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Abstract

Let G be a graph with edge set E(G). Denote by d(u) the
degree of a vertex u in G. The Euler-Sombor index of G is defined
as EU(G) =

∑
uv∈E(G)

√
(d(u) + d(v))2 − d(u) d(v). A graph with

a maximum degree not more than 4 is known as a molecular graph.
By a tricyclic graph of order n, we mean a connected graph of order
n and size n + 2. This paper demonstrates that both the main
results of the recent paper [G. O. Kızılırmak, MATCH Commun.
Math. Comput. Chem. 94 (2025) 247–262] can be obtained by
using the known results. The graphs attaining the optimal values
of the Euler-Sombor index among all molecular tricyclic graphs of
a given order are also reported.
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1 Introduction

This paper focuses exclusively on connected and simple graphs. For fun-

damental concepts in graph theory and chemical graph theory, we refer

the reader to the standard references [4, 5, 7] and [24,25], respectively.

In chemical graph theory, real-valued graph invariants are often re-

ferred to as topological indices. Using geometric principles, Gutman [9]

introduced a novel approach to designing vertex-degree-based topological

indices, leading to the definition of the so-called Sombor (SO) index. This

index has been one of the most extensively studied topological indices in

recent years (2021–2024). Given a graph G, its SO index is denoted by

SO(G) and is defined as

SO(G) =
∑

uv∈E(G)

√
(d(u))2 + (d(v))2 ,

where E(G) denotes the edge set of G, and d(u) represents the degree of

vertex u (we use dG(u) to denote the degree of u in G if there is a confusion

about the graph under consideration). Some chemical applications of the

SO index can be found in [15,21], while its various mathematical properties

are summarized in the survey articles [8, 17].

Recently, Gutman, Furtula, and Oz [11] proposed a new geometric

technique for constructing vertex-degree-based topological indices and in-

troduced the elliptic-Sombor (ESO) index. This index is defined as

ESO(G) =
∑

uv∈E(G)

(d(u) + d(v))
√
(d(u))2 + (d(v))2 .

The authors of [11] explored the chemical applications of the ESO index

and derived several inequalities relating it to other topological indices.

They also identified extremal graphs with respect to the ESO index among

the classes of the following graphs with fixed orders: (i) trees and (ii)

connected graphs. Additional known results about the ESO index can be

found in [3, 6, 18–20,23].
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Another topological index developed using the methodology outlined

in [11] is the Euler-Sombor index. This index is based on Euler’s approx-

imation formula for the perimeter of an ellipse. The Euler-Sombor index

of a graph G is denoted by EU(G) and is defined [10,22] as

EU(G) =
∑

uv∈E(G)

√
(d(u))2 + (d(v))2 + d(u)d(v) .

According to Ivan Gutman†, among the topological indices that can be

derived from perimeter approximation formulas of an ellipse, the Euler-

Sombor index may be the most significant one. The existing mathematical

findings on this index can be found in [3, 10,12,14,22].

By a tricyclic graph of order n, we mean a connected graph of order n

and size n+2. A graph of a maximum degree not larger than 4 is called a

molecular graph. The present study is motivated by the recent paper [14],

where the problem of characterizing graphs attaining the minimum and

maximum values of the Euler-Sombor index among all tricyclic graphs of

a given order was addressed. In this paper, we prove that both the main

results of [14] can be obtained by using existing results. These existing

results belong to the papers [2, 13, 16]. Since the obtained tricyclic graph

attaining the minimum Euler-Sombor index has a maximum degree 3, this

graph also minimizes the Euler-Sombor index among all tricyclic molecular

graphs of a given order. For obtaining the maximum Euler-Sombor index

of tricyclic molecular graphs of a given order, we utilize a result reported

in [1].

2 Results

We start this section with the following lemma:

Lemma 1. Define a function Ψ by Ψ(x1, x2) =
√

x2
1 + x2

2 + x1x2 for

x1 ≥ 0 and x2 ≥ 0 such that (x1, x2) ̸= (0, 0). The function Ψ and its

partial derivative function Ψxi
with respect to xi are strictly increasing in

xi for i = 1, 2.

†personal communication with Akbar Ali (on December 20, 2023)
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Denote by mi,j the number of those edges of a graph G whose one

endvertex has degree i and the other endvertex has degree j. By a k-

cyclic graph, we mean a connected graph of order n and size n + k − 1.

Particularly, a 3-cyclic graph is also known as a tricyclic graph. The set

of all different elements of the degree sequence of a graph G is called the

degree set of G.

Now, we recall a known result established by Liu et al. [16].

Lemma 2. [16] Let Ψ be a real-valued symmetric function defined on the

Cartesian square of the set of all nonnegative real numbers such that the

following three conditions hold:

(i). The function Ψ is increasing in either of its two variables.

(ii). The function f is strictly decreasing, where f(x) = Ψ(a1, x)−Ψ(a2, x)

with x ≥ 1, and a1, a2, are fixed real numbers satisfying a1 > a2 ≥ 0.

(iii). If a > b+ 1 ≥ 2, then the inequality

a[Ψ(a, a)−Ψ(a− 1, a)]− b[Ψ(b+ 1, b)−Ψ(b, b)] > 0

holds.

Then, in the class of all k-cyclic graphs of order n, only the graph(s)

having the degree set {2, 3} such that m2,2 = n − 2k + 1, m2,3 = 2

and m3,3 = 3k − 4, attain(s) the minimum value of the topological index∑
uv∈E(G) Ψ(d(u), d(v)), where n ≥ 5(k − 1) and k ≥ 3.

The following corollary (which covers the first main result of [14] for

n ≥ 10) follows from Lemma 2.

Corollary 1. In the class of all k-cyclic graphs of order n, only the

graph(s) having the degree set {2, 3} such that m2,2 = n−2k+1, m2,3 = 2

and m3,3 = 3k − 4, attain(s) the minimum value of the Euler-Sombor in-

dex, where n ≥ 5(k − 1) and k ≥ 3. Particularly, among all tricyclic

graphs of order n, the graph G⋆ (depicted in Figure 1) uniquely attains the

minimum value of the Euler-Sombor index for n ≥ 10.
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Figure 1. The tricyclic graph G⋆.

Proof. Let Ψ(x1, x2) =
√

x2
1 + x2

2 + x1x2 with x1 ≥ 0 and x2 ≥ 0. We

show that all three conditions of Lemma 2 hold for Ψ. Condition (i)

follows from Lemma 1. To discuss condition (ii), for x1 > 0 and x2 > 0,

we note that

∂2

∂x1∂x2
Ψ(x1, x2) =

∂2

∂x2∂x1
Ψ(x1, x2) = − 3x1x2

4(x2
1 + x1x2 + x2

2)
3/2

< 0.

Thus, for a1 > a2 > 0, the derivative of the function f defined as f(x) =

Ψ(a1, x) − Ψ(a2, x) is strictly decreasing for x ≥ 1. Also, if a1 > a2 = 0

and x ≥ 1, then

f ′(x) =
2x+ a1

2
√
x2 + a1x+ a21

− 1 < 0.

Next, we discuss condition (iii) of Lemma 2. For a > b+ 1 ≥ 2, we have

a[Ψ(a, a)−Ψ(a− 1, a)] > (b+ 1)[Ψ(b+ 1, b+ 1)−Ψ(b, b+ 1)]

> b[Ψ(b+ 1, b)−Ψ(b, b)]

and hence a[Ψ(a, a)−Ψ(a− 1, a)]− b[Ψ(b+ 1, b)−Ψ(b, b)] > 0.

Consequently, the conclusion of the corollary follows from Lemma 2.

Remark. If we replace the text “graphs” with “molecular graphs” in the

statement of Corollary 1, then the modified statement remains valid.

We note here that Corollary 1 does not provide graphs attaining the

minimum Euler-Sombor index among all k-cyclic graphs of order n for
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n < 5(k − 1). Next, we focus our attention on extending Corollary 1 by

relaxing the condition n ≥ 5(k − 1) to n > 2(k − 1). For this, we need

some preparation first.

Lemma 3. [16] Let Ψ be the function defined in Lemma 2 satisfying the

three conditions listed there. Let G be a graph minimizing the topological

index
∑

uv∈E(G) Ψ(d(u), d(v)) among all k-cyclic graphs of order n. Then,

the difference between the maximum and minimum degrees of G is at most

1. If, in addition, k ≥ 1 then the minimum degree of G is at least 2.

In the proof of Corollary 1, we have verified all three conditions of

Lemma 2 for Ψ(x1, x2) =
√
x2
1 + x2

2 + x1x2. Hence, we have the next

result by Lemma 3.

Corollary 2. Let G be a graph minimizing the Euler Sombor index among

all k-cyclic graphs of order n. Then, the difference between the maximum

and minimum degrees of G is at most 1. If, in addition, k ≥ 1 then the

minimum degree of G is at least 2.

For a graph G, let ni = |{v ∈ V (G) : d(v) = i}|.

Lemma 4. For an integer k greater than 1, let G be a graph minimizing

the Euler-Sombor index among all k-cyclic graphs of order n, where n ≥ 4

if k = 2 and n ≥ 2(k − 1) if k ≥ 3. Then, the maximum degree of G is 3.

Proof. Let δ and ∆ be the minimum degree and maximum degree of G,

respectively. From the assumption k ≥ 2 and the fact that G is connected,

it follows that ∆ ≥ 3. Also, by Corollary 2, we have δ ≥ 2. Contrarily,

assume that ∆ ≥ 4. Since k = |E(G)| −n+1, we have n ≥ 2(|E(G)| −n),

which implies that

n2 +

∆∑
i=3

ni ≥ 2

(
1

2

∆∑
i=3

ini −
∆∑
i=3

ni

)

which gives

n2 ≥
∆∑
i=4

(i− 3)ni > 0.

Hence, δ = 2, which gives ∆− δ ≥ 2, a contradiction to Corollary 2.
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Lemma 5. [16] Let Ψ be the function defined in Lemma 2 satisfying the

first two conditions listed there. Let G be a connected graph. Let u, x, v, y be

distinct vertices of G such that ux, vy ∈ E(G) and uy, vx ̸∈ E(G), provided

that dG(u) ≥ dG(v) and dG(y) ≥ dG(x). If G′ is the graph obtained from

G by removing the edges ux, vy and adding the edges uy, vx, then∑
ab∈E(G)

Ψ(dG(a), dG(b)) ≥
∑

ab∈E(G′)

Ψ(dG′(a), dG′(b))

with equality if and only if either dG(u) = dG(v) or dG(y) = dG(x).

In the proof of Corollary 1, we have verified the first two conditions

of Lemma 2 for Ψ(x1, x2) =
√
x2
1 + x2

2 + x1x2. Hence, we have the next

result by Lemma 5.

Corollary 3. For the graphs G and G′ defined in Lemma 5, it holds that

EU(G) ≥ EU(G′) with equality if and only if either dG(u) = dG(v) or

dG(y) = dG(x).

Lemma 6. For an integer k greater than 1, let G be a graph minimizing

the Euler-Sombor index among all k-cyclic graphs of order n, where n ≥ 4

if k = 2 and n > 2(k − 1) if k ≥ 3. Then, m2,3 = 2.

Proof. By Corollary 2 and Lemma 4, the minimum degree of G is at least 2

and its maximum degree is 3. Since n2+n3 = n and 2n2+3n3 = 2(n+k−1),

we have n2 = n − 2(k − 1) > 0, which implies that the minimum degree

of G is 2. Hence, m2,3 > 0 because G is connected. Also, we note that

2m2,2+m2,3 = 2n2, which confirms that m2,3 is even, and hence m2,3 ≥ 2.

Contrarily, assume that m2,3 ≥ 4. Then, G contains distinct vertices

u, x, v, y such that ux, vy ∈ E(G), uy, vx ̸∈ E(G), provided that dG(u) =

3, dG(v) = 2, dG(y) = 3, dG(x) = 2, and the graph G′ obtained from G

by removing the edges ux, vy and adding the edges uy, vx is connected.

Then, by Corollary 3, we have EU(G) > EU(G′), a contradiction.

Now, we are in a position to obtain an extended version of Corollary

1. Particularly, by Corollary 2, Lemma 4 and Lemma 6, we have the next

result, which covers Theorem 1 of [14].



556

Theorem 1. In the class of all k-cyclic graphs of order n, only the graph(s)

having the degree set {2, 3} such that m2,2 = n − 2k + 1, m2,3 = 2 and

m3,3 = 3k − 4, attain(s) the minimum value of the Euler-Sombor index,

where n > 2(k − 1) for k ≥ 3 and n ≥ 4 for k = 2.

Now, we focus on maximizing the Euler-Somber index of k-cyclic graphs

of a given order. The next result is obtained by utilizing Lemma 2.1 of [2]

and Lemma 1. This result also follows from Theorem 1.6 of [13] and

Lemma 1.

Lemma 7. If G is a graph maximizing the Euler-Sombor index among all

k-cyclic graphs of order n, then the maximum degree of G is n− 1.

Let Hn,i be the graph of order n formed by inserting i edges in the

star graph Sn of order n between a fixed vertex of degree one and i other

vertices of degree one, where n ≥ 5 and i ∈ {2, 3}. Denote by Hn,1 the

unique 1-cyclic graph of order n and maximum degree n− 1, where n ≥ 4.

There are only two 2-cyclic graphs of order n and maximum degree n− 1;

one of them is Hn,2 and the other, say Jn, is obtained from Sn by adding

two non-adjacent edges. But, EU(Hn,2) > EU(Jn). Hence, Lemma 7

provides the following:

Corollary 4. The star graph uniquely maximizes the Euler-Sombor index

among all trees of order n for n ≥ 4. Also, Hn,k uniquely maximizes the

Euler-Sombor index among all k-cyclic graphs of order n, where n ≥ k+3

and k ∈ {1, 2}.

Next, by using Lemma 7, we prove the second main result of [14].

Theorem 2. The graph Hn,3 (depicted in Figure 2) uniquely maximizes

the Euler-Sombor index among all tricyclic graphs of order n for n ≥ 5.

Proof. Because of Lemma 7, it is sufficient to consider all tricyclic graphs

of order n with maximum degree n− 1. All such graphs, namely, G1, G2,

G3, G4 and Hn,3, are shown in Figure 2. The Euler-Sombor indices of the

graphs G1, G2, G3, G4, Hn,3, are given as follows, respectively:

(n− 7)
√
n2 − n+ 1 + 6

√
n2 + 3 + 6

√
3,
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G1 G2 G3 G4 Hn,3

Figure 2. All tricyclic graphs of order n and maximum degree n− 1.

(n− 6)
√
n2 − n+ 1 + 4

√
n2 + 3 +

√
n2 + n+ 7 + 2

√
19 + 2

√
3,

(n− 5)
√
n2 − n+ 1 + 2

√
n2 + 3 + 2

√
n2 + n+ 7 + 2

√
19 + 3

√
3,

(n− 4)
√

n2 − n+ 1 + 3
√

n2 + n+ 7 + 9
√
3,

(n− 5)
√
n2 − n+ 1 + 3

√
n2 + 3 +

√
n2 + 2n+ 13 + 6

√
7.

After comparing each of the first four expressions with the last one, we

conclude that EU(Gi) < EU(Hn,3) for every i ∈ {1, 2, 3, 4}.

`≥1︷ ︸︸ ︷ `≥1︷ ︸︸ ︷

(i) (ii)

`≥0︷ ︸︸ ︷

(iii)

Figure 3. Examples of extremal graphs mentioned in Theorem 3.

We end this paper by reporting a result concerning the maximum Euler-

Sombor index of tricyclic molecular graphs, which follows from Theorem

2 of [1].
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Theorem 3. Among all tricyclic molecular graphs of order n with n ≥ 11,

(i) only the graph(s) containing no vertices of degrees 2 and 3 maxi-

mize(s) the Euler-Sombor index, when n ≡ 2 (mod 3);

(ii) only the graph(s) containing no vertex of degree 3 and possessing

exactly one vertex of degree 2, which is adjacent to two vertices of

degree 4, maximize(s) the Euler-Sombor index, when n ≡ 0 (mod 3).

(iii) only the graph(s) containing no vertex of degree 2 and possessing

exactly one vertex of degree 3, which is adjacent to three vertices of

degree 4, maximize(s) the Euler-Sombor index, when n ≡ 1 (mod 3).

An example of the extremal graphs mentioned in each of the three parts is

given in Figure 3.
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