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Abstract

The paper is concerned with hexacyclic systems (Fn) and their
Möbius counterparts (Mn). Continuing the studies in MATCH
Commun. Math. Comput. Chem. 94 (2025) 477, the character-
istic polynomial and the eigenvalues of the Sombor matrix of Fn

and Mn, and the respective Sombor energies are determined. Up-
per and lower bounds for the Sombor energy in terms of the number
of hexagons are also obtained.

1 Introduction

Let G be a simple graph with vertex set V(G) and edges set E(G), and

let uv ∈ E(G) be the edge connecting the vertices u, v ∈ V(G). Let d(u)

be the degree (= number of first neighbors) of the vertex u ∈ V(G).
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In present-day mathematical chemistry, a large number of graph in-

variants of the form

TI = TI(G) =
∑

uv∈E(G)

φ
(
d(u), d(v)

)
(1)

is being studied, where φ is an appropriately chosen function. These are

referred to as vertex-degree-based (VDB) or bond incidence degree (BID)

topological indices [17,19,34]. Among them, the recently conceived Sombor

index, defined as [9]

SO = SO(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2

attracted much attention. This VDB molecular structure descriptor is

based on geometric considerations [9,12,16,21]. Of its several noteworthy

applications we mention here just a few [1, 2, 15, 30–33]. Results of its

mathematical investigations are found in the review [22].

The structure of the molecular graphs called here hexacyclic systems

(Fn) and their Möbius counterparts (Mn) was described in detail in the

preceding paper [26], and illustrated in its Figure 1. The underlying ben-

zenoid systems are usually referred to as cylindrical (Hückel) and Möbius

polyacenes. The Hückel molecular orbital theory of these conjugated

species was studied in detail in the early days of mathematical chem-

istry. The adjacency spectrum of Fn was first determined by Derflinger

and Sofer [5] (see also [8, 23, 28]), whereas that of Mn by Polansky [28].

The Laplacian and signless Laplacian spectra of Fn and Mn were recently

studied by the present authors in [26]. For some earlier work along the

same lines see [24].

If n denotes the number of hexagons of Fn and Mn, then it is easy to

see that |V(Fn)| = |V(Mn)| = 4n and |E(Fn)| = |E(Mn)| = 5n. Both

Fn and Mn possess only vertices of degree 2 and 3. Of their edges, 4n

connect vertices of degree 2 and 3, and n connect two vertices of degree 3.

Therefore, for any VDB topological index of type (1),

TI(Fn) = TI(Mn) = 4nφ(2, 3) + nφ(3, 3)
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and thus

SO(Fn) = SO(Mn) = 4n
√
22 + 32 + n

√
32 + 32 .

This means that VDB topological indices cannot distinguish between a

hexacyclic system and its Möbuis counterpart. As will be seen below, this

is not the case with the spectra of VDB matrices. For this reason, in this

paper we study the spectrum of the Sombor matrix of Fn and Mn, which

encodes the structural differences between these molecular graphs.

Let the vertices of the graph G be labeled by v1, v2, . . . , vN . Then the

matrix pertaining to the VDB topological matrix TI(G), given by Eq. (1),

is the square matrix of order N , whose (i, j)-element is defined as
φ
(
d(vi), d(vj)

)
if vivj ∈ E(G)

0 if vivj /∈ E(G)

0 if i = j .

Then the Sombor matrix SO = SO(G) is defined via its (i, j)-elements as
√
d(vi)2 + d(vj)2 if vivj ∈ E(G)

0 if vivj /∈ E(G)

0 if i = j .

The concept of Sombor matrix was put forward soon after the Sombor

topological index was introduced [6,10,35], and was eventually investigated

by numerous authors, see e.g., [20,27,29]. In all those papers the emphasis

was put on its spectral properties, eigenvalues and energy in particular.

2 Spectral properties of the Sombor matrix

of hexacyclic systems

Our main result is computation of the characteristic polynomial of the

Sombor matrix of hexacyclic systems, which is different for Fn and Mn. It

is given in the following theorem.
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Theorem 1. (i) The characteristic polynomial of the Sombor matrix of

the hexacyclic system Fn with n > 1 hexagons is given by

PFn(µ) =

n∏
j=1

((
µ2 − 3

√
2µ− 26− 26 cos

(
2πj

n

))
×

×
(
µ2 + 3

√
2µ− 26− 26 cos

(
2πj

n

)))
.

(ii) The characteristic polynomial of the Sombor matrix of the Möbius

hexacyclic system Mn with n > 1 hexagons is given by

PMn
(ν) =

2n−1∏
j=0

(
ν2 − (−1)j 3

√
2ν − 26− 26 cos

πj

n

)
.

From the characteristic polynomials PFn(µ) and PMn(ν), the spectrum

of matrices SO(Fn) and SO(Mn) follows immediately:

Corollary 1. The spectrum of the Sombor matrix of Fn is given by S =

S1 ∪ S2, where

S1 =

{
µ±
1,j =

√
2

2

(
3±

√
61 + 52 cos

(
2πj

n

))
: j = 1, . . . , n

}
,

S2 =

{
µ±
2,j =

√
2

2

(
−3±

√
61 + 52 cos

(
2πj

n

))
: j = 1, . . . , n

}
.

Corollary 2. The spectrum of the Sombor matrix of Mn is given by T =

T1 ∪ T2, where

T1 =

{
ν±1,j =

√
2

2

(
3±

√
61 + 52 cos

(
2πj

n

))
: j = 0, . . . , n− 1

}
,

T2 =

{
ν±2,j =

√
2

2

(
−3±

√
61 + 52 cos

(
(2j + 1)π

n

))
: j = 0, . . . , n− 1

}
.

In what follows, using the spectra of SO(Fn) and SO(Mn), we compute

the respective Sombor energies, which happen to have different values. In

addition, we will deduce upper and lower bounds for the Sombor energy
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of Fn and Mn in terms of number n of hexagons. We conclude the paper

with numerical calculations of these energies.

In order to prove Theorem 1, some preparation is needed.

3 Preparatory notes

We start by recalling the vertex labeling of the graphs Fn and Mn, de-

scribed in [23] (see also Figure 1 in [26]).

The number of vertices of Fn and Mn is 4n and the number of edges

is 5n. The set of vertices V(Fn) is written as V(Fn) = X1 ∪X2 ∪ Y1 ∪ Y2,

where

X1 = {1, 3, 5, . . . , 2n− 1}, X2 = {1′, 3′, 5′, . . . , (2n− 1)′},

Y1 = {2, 4, 6, . . . , 2n}, Y2 = {2′, 4′, 6′, . . . , (2n)′}.

Therefore, the adjacency matrix of Fn is given by

A(Fn) =


0 In CT 0

In 0 0 CT

C 0 0 0

0 C 0 0

 ,

where the matrixC is such thatCT is the incidence matrix of the cycle Cn.

The degree of all vertices in X1 ∪X2 is 3, whereas the degree of vertices

in Y1 ∪ Y2 is 2. Hence

SO(Fn) =


0 3

√
2In

√
13CT 0

3
√
2In 0 0

√
13CT

√
13C 0 0 0

0
√
13C 0 0

 .

By using the same vertex labeling as in the case of Fn, the adjacency
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matrix of Mn can be written as

A(Mn) =

0n In

In 0n

DT

D 02n

 ,

where

DT =



1 0 0 1

1 1 0

0 1 1

. . .
. . .

1 1 0

0 0 1 1


2n

.

Using the values for degrees, it follows that

SO(Mn) =

 0n 3
√
2In

3
√
2In 0n

√
13DT

√
13D 02n

 .

3.1 Circulant matrices

Circulant matrices of order n are matrices of the type

S =



s0 s1 . . . sn−2 sn−1

sn−1 s0 . . . sn−3 sn−2

...
...

. . .
...

...

s2 s3 . . . s0 s1

s1 s2 . . . sn−1 s0


. (2)

Their eigenvalues are well-known and are described by the following

Lemma [4].

Lemma 1. Let S be a circulant matrix of order n. Then its eigenvalues

are

λj = s0 + s1ωj + s2ω
2
j + · · ·+ sn−1ω

n−1
j ,



511

for j = 0, 1, . . . , n− 1, and

det(S) =

n−1∏
j=0

(
s0 + s1ωj + s2ω

2
j + · · ·+ sn−1ω

n−1
j

)
,

where ωj = e
2πij
n is the n-th root of unity.

4 Proof of Theorem 1

In this section we prove our main result. This will be done in two parts.

In Section 4.1 we evaluate the characteristic polynomial of the matrix

SO(Fn), whereas in Section 4.2 we compute the characteristic polynomial

od the matrix SO(Mn).

4.1 The spectrum of the Sombor matrix of Fn

From the definition of the characteristic polynomial of SO(Fn) we have

PFn
(µ) = det(µ I4n − SO(Fn)),

hence

PFn
(µ) = det


µIn −3

√
2In −

√
13CT 0

−3
√
2In µIn 0 −

√
13CT

−
√
13C 0 µIn 0

0 −
√
13C 0 µIn



= det


−µIn 3

√
2In

√
13CT 0

3
√
2In −µIn 0

√
13CT

√
13C 0 −µIn 0

0
√
13C 0 −µIn

 .

Using the following property of the determinant of the block matrix

consisting of four matrices Aj , j = 1, 2, 3, 4

det

((
A1 A2

A3 A4

))
= det

(
A1 −A2A

−1
4 A3

)
det(A4) (3)



512

we deduce that

PFn
(µ) = det

((
−µIn 0

0 −µIn

))
det

((
−µIn 3

√
2In

3
√
2In −µIn

)

−13

(
CT 0

0 CT

)(
−µIn 0

0 −µIn

)−1(
C 0

0 C

) .

By performing simple calculations using properties of determinants, we get

PFn(µ) =µ2n det

((
−µIn 3

√
2In

3
√
2In −µIn

)
+

13

µ

(
CTC 0

0 CTC

))

=µ2n det

((
−µIn + 13

µ CTC 3
√
2In

3
√
2In −µIn + 13

µ CTC

))

=µ2n det

((
µ− 3

√
2
)
In − 13

µ
CTC

)
×

× det

((
µ+ 3

√
2
)
In − 13

µ
CTC

)

=132n det

(
1

13
µ
(
µ− 3

√
2
)
In −CTC

)
×

× det

(
1

13
µ
(
µ+ 3

√
2
)
In −CTC

)
.

Now, we recall a result from [3], in which it is proved that the signless

Laplacian matrix Q(Cn) associated to the cycle Cn with n vertices can be

expressed as

Q(Cn) = CTC, (4)
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whereC is such thatCT is the incidence matrix of the cycle Cn. Therefore,

PFn
(µ) =132n det

(
1

13
µ
(
µ− 3

√
2
)
In −Q(Cn)

)
×

× det

(
1

13
µ
(
µ+ 3

√
2
)
In −Q(Cn)

)

=132nQCn

(
1

13
µ
(
µ− 3

√
2
))

QCn

(
1

13
µ
(
µ+ 3

√
2
))

.

According to [23, Lemma 2.3.], the characteristic polynomial of Q(Cn)

is of the form

QCn
(λ) = det(λIn −Q(Cn)) =

n∏
j=1

(
λ− 2− 2 cos

(
2πj

n

))
, (5)

which implies

PFn
(µ) =

n∏
j=1

(
µ
(
µ− 3

√
2
)
− 2− 2 cos

(
2πj

n

))
×

×
(
µ
(
µ+ 3

√
2
)
− 2− 2 cos

(
2πj

n

))
.

This proves the first part of Theorem 1.

4.2 The spectrum of the Sombor matrix of Mn

The characteristic polynomial of the Sombor matrix of Mn is

PMn(ν) = det(ν I4n − SO(Mn)). (6)

In order to compute PMn(ν), we will use properties of circulant matrices.

Namely, by definition

PMn
(ν) = det

 νIn −3
√
2In

−3
√
2In νIn

−
√
13DT

−
√
13D νI2n

 .
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Using the identity (3), it follows that

PMn(ν) = ν2n det

((
νIn −3

√
2In

−3
√
2In νIn

)
− 13

ν
DTD

)

= 132n det

((
1
13ν

2In
−3

√
2

13 νIn
−3

√
2

13 νIn
1
13ν

2In

)
−DTD

)
.

It is straightforward to see that the matrix DTD is a circulant matrix

of order 2n, as well as the matrix(
1
13ν

2In
−3

√
2

13 νIn
−3

√
2

13 νIn
1
13ν

2In

)
.

Thus, their difference is also a circulant matrix, equal to

ν2

13 − 2 −1 0 0 −3
√
2ν

13 −1

−1 ν2

13 − 2 −1 0 0 −3
√
2ν

13 0

. . .
. . .

. . .

0 −1 ν2

13 − 2 −1 0 −3
√
2ν

13
−3

√
2ν

13 −1 ν2

13 − 2 −1 0
−3

√
2ν

13 −1 ν2

13 − 2 −1

. . .
. . .

. . .

0 −3
√
2ν

13 −1 ν2

13 − 2 −1

−1 −3
√
2ν

13 −1 ν2

13 − 2



.

This is the circulant matrix of the form (2) with s0 = ν2

13 − 2, s1 = −1,

sn = −3
√
2ν

13 , s2n−1 = −1 and sj = 0 for all j ̸= 0, 1, n, 2n− 1. Therefore,

Lemma 1 yields that

PMn(ν) = 132n
2n−1∏
j=0

(
1

13
ν2 − 2− 3

√
2

13
(−1)jν − 2 cos

πj

n

)

=
2n−1∏
j=0

(
ν2 − (−1)j3

√
2ν − 26− 26 cos

πj

n

)
.
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This completes the proof of the second part of Theorem 1.

5 Sombor energy of Fn and Mn

In this section, we derive expressions for the Sombor energy of hexacyclic

systems Fn and Mn and provide upper and lower bounds for their values,

depending on the number n of hexagons.

Recall that the ordinary energy of a graph G, introduced in 1978 [7],

is the sum of absolute values of the eigenvalues of the adjacency matrix

of G [18]. Eventually, the concept of graph energy was extended to other

graph matrices. Thus, the energy of the graph matrix M(G) is defined as

the sum of the absolute values of the eigenvalues of M(G) [11, 14]. More

generally, the energy of the graph matrix M(G) is the sum of singular

values of M(G) [25].

Therefore, the Sombor energy of Fn and Mn are given by

ESO(Fn) =

4n∑
k=1

|µk|

and

ESO(Mn) =

4n∑
k=1

|νk|

where µk and νk are the eigenvalues of the matrices SO(Fn) and SO(Mn),

specified in Corollaries 1 and 2.

Corollary 3. The Sombor energy of the hexacyclic system graph Fn is

given by

ESO(Fn) = 2
√
2

n∑
j=1

√
61 + 52 cos

(
2πj

n

)
. (7)

Proof. The proof follows from the expressions for the eigenvalues, Corol-

lary 1, by paring the eigenvalues µ+
k,j and µ−

k,j for k = 1, 2 and j =

1, . . . , n.

In a fully analogous manner, using Corollary 2, we arrive at:
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Corollary 4. The Sombor energy of the hexacyclic system graph Mn is

given by

ESO(Mn) =
√
2

2n−1∑
j=0

√
61 + 52 cos

(
πj

n

)
. (8)

We now derive upper and lower bounds for the energies ESO(Fn) and

ESO(Mn). Our starting point is the following lemma.

Lemma 2. For real numbers a,b, such that a > b > 0 and integers n ≥ 1,

we have the following upper and lower bounds(√
a− b

2
+

2
√
b

π

)
−

√
b

n
≤ 1

n

n−1∑
j=0

√
a+ b cos

(
2πj

n

)
≤

√
a (9)

and (√
a− b

2
+

2
√
b

π

)
−

√
b

2n
≤ 1

2n

2n−1∑
j=0

√
a+ b cos

(
πj

n

)
≤

√
a . (10)

Proof. First, we prove the right–hand side of (9). The Cauchy–Schwarz

inequality (
n∑

i=1

ai bi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
,

directly implies n∑
j=1

√
a+ b cos

(
2πj

n

)2

≤ n

n∑
j=1

(
a+ b cos

(
2πj

n

))
.

Since
n∑

j=1

cos

(
2πj

n

)
= 0

it follows that  n∑
j=1

√
a+ b cos

(
2πj

n

)2

≤ an2
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which proves the right–hand side of (9).

In order to prove the lower bound in (9), we start with the inequality

√
x2 + y2 ≥ |x|+ |y|√

2

between the quadratic and arithmetic means, from which it follows√
a+ b cos

(
2πj

n

)
=

√
a− b+ 2b cos2

(
πj

n

)
≥ 1√

2

(√
a− b+

√
2b

∣∣∣∣cos(πj

n

)∣∣∣∣) .

Therefore,

1

n

n−1∑
j=0

√
a+ b cos

(
2πj

n

)
≥
√

a− b

2
+

√
b

n

n−1∑
j=0

∣∣∣∣cos(πj

n

)∣∣∣∣ . (11)

Next, using trigonometric identities, it is easy to establish that

n−1∑
j=0

∣∣∣∣cos(πj

n

)∣∣∣∣ = n∑
j=0

∣∣∣∣cos(πj

n

)∣∣∣∣− 1 = 2

⌊(n−1)/2⌋∑
j=0

cos

(
πj

n

)
− 1, (12)

where ⌊x⌋ denotes the integer part of the real number x. Now, we use that

2 cos

(
πj

n

)
= ei

πj
n + e−iπj

n

and use the formula for the geometric sequence partial sum to get

2

⌊(n−1)/2⌋∑
j=0

cos

(
πj

n

)
=

1− ei
π
n (⌊(n−1)/2⌋+1)

1− ei
π
n

+
1− e−iπ

n (⌊(n−1)/2⌋+1)

1− e−iπ
n

,
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which is equivalent to

2

⌊(n−1)/2⌋∑
j=0

cos

(
πj

n

)
= 1−

cos
(
π
n

(
⌊n−1

2 ⌋+ 1
))

− cos
(
π
n⌊

n−1
2 ⌋
)

1− cos
(
π
n

)
= 1 +

sin
(

π
2n

(
2⌊n−1

2 ⌋+ 1
))

sin
(

π
2n

) ,

where the last identity was deduced by applying trigonometric identities.

When n is odd, it is easy to see that

sin
( π

2n

(
2⌊n−1

2 ⌋+ 1
))

= sin(π/2) = 1 ,

whereas for even n, one gets

sin
( π

2n

(
2⌊n−1

2 ⌋+ 1
))

= sin(π/2− π/(2n)) = cos(π/(2n)) .

Therefore, for all n, using the inequalities

sin
( π

2n

)
≤ π

2n
, cos

( π

2n

)
≥ 1− 1

2

( π

2n

)2
and 1− π

4n ≥ 0, we get

2

⌊n−1
2 ⌋∑

j=0

cos

(
πj

n

)
≥ 1 +

cos
(

π
2n

)
sin
(

π
2n

) ≥ 1 +
2n

π

(
1− 1

2

( π

2n

)2)
≥ 2n

π
.

Combining the above expression with (11) and (12) yields

1

n

n−1∑
j=0

√
a+ b cos

(
2πj

n

)
≥
√

a− b

2
+

√
b

n

(
2n

π
− 1

)
.

This proves the left–hand side of (9).

The proof of (10) is carried out in an analogous manner and will be

omitted.

By setting a = 61 and b = 52 in the above lemma, in view of expressions

(7) and (8), we arrive at the following corollary.
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Corollary 5. The Sombor energies of Fn and Mn are bounded as(
6 +

4
√
104

π

)
n− 4

√
26

n
≤ ESO(Fn) ≤ 2

√
122n

and (
6 +

4
√
104

π

)
n− 4

√
26

2n
≤ ESO(Mn) ≤ 2

√
122n .

6 Numerical work

Based on the above established formulas, we calculated Sombor energies

of Fn and Mn, as well as their bounds, for some selected values of n. The

respective numerical values are given in Tables 1 and 2. We see that the

relative errors of the upper and lower bounds are around 6.1% and 8.8%,

respectively.

n ESO(Fn) ESO(Mn)
2 38.55187 41.36666
3 63.53299 62.39095
4 82.73332 83.25649
5 104.34040 104.08698
6 124.78190 124.90861
7 145.79251 145.72786
8 166.51298 166.54644
9 187.38234 187.36484
10 208.17396 208.18318
11 229.00640 229.00151
12 249.81722 249.81983
13 270.63955 270.63815
14 291.45572 291.45647
15 312.27519 312.27479
16 333.09289 333.09311
17 353.91154 353.91143
18 374.72968 374.72974
19 395.54810 395.54806
20 416.36636 416.36638

Table 1. Sombor energies of the hexacyclic systems Fn and Mn.
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n
(
6 + 4

√
104
π

)
n− 4

√
26

n ESO(Fn) 2
√
122n

20 378.67113 416.36636 441.81444
25 473.79782 520.45798 552.26805
30 568.85653 624.54957 662.72166
35 663.87638 728.64117 773.17527
40 758.87196 832.73276 883.62888
45 853.85135 936.82436 994.08249
50 948.81941 1040.91596 1104.53610
55 1043.77922 1145.00755 1214.98971
60 1138.73286 1249.09915 1325.44332
65 1233.68174 1353.19074 1435.89693
70 1328.62689 1457.28234 1546.35054
75 1423.56904 1561.37393 1656.80415
80 1518.50877 1665.46553 1767.25776
85 1613.44650 1769.55713 1877.71137
90 1708.38257 1873.64872 1988.16498
95 1803.31723 1977.74032 2098.61859
100 1898.25070 2081.83191 2209.07220

Table 2. Sombor energy and its bounds for the hexacyclic system Fn.

From Table 1 we see that whenever the number of hexagons n is even,

then the Sombor energy of the Möbius hexacyclic system Mn exceeds that

of the ordinary hexacyclic system Fn, i.e., ESO(Mn) > ESO(Fn). If n is

odd, then the ordering of the Sombor energies is opposite, i.e., ESO(Mn) <

ESO(Fn).

In order to try to understand the cause of this regularity, note that the

perimeter of Mn consists of a (4n)-sized cycle, whereas the perimeter of

Fn is composed of two disjoint (2n)-cycles.

In the case of Sombor energy, certain Hückel-rule-type phenomena were

established [13]. If the same apply also to the hexacyclic species, then the

following situation could happen.

For odd n = 2k+1, the two perimeter cycles of Fn are of (4k+2)-type

(that is, of size not divisible by 4), and therefore would have an increasing

effect on Sombor energy. For even n = 2k, these cycles are of (4k)-type

(that is, of size divisible by 4), having a decreasing effect on Sombor energy.

The perimeter cycle of Mn is always of (4k)-type, but since its size is twice

larger, its decreasing effect would be smaller.
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It may be that such cyclic effects result in different ordering of Som-

bor energies of Mn and Fn for even and odd n. However, testing of this

hypothesis would require more detailed, and more quantitative considera-

tions, which remains a task for the future.
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