≤ p3

with p1 + p2 + p3 = n− 3.

We first proceed with the former inequality. By a direct computation

EU(U0,p2,p3) =

3∑
i=2

pi

√
p2i + 5pi + 7 +

3∑
i=2

√
p2i + 6pi + 12 +√

(n+ 1)2 − (p2 + 2)
[
(n+ 1)− (p2 + 2)

]
Observe that 3 ≤ p2 ≤ p3 and p2 + p3 = n − 3 imply 3 ≤ p2 ≤ n−3

2 ,
n−3
2 ≤ p3 ≤ n− 6 and n ≥ 9. We apply Lemma 2 (i) to each term in each

sum. For the last term we need Lemma 2 (ii) for f1 with N = n + 1 and
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x = p2 + 2. Noting that 5 ≤ p2 + 2 ≤ n−3
2 + 2 = N

2 we have

EU(U0,p2,p3) <

3∑
i=2

pi

(
pi +

5

2
+

3

4(2pi + 5)

)
+

3∑
i=2

(
pi + 3 +

3

2(pi + 3)

)
+√

n2 − 3n+ 21

= p22 +
[
(n− 3)− p2

]2
+

7

2
n− 9

2
+

√
n2 − 3n+ 21 +

3

8

3∑
i=2

pi

pi +
5
2

+
3

2
· n+ 3

(p2 + 3)
[
(n+ 3)− (p2 + 3)

]
Next, we apply Lemma 2 (ii) for f2 with N = n−3 and x = p2 to the first

two terms, for f3 with N = n + 3 and x = p2 + 3 to the last term, and

Lemma 2 (i) to the square root term. Keeping into account that p2 ≥ 3

we get

EU(U0,p2,p3) <(n− 6)2 +
9

2
n+ 3 +

75

4(2n− 3)
+ 2 · 3

8
+

n+ 3

4(n− 3)

= n2 − 15

2
n+ 40 +

75

4(2n− 3)
+

6

4(n− 3)

< n2 − 15

2
n+ 41.51,

knowing that n ≥ 9.

Since n2 − 15
2 n+ 41.51 < n2 − 11

2 n+ 23.95 for all n ≥ 9, by using (3)

the inequality follows.

Finally, we prove that for all 1 ≤ p1 ≤ p2 ≤ p3 with p1+p2+p3 = n−3

EU(Up1,p2,p3
) < EU(U0,2,n−5). We distinguish two cases.

Case 1. p1 = 1. A direct computation gives

EU(U1,p2,p3
) =

3∑
i=2

pi

√
p2i + 5pi + 7 +

3∑
i=2

√
p2i + 7pi + 19 +√

n2 − (p2 + 2)
[
n− (p2 + 2)

]
+
√
13 .

By applying Lemma 2 (i) to each square root term in each sum and Lemma

2 (ii) for f1 to the second to last term, and remembering that p2 ≥ 2 we

have
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EU(U1,p2,p3
) <

3∑
i=2

pi

(
pi +

5

2
+

3

4(2pi + 5)

)
+

3∑
i=2

(
pi +

7

2
+

27

4(2pi + 7)

)
+
√
n2 − 3n+ 9 +

√
13

= p22 +
[
(n− 4)− p2

]2
+

7

2
n− 7 +

√(
n− 3

2

)2

+
27

4
+

3

8

3∑
i=2

pi

pi +
5
2

+
27

4
· 2n+ 6

(2p2 + 7)
[
(2n+ 6)− (2p2 + 7)

] +
√
13

Next, we apply Lemma 2 (ii) for f2 to the first two terms and for f3 with

N = 2n + 6 and x = 2p2 + 7 to the second to last term. Using Lemma 2

(i) for the non-constant square root term, and keeping into account that

p2 ≥ 1 we get

EU(U1,p2,p3) <(n− 5)2 +
9

2
n− 15

2
+

27

4(2n− 3)
+ 2 · 3

8
+

3(n+ 3)

2(2n− 3)
+

√
13

= n2 − 11

2
n+ 19 +

√
13 + 2 · 27

4(2n− 3)

< n2 − 11

2
n+ 23.84,

for all n ≥ 7. By using (3) the inequality follows.

Case 2. 2 ≤ p1 ≤ p2 ≤ p3.

Since p1 + p2 + p3 = n − 3, pi ≤ n − 7 for 1 ≤ i ≤ 3 and n ≥ 9. By

direct computation

EU(Up1,p2,p3
) =

∑
1≤i<j≤3

√
(pi + pj + 4)2 − (pi + 2)(pj + 2) +

3∑
i=1

pi

√
p2i + 5pi + 7 .

Observe that in the first sum the term under the square root can be written

as (n + 1 − pk)
2 − (pi + 2)

[
(n + 1 − pk) − (pi + 2)

]
where k is such that

{i, j, k} = {1, 2, 3}. By applying Lemma 2 (ii) for f1 with N = n+ 1− pk

and x = pi + 2 to this expression together with Lemma 2 (i) to the term

of the second sum we have
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EU(Up1,p2,p3
) <

3∑
k=1

√
(n+ 1− pk)2 − 4(n+ 1− pk) + 16 +

3∑
i=1

pi

(
pi +

5

2
+

3

4(2pi + 5)

) (6)

Denoting by S1 the first sum of (6) and applying Lemma 2 (i) to each of

its terms we get

S1 <

3∑
k=1

(
n− 1− pk +

6

n− 1− pk

)
= 2n+

3∑
k=1

6

n− 1− pk
≤ 2n+ 3, (7)

since pk ≤ n − 7 for 1 ≤ k ≤ 3. Denoting by S2 the second sum of (6),

applying Lemma 2 (iii) and using pi ≥ 2 for 1 ≤ i ≤ 3 we have

S2 ≤ (n− 5)2 − 22 +
5

2
(n− 3) +

9

4
= n2 − 15

2
n+ 14.625 (8)

Combining (6)–(8) gives EU(Up1,p2,p3
) < n2 − 11

2 n + 17.625. This,

together with (3) concludes the proof.

The next notion is useful in what follows.

Definition 1. Let G and G′ be two graphs of order n. If G′ can be

obtained by applying the transform given in Lemma 1 once to G, we say

that G is a direct ascendant of G′. If the minimum number of times needed

to apply the transform to G in order to obtain G′ is greater than 1, we say

that G is an indirect ascendant of G′.

Before we give the next lemmas, we need the following examples.

Example 1. U0,0,n−3 has two (families of) direct ascendants:

1. the family of graphs obtained by choosing an edge uv of C4 and

attaching p1 pendents to u and p2 pendents to v such that 0 ≤ p1 ≤
p2 and p1 + p2 = n− 4; since p2 is completely determined by p1, we

denote it U I
0,0,n−3(p1)

2. the single graph obtained by attaching n− 5 pendents and a path of

length 2 to one vertex of C3; denote it U II
0,0,n−3.
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Figure 2. The graphs from Example 1

Example 2. U0,1,n−4 has three (families of) direct ascendants:

1. the single graph U I
0,0,n−3(0)

2. the single graph obtained by choosing and edge uv of C3 and attach-

ing one pendent to u and to v a path of length 2 and n−6 pendents;

denote it U II
0,1,n−4

3. the family of graphs obtained by choosing a path (v1, v2, v3) of C4

and attaching one pendent to v1, p1 ≥ 0 pendents to v2 and p2 ≥ 0

pendents to v3 such that p1 + p2 = n− 5; denote it U III
0,1,n−4(p1, p2).
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Figure 3. The graphs from Example 2

Lemma 4. Denote by Mn = max
{
EU

(
U II
0,0,n−3

)
, EU

(
U0,2,n−5

)}
. If

n ≥ 7 then Mn<EU
(
U I
0,0,n−3(0)

)
<EU

(
U0,1,n−4

)
.
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Proof. By direct computation

EU
(
U I
0,0,n−3(0)

)
= (n− 4)

√
n2 − 3n+ 3 + 2

√
n2 − 2n+ 4 + 2

√
12,

EU
(
U II
0,0,n−3

)
= (n− 5)

√
n2 − 3n+ 3 + 3

√
n2 − 2n+ 4 +

√
7 +

√
12

and

EU
(
U I
0,0,n−3(0)

)
− EU

(
U II
0,0,n−3

)
=
√

n2 − 3n+ 3−
√
n2 − 2n+ 4+

√
12−

√
7.

Since√
n2 − 3n+ 3−

√
n2 − 2n+ 4 = − n+ 1√

n2 − 3n+ 3 +
√
n2 − 2n+ 4

> − n+ 1

(n− 3
2 ) + (n− 1)

= −1

2
− 9

8n− 10

≥ −1

2
− 9

46
> −0.7 >

√
7−

√
12

for all n ≥ 7, we have EU
(
U I
0,0,n−3(0)

)
> EU

(
U II
0,0,n−3

)
. By applying

Lemma 2 (i) again

EU
(
U I
0,0,n−3(0)

)
>(n−4)(n− 3

2
)+ 2(n−1)+2

√
12 = n2− 7

2
n+4+

√
48

> n2− 7

2
n+ 10.92 > n2− 11

2
n+ 25.64 > EU

(
U0,2,n−5

)
for all n ≥ 8, where in the last inequality we used (5). For n = 7 a direct

computation gives EU
(
U I
0,0,4(0)

)
= 3

√
31 + 2

√
39 + 2

√
12 ≈ 36.12 and

EU
(
U0,2,2

)
= 4(

√
3 +

√
7 +

√
21) ≈ 35.84, which completes the proof of

the left inequality. Using Lemma 2 (i) one more time we have

EU
(
U I
0,0,n−3(0)

)
<(n− 4)

(
n− 3

2
+

3

4(2n− 3)

)
+ 2

(
n− 1 +

3

2(n− 1)

)
+

2
√
12 < n2 − 7

2
n+

3(n− 4)

8(n− 3
2 )

+
3

n− 1
+ 10.93

< n2 − 7

2
n+ 11.81,
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for all n ≥ 7. This, together with (2) establishes the right inequality.

Lemma 5. Using the notation of Lemma 4, if n ≥ 7 and U is one of the

graphs U I
0,0,n−3(p1) with p1 ≥ 1, U II

0,1,n−4 or U III
0,1,n−4(p1, p2) with p1 ≥ 0

and p2 ≥ 0, then EU(U) < Mn.

Proof. By (3) it is sufficient to show that EU(U) < n2 − 11
2 n+ 23.

Case 1. U = U I
0,0,n−3(p1) with p1 ≥ 1. A direct computation gives

EU(U) =

2∑
i=1

pi

√
p2i + 5pi + 7 +

2∑
i=1

√
p2i + 6pi + 12+√

n2 − (p1 + 2)
[
n− (p1 + 2)

]
+
√
12.

By using Lemma 2 (i) to each term in each sum and Lemma 2 (ii) for f1

to the third term, we have

EU(U) <

2∑
i=1

pi

(
pi +

5

2
+

3

4(2pi + 5)

)
+

2∑
i=1

(
pi + 3 +

3

2(pi + 3)

)
+√

n2 − 3n+ 9 +
√
12

= p21 +
[
(n− 4)− p1

]2
+

7

2
n− 8 +

√(
n− 3

2

)2

+
27

4
+

3

8

2∑
i=1

pi

pi +
5
2

+
3

2
· n+ 2

(p1 + 3)
[
(n+ 2)− (p1 + 3)

] +
√
12

We apply Lemma 2 (ii) for f2 to the first two terms, for f3 to the sec-

ond to last term and Lemma 2 (i) to the non-constant square root term.

Remembering that p1 ≥ 1 we get

EU(U) <(n− 5)2 +
9

2
n− 17

2
+

27

4(2n− 3)
+ 2 · 3

8
+

3(n+ 2)

8(n− 2)
+
√
12

= n2 − 11

2
n+ 17.625 +

√
13 +

27

4(2n− 3)
+

3

2(n− 2)

< n2 − 11

2
n+ 23,

for all n ≥ 7.
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Case 2. U = U II
0,1,n−4. A direct computation gives

EU(U) =(n− 6)
√

n2 − 5n+ 7 + 2
√
n2 − 4n+ 7 +

√
n2 − 3n+ 9 +

√
7 +

√
13 +

√
19.

By using Lemma (2) (i) to all non-constant square root terms we have

EU(U) <(n− 6)
(
n− 5

2
+

3

(2n− 5)

)
+ 2

(
n− 2 +

3

2(n− 2)

)
+(

n− 3

2
+

27

4(2n− 3)

)
+
√
7 +

√
13 +

√
19

≈ n2 − 11

2
n+

3(n− 6)

8(n− 5
2 )

+
3

n− 2
+

27

4(2n− 3)
+ 20.11

< n2 − 11

2
n+ 23,

for all n ≥ 7.

Case 3. U = U III
0,1,n−4(p1, p2) with p1 ≥ 0 and p2 ≥ 0. A direct

computation gives

EU(U) =

2∑
i=1

pi

√
p2i + 5pi + 7 +

√
p21 + 7p1 + 19 +

√
p22 + 6p2 + 12+√

(n− 1)2 − (p1 + 2)
[
(n− 1)− (p1 + 2)

]
+

√
13 +

√
19.

By applying Lemma 2 (i) to the first three terms and (ii) for f1 to the

fourth term we get

EU(U) <

2∑
i=1

pi

(
pi +

5

2
+

3

4(2pi + 5)

)
+
(
p1 +

7

2
+

27

4(2p1 + 7)

)
+

(
p2 + 3 +

3

2(p2 + 3)

)
+
√
n2 − 4n+ 7 +

√
13 +

√
19

= p21+(n−5−p1)
2+

7

2
(n−5)+

√
(n−2)2 + 3 +

3

8

2∑
i=1

pi

pi +
5
2

+

27

8p1 + 28
+

3

2p2 + 6
+

13

2
+
√
13 +

√
19

Using Lemma 2 (i) and (ii) for f2 and knowing that pi ≥ 0 for 1 ≤ i ≤ 2
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gives

EU(U) <(n− 5)2 +
7

2
(n− 5) +

(
n− 2 +

3

2(n− 2)

)
+ 2 · 3

8
+

41

28
+

13

2
+
√
13 +

√
19

≈ n2 − 11

2
n+

3

2(n− 2)
+ 22.17 < n2 − 11

2
n+ 23,

for all n ≥ 7.

Theorem 1. If n ≥ 7, then the first, second and third greatest graphs with

respect to the Euler Sombor index in the class of unicyclic graphs of order

n are U0,0,n−3, U0,1,n−4 and U I
0,0,n−3(0), respectively.

Proof. Denote by A =
{
U0,0,n−3, U0,1,n−4

}
and let U be a unicyclic graph

of order n. By Lemma 3, if U ∈ Ũn,3 \ A then EU(U) ≤ Mn, where Mn

has the same meaning as in Lemma 4. Furthermore, by Lemma 1, if U is

a direct or indirect ascendant of a graph in Ũn,3 \ A, then EU(U) < Mn.

Two cases remain: U ∈ A or U is a direct or indirect ascendant of a graph

in A. For the first case, by Lemmas 3 and 4, if U ∈ A then EU(U) > Mn.

For the second case, note first that by Lemma 4 if U = U I
0,0,n−3(0), then

EU(U) > Mn. Second, by Lemmas 5 and 1 if U is a direct or indirect

ascendant of a graph in A other than U I
0,0,n−3(0) then EU(U) < Mn. Thus,

the only unicyclic graphs U of order n with EU(U) > Mn are U0,0,n−3,

U0,1,n−4 and U I
0,0,n−3(0), and their order with respect to the Euler Sombor

index is established by Lemmas 3 and 4.

3 Minimal unicyclic graphs with respect to

the Euler Sombor index

We shall denote by Cp+Px1xk
, with k ≥ 2 the graph obtained by attaching

the pendent path Px1xk
to a vertex of the cycle Cp. Let m ≥ n > 0. An

edge xy will be called a (m,n)-edge whenever d(x) = m and d(y) = n.

Similar to the definition given in the previous section, the next notion

is useful in what follows.
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Definition 2. LetG andG′ be two graphs of order n. IfG can be obtained

by applying the inverse of the transform given in Lemma 1 once to G′, we

say that G is a direct descendant of G′. If the minimum number of times

needed to apply the inverse transform to G′ in order to obtain G is greater

than 1, we say that G is an indirect descendant of G′.

Before we give the next results, we need the following examples.

Example 3. If n ≥ 4, Cn has one family of direct descendants, namely

the family of graphs Cn−k+1 + Px1xk
, where 2 ≤ k ≤ n − 2. For brevity,

denote it by ICn(k).

Example 4. If n ≥ 9, for each 3 ≤ k ≤ n − 2 the graph ICn(k) has 12

(families of) direct descendants denoted by II,iCn(k) for 1 ≤ i ≤ 12 and

detailed in figure 4.

II,1Cn(k)
II,2Cn(k)

II,3Cn(k)
II,4Cn(k)

II,5Cn(k)
II,6Cn(k)

II,7Cn(k)
II,8Cn(k)

II,9Cn(k)
II,10Cn(k)

II,11Cn(k)
II,12Cn(k)

Figure 4. The direct descendants of ICn(k) for n ≥ 9 and 3 ≤ k ≤ n−2
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Lemma 6. If n ≥ 7, then

EU(Cn) < EU(ICn(k)) < EU(ICn(2)) < EU(II,iCn(l))

for all 3 ≤ k ≤ n− 2, 3 ≤ l ≤ n− 2 and 1 ≤ i ≤ 12.

Proof. Direct computations give EU(Cn) = n
√
12 ≈ (n− 3)

√
12+10.39,

EU(ICn(k))=(n−4)
√
12 +3

√
19+

√
7≈(n−3)

√
12+12.25 for all 3≤ k≤n−2

and EU(ICn(2)) = (n− 3)
√
12 + 2

√
19 +

√
13 ≈ (n− 3)

√
12 + 12.32, thus

establishing the first two inequalities.

For the last one, not first that for i ∈ {4, 7, 9} the class of graphs
II,iCn(l) exist only if n ≥ 8 and for i = 10 the class of graphs II,iCn(l)

exist only if n ≥ 9.

Observe now that each graph in the classes II,iCn(l) for i ∈ {1, 6}
contains one (1, 2)-edge, one (1, 3)-edge, three (2, 3)-edges, one (3, 3)-edge,

and n− 6 (2, 2)-edges, which implies that for i ∈ {1, 6}

EU(II,iCn(l))=(n−6)
√
12+3

√
19+

√
7+

√
13+

√
27≈(n−3)

√
12+14.13 (9)

Similarly, each graph in the classes II,iCn(l) for i ∈ {2, 9} contains one

(1, 2)-edge, one (1, 3)-edge, five (2, 3)-edges, and n− 7 (2, 2)-edges, which

implies that for i ∈ {2, 9}

EU(II,iCn(l)) = (n−7)
√
12+5

√
19+

√
7+

√
13 ≈ (n−3)

√
12+14.18 (10)

Likewise, each graph in the classes II,iCn(l) for i ∈ {3, 7} contains two

(1, 2)-edges, four (2, 3)-edges, one (3, 3)-edge, and n−7 (2, 2)-edges, which

implies that for i ∈ {3, 7}

EU(II,iCn(l)) = (n−7)
√
12+4

√
19+2

√
7+

√
27 ≈ (n−3)

√
12+14.06 (11)

By the same token, each graph in the classes II,iCn(l) for i ∈ {4, 10}
contains two (1, 2)-edges, six (2, 3)-edges, and n − 8 (2, 2)-edges, which

implies that for i ∈ {4, 10}

EU(II,iCn(l)) = (n− 8)
√
12 + 6

√
19 + 2

√
7 ≈ (n− 3)

√
12 + 14.12 (12)
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Moreover,

EU(II,5Cn(l))=(n−5)
√
12+2

√
13+2

√
19+

√
27≈(n−3)

√
12+14.19, (13)

EU(II,8Cn(l)) = (n− 6)
√
12 + 4

√
19 + 2

√
13 ≈ (n− 3)

√
12 + 14.25, (14)

EU(II,11Cn(l)) = (n−5)
√
12+3

√
28+

√
21+

√
7 ≈ (n−3)

√
12+16.7, (15)

EU(II,12Cn(l)) = (n− 6)
√
12 + 4

√
28 + 2

√
7 ≈ (n− 3)

√
12 + 16.06. (16)

By comparing (9)-(16) with the value of EU(ICn(2)) the last inequality

follows.

Theorem 2. If n ≥ 7, then the first, second and third smallest (families

of) graphs with respect to the Euler Sombor index in the class of unicyclic

graphs of order n are Cn,
ICn(k) with 3 ≤ k ≤ n − 2 and ICn(2), respec-

tively.

Proof. Let U be an arbitrarily fixed unicyclic graph of order n. Apply-

ing to U as many times as possible the inverse of the transform given in

Lemma 1, we always obtain the same graph, namely Cn. Thus, Cn is

the minimal unicyclic graph of order n with respect to the Euler Sombor

index, and any unicyclic graph of order n other than Cn is a direct or

indirect descendant of it. The first two inequalities of Lemma 6 estab-

lish the ordering between Cn and its direct descendants. Lastly, by the

last inequality of Lemma 6, by Lemma 1, and taking into account ex-

amples 3 and 4, for any unicyclic indirect descendant U of Cn we have

EU(Cn) < EU(ICn(k)) < EU(ICn(2)) < EU(U).

Note. After the present paper was completed and submitted for publica-

tion, the authors learned that results analogous to Theorem 2 are contained

in the, then unpublished, paper [7].

Remark. The results obtained so far establish the top three minimal and

maximal unicyclic graphs of order n ≥ 7 with respect to the Euler Sombor

index. We analyze the remaining cases here.

For n = 3 there exists only one unicyclic graph, C3 = U0,0,0. It is at

the same time the minimal and maximal unicyclic graph of order 3 with
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respect to the Euler Sombor index.

For n = 4 there exist two unicyclic graphs, C4 and U0,0,1. They are the

minimal and, respectively, maximal unicyclic graphs of order 4 with re-

spect to the Euler Sombor index since EU(C4) = 4
√
12 and EU(U0,0,1) =

2
√
19 +

√
13 +

√
12.

For n = 5 there exist five unicyclic graphs, C5,
IC5(3),

IC5(2) =

U I
0,0,1(0), U0,1,1 and U0,0,2, listed here in ascending order with respect

to the Euler Sombor index, by a direct computation.

For n = 6 there exist 13 unicyclic graphs, which we omit for brevity. A

direct computation gives U0,0,3, U0,1,2 and U I
0,0,3(0), in this order, as the

top three maximal unicyclic graphs and C6,
IC6(k) with 3 ≤ k ≤ 4 and

IC6(2), in this order, as the top three minimal unicyclic graphs of order 6

with respect to the Euler Sombor index.

In conclusion, Theorems 1 and 2 establishing the top three minimal and

maximal unicyclic graphs of order n hold whenever
∣∣Un

∣∣ ≥ 3 (i.e. for all

n ≥ 5) and furthermore, the graphs Cn and U0,0,n−3 were shown to be the

minimal and respectively maximal unicyclic graphs of order n whenever

Un ̸= ∅ (i.e. for all n ≥ 3).
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