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Abstract

The hexacyclic system graph F, is the graph derived from a
linear hexagonal chain L,, with n > 1 hexagons by identifying two
pairs of ends of L,,. The Md&bious hexacyclic system graph M,, is the
graph derived from a linear hexagonal chain L,, with n > 1 hexagons
by identifying two pairs of ends of L, with a twist. In this paper,
we compute, in a closed form, the resolvent energy, the Laplacian
and the signless Laplacian resolvent energy, as well as the resolvent
Estrada index and the resolvent signless Estrada index of F, and
M,. All five indices are expressed as a rational function in the
number n of hexagons, defined in terms of Chebyshev polynomials
of the first and the second kind. Those expressions allow for a fast
numerical computation of indices and for deducing sharp bounds on
their growth.

1 Introduction

A topological index of a graph is a graph invariant that represents a certain

number associated with the graph and which further describes its struc-
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ture. The interest in studying topological indices is mainly due to their
use as one of the fundamental tools in QSPR/QSAR modeling employed in
different fields of chemistry in order to describe and predict physical prop-
erties and biological activities of organic compounds from their molecular
structures, see e.g. [40], [59] or [24]. There exist many topological indices
of graphs. Some of those are defined in terms of geometric properties of a
graph, such as (minimal) distances between vertices (the Wiener index).
A topological index may also be expressed in terms of the spectrum
of its adjacency matrix which then also determines the spectrum of the
Laplacian or a modified Laplacian matrix associated to a graph (e.g. sign-
less Laplacian, normalized Laplacian). The energy of a graph, introduced
in [26] equals the sum of absolute values of the eigenvalues of the ad-
jacency matrix, see also [29] and [42] for a comparative study of graph
energies. The Estrada index, introduced by Estrada in [19] equals the sum
> ; exp(A;) over all eigenvalues A; of the adjacency matrix of a graph.
A variety of modifications of the Estrada index have been studied in the
literature and defined in terms of eigenvalues of a matrix associated to
the graph, such as the Laplacian, the normalized Laplacian, the signless
Laplacian, and the maximum Laplacian, to name a few; see the analysis

and comparison in [20] and extensive bibliography therein.

1.1 Resolvent based topological graph indices

Resolvent based indices are closely related to the spectral moments of a
graph and have a vast potential in analyzing structure activity relation-
ships. They possess high discriminating power with respect to both bio-
logical activity and physical properties of a graph model of a molecule, see
e.g. [25], [50] or [21].

More precisely, for an undirected graph G on N vertices with the ad-
jacency matrix A with eigenvalues A,..., Ay its resolvent matrix R 4(z)
is defined, for all complex z € C\ {\1,...,An} as

Ra(z) = (zIy — A)71,

where Iy is the identity matrix of order N. The resolvent energy of the
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graph G, denoted by ER(G) is defined in [34] as the sum of eigenvalues of
the matrix R4 (). (Note that all eigenvalues of R 4(N) are positive, due
to the fact that A\; < N —1 for all j =1,...,N.) The resolvent energy

can be viewed as the special value at ¢ = N1 of the generating function

Me(t) = % 3 MGt
k=0

of the spectral moments My(G) = >_; )\? of G, see [34] where certain
bounds on FR(G) have been deduced. Properties of the resolvent energy,
for different graphs have been studied in [1], [18], [22], [71], [74].

The Laplacian resolvent energy, denoted by RL(G) and associated to
the Laplacian L := D — A, where D is the degree matrix of G, is defined
in [8] as the sum of all eigenvalues of the matrix (N +1 — L)L

Some lower bounds for RL(G) are given in [53] and sharpened in [75],
[48]. The signless Laplacian resolvent energy, associated to the signless
Laplacian L* := D + A, denoted by RLT(G) is defined as the sum of all
eigenvalues of the matrix (2N — 1 — LT)~%

We refer to [8] for further details and [5], [6] for properties of the
normalized signless Laplacian resolvent energy.

The resolvent Estrada index associated to the graph G on N vertices,

was introduced in [21] as
EER(G) = Mi(G)(N -1)7*.
k=0

Benzi and Boito showed in [2] that EER(G) actually equals (N — 1) times
the sum of the eigenvalues of the resolvent matrix R4 (N — 1), in view of
which the index FER(G) was named. Analogously, the resolvent signless
Estrada index SLEER(G) is defined in [52] as 2(N — 1) times the sum of
the eigenvalues of the matrix (2N — 2 — LT)~!. Note that EER(G) and
SLEER(G) are well defined for all graphs G different from the complete
graph Ky on N vertices.

The resolvent Estrada index is further studied in [10] and [11]; the lower

bounds for the index have been derived in [72], with further refinements of
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the bounds for both the resolvent Estrada index and the resolvent signless
Laplacian Estrada index deduced in [73]. The extremal properties of the
resolvent Estrada index have been studied in [33], [32], [52], and [71].

1.2 Hexagonal chains and systems

In theoretical and mathematical chemistry, hexagonal systems are one of
the very important categories of structures that can be viewed as a natural
graph representation of different molecules. For example, they can be
considered as representations of (unbranched catacondensed) benzenoid
hydrocarbons, see e.g. [28], [30], [31], [57].

There exist different types of hexagonal systems, depending on a way
hexagons are connected. The simplest hexagonal system is a linear hexag-
onal chain with n hexagons. By identifying the end edges of a linear
hexagonal chain one can create a hexacyclic or a M6bius hexacyclic chain,
see Figure 1 below.

Properties of hexagonal chains have been extensively studied by mathe-
maticians, chemists and physicists. For example, in [35] perfect matchings
in random hexagonal chain graphs have been studied; the Wiener index of
hexagonal chain was computed in [16], its edge-Szeged index in [61], while
the Kirchhoff and the degree Kirchhoff indices of hexagonal chains were
computed in [65] and [37], respectively. Global mean first passage time of
random walks on a hexagonal chain was computed in [66].

The energy of directed hexagonal systems has been derived in [56],
the characteristic polynomial of prolate rectangle of benzenoid system has
been computed in [45], the Kirchoff index and the degree-Kirchhoff in-
dex for hexagonal Mébius graphs (chains) were obtained in [62] and [46],
respectively. Pan and Li [54] computed the degree-Kirchhoff index and
the number of spanning trees of the linear crossed hexagonal chains, while
Huang and Li [36] determined resistance distances and Kirchhoff indices of
hexagonal cylinder chains. Further recent results on properties of hexag-
onal chains and hexagonal systems (in chronological order) can be found
in [17], [13], [4], [49], [68], [12], [64], [60], [15], [38], [69], [51], [63], [9], [67],
[70], [47]; see also [16] and an extensive bibliography there.
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1.3 Owur main results

In spite of a very extensive bibliography related to various topological
indices of hexagonal systems, the resolvent energy indices and the resolvent
Estrada indices have not been evaluated for any of the hexagonal chains
and systems described above.

The main purpose of this paper is to evaluate, in a closed form the
resolvent energy, the Laplacian and the signless Laplacian resolvent energy,
as well as the resolvent Estrada index and the resolvent signless Estrada
index of hexacyclic system graphs F;, and Mobius hexacyclic system graphs
M,,. (For more details on the structure of those graphs, see Section 2.2
below.)

The closed form evaluations of the five resolvent indices listed above

are derived in corollaries 1 — 5 below. They follow from our main theorem:

Theorem 1. Leta, b, ¢, B € R and ¢ # 0 be arbitrary constants such that
S = {s;IE :a:I:\/b—l—ccos(%(Zfﬁ)) :j:1,...7n} is a set of 2n > 2

non-zero numbers. Then

M:

Sn(a,b,c,B) : (1)

a’—b
i i ~2a " ( c )
= : c T, (“ 7b) —cos 27’
Here, T;,, and U,,,, m € NU{0} denote the Chebyshev polynomials of the
first and the second kind, respectively. Those are the unique polynomials
satisfying
T (cos @) = cos (mb) ,

Up, (cos @) sinf = sin ((m + 1) 0)

see [58] for their properties and a long list of applications.

Though Chebyshev polynomials have a vast number of applications,
to the best of our knowledge, there is only one paper relating topological
indices of graphs to Chebyshev polynomials. Namely, in [23] it is proved
that the Chebyshev polynomials provide approximations to Estrada index
of certain graphs.

As an illustration of our main result, we present the following corollary
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in which the resolvent energy of graphs F;, and M, is expressed in terms

of Chebyshev polynomials depending singly on the number n of hexagons.

Corollary 1. The resolvent energy of the hexacyclic system graph F,, and
the Mobius hexacyclic system graph M, are

1\ nU,—1(8n% —2n — 1)
ER(F,) = (4n - -
R(Fn) (” 2>Tn(8n2—2n—1)—1

4 (an 1\ nU,—1(8n% +2n — 1)
n4 =
2) T,8n2+2n—-1)—1

and

1\ nU,_1(8n% —2n — 1)
ER(M,) = (4n— -
R(M) (” 2>Tn(8n22n1)1

1\ nU,_1(8n% +2n —1)
dn+ = .
+ ( nt 2) To(8n2+2n—1)+1

(3)

We find the new closed formulas very useful for numerical calculations
since many computational tools provide very efficient and precise built-
in algorithms for numerical evaluations of Chebyshev polynomials. Some
calculations are presented in tables 1-4. We also notice that there is a very
small difference between the resolvent energies ER(F,,) and ER(M,), even
for a modest value of n. This is expected because those graphs differ only
in one edge twist.

Finally, the ratio of Chebyshev polynomials of large index and argu-
ment satisfy very sharp bounds, as derived in Lemma 1 below. Those
bounds imply very sharp bounds for all five resolvent indices computed in
this paper. For example, we show that there exists a positive constant ¢
such that

) dn — 3 dn— 3
EER(F,) = (4n” —n) <\/(8n2 —6n)2—1 + V/(8n2 —2n — 1)2 — 1>

+O(n™"),
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) dn—3 dn — 3
EER(F,) = (4n® - n) V7 =7 —1 /e —an - 17 -1

+0(n="),

as n — oQ.

1.4 Organization of the paper

After introducing the necessary background material and proving a bound
for the ratio of Chebyshev polynomials in Section 2, we prove our main
theorem in Section 3. A closed evaluation of resolvent indices is given in
Section 4. Numerical computations of indices are presented in Section 5,
while the asymptotic behavior of the resolvent energy and the resolvent

Estrada index is derived in Section 6.

2 Preliminaries

In this section, we provide necessary background material for the paper.
More precisely, we introduce resolvent based indices of a graph, define the
hexacyclic system and the Mobius hexacyclic system graphs and review
existing results on the spectrum of those graphs. In the last subsection, we
prove a sharp inequality for a certain ratio of the Chebyshev polynomials
that will be used to deduce sharp upper and lower bounds for the resolvent

based indices.

2.1 Resolvent based graph indices

Let G = (V(G), E(G)) be a simple, undirected and unweighted graph
with the set of vertices V(G) having N elements and the set of edges
E(G). We denote by A = A(G) the adjacency matrix of G and by D =
D(QG) its degree matrix. The Laplacian matrix attached to G is defined
by L = L(G) = D(G) — A(G), while the signless Laplacian matrix is
LT = L7 (G) = D(G) + A(G).

The adjacency matrix is symmetric, hence its spectrum is real. Let us
denote the spectrum of A(G) by A\ < A2 < A3 < ... < Ay, the spectrum
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of the Laplacian L by p1 < po < usz < ... < up, and the signless Laplacian
spectrum by ¢1 < ¢ < g3 < ... < qpn. It is well known that Ay < N —1,
un < N and gy < 2(N — 1), and the equality holds true if and only if G
is a complete graph K on N vertices, see [14].

The resolvent indices associated to A, L and LT are defined as follows.

The resolvent energy of a graph G is defined in [34] by

AR
= v (4)

j=1 J

while the Laplacian resolvent energy and signless Laplacian resolvent en-

ergy are defined in [8] by

N 1
RL(G) = (5)
= N+1—p,
and
N 1
+ _
RLT(G) = J,Z:l 2N —1—¢q;’ ©)

respectively. The resolvent Estrada indez is defined in [21] by

Ny N Ao\l
J
FERG=Y M = (1) 0
j=1 7=1
while the resolvent signless Estrada index is defined in [52] as
N ~1
2N -2
LEE .
SLEER(G) = Z 2N —2—g; Z ( 1)) )

Jj=1

Note that the indices (4)—(6) are well-defined for all graphs, while indices
(7) and (8) are well defined for all graphs different from Ky .
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2.2 Linear hexacyclic system graphs and their spectra

A hexagonal system graph is a structure composed of connected hexagonal
units. Different arrangements and ways of connecting these units produce
various hexagonal systems. A linear hexagonal chain is a structure where
hexagons are arranged in a straight sequential line with each hexagon
sharing an edge with the next one. This arrangement produces a chain-
like structure with unconnected ends.

The hexacyclic system F;, is a graph consisting of n > 1 hexagons
arranged in a circular sequence, connected end-to-end to form a symmetric
ring of hexagons, see Figure 1(a). The Mobius hexacyclic system a graph
consisting of n > 1 hexagons arranged in a circular sequence, formed by
twisting a hexacyclic chain before connecting its ends, introducing a single
twist. It can be understood as a graph on the Mobius strip, see Figure

1(b). Graphs F,, and M, possess N = 4n vertices and 5n edges.

(a) Hexacyclic system F,, (b) Mobius hexacyclic system M,

Figure 1. Hexagonal systems

The spectra of the adjacency matrix and of the Laplacian and signless

Laplacian of graphs F,, and M, is given in the following propositions.
Proposition 2 ([27], p. 309, [43], Corollary 4.1., see also [55], [41]).

(i) The spectrum Spar of the adjacency matriz for the graph F,, equals
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Spar1 USpars, where

1 9 21y
SPAF1={2i\/4+2<:OS(nJ> :j:l,...,n},

1 9 2mj
SpAFQZ{—2Z|:\/4+2COS<:L]> :j:l,...,n}.

(i) The spectrum Spanr of the adjacency matriz for the graph M,, equals

Span1 U Spanz, where Span1 = Spar1 and

SpAMQZ{—;i\/Z-FQCOS((Zj;l)ﬂ) :j:l,...,n}. (9)

The spectra of the Laplacian matrices for graphs F,, and M,, are easily

derived from the corresponding characteristic polynomials (see [44], The-

orem 2.1 and Theorem 3.1). They are given in the following propositions.
Proposition 3 ([44], Theorems 2.2 and 3.2.).

(i) The spectrum Sprr associated with the Laplacian matriz of the graph
F,, equals Sprp1 U Sprra, where

o

SpLF1:{2:t 2+2cos(7”>:j=1,...,n},
n
2mj .

Sprre =<3+ 4/3+2cos| —=|:j=1,...,n,.
n

(i) The spectrum Spra associated with the Laplacian matriz of the
graph M, equals Sprai U Sprvz, where Sppvi = Sprri and

SpLM2:{3:|:\/3+2COS((2J:ll)ﬂ—) :jzl,...m}.

Notice that sets Sprr1 and Spr a1 contain the trivial eigenvalue p = 0.

The spectrum Spsy,r of the signless Laplacian associated to Fj, is easily

deduced from the fact that F,, is a bipartite graph. Thus, from [7, Propo-
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sition 1.3.10] we see that Spsrr = Sprr. The signless Laplacian spectrum
of M,, can be calculated using the procedure used in [44] to obtain the

Laplacian spectrum. More precisely, the following proposition holds true.
Proposition 4. (i) Spspr = SpLr.

(i) The spectrum Spsia associated with the signless Laplacian matriz
of the Mdobius hexacyclic system graph M,, equals Spspari U SPsr iz,

where

27 —1
SpsLMlz{Qi\/Q—i-QCOS((]n)?T>:jZl,...,n},
291 .
Spspym2 =43+ 4/3 4+ 2cos o j=1,...,n,.

2.3 Inequalities for the Chebyshev polynomials of

large order and argument

In this section we deduce two inequalities for the ratio of the Chebyshev
polynomials U,_1(z) and T, (z) £ 1 for large levels n and arguments x.

More precisely, we will prove the following lemma.

Lemma 1. For any integer n > 1 and real number x > 1 we have the

following inequalities

/72
__ 9,—2ncosh™!(x) o, —ncosh™!(x) < z _1Uﬂ*1(‘r) <
(1 % )(1 % )_—Tn(le <1 (10)
and

(1 _ 26—2ncosh71(m)> < Y z? — 1Un71(x)
- Tn(x)—1

R e

Here cosh™! denotes the inverse function of the function cosh, meaning
that for all x > 1 one has cosh™ "z = log(z 4+ v22 — 1).
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Proof. We start by observing that, for x > 1 we have

22 —1U,_1(z) _ sinh(n cosh™ (z))

= tanh(n cos -1 x)).
Tn(x) B COSh(nCOSh_l(z)) = tanh( h™"(z))

Trivially, for y > 1 one has the bounds

1 —2e%¥ <tanhy <1,

hence
22 — 1Up—1(x) < Va? —1Up,-1(x) <1
T.(z)+1 - T, () -
and

22— 1U,_1(2) > Va2 —1U,_1(x) S 1 — ge-2neosh™ (@),
T.(z)—1 T, ()

This proves the right-hand side of (10) and the left-hand side of (11).
Next, we prove the left-hand side of (10)

22 —1U,—1(x)
To(x) +1

Z (1 _ 26—2ncosh71(w)) <1 _ 7 ( ]‘)+ 1)
n\T

_ o 72ncosh_1(m)) . 2
(1 2e <1 encosh=1(x) + e—ncosh_l(x) +92

> (1 _ 26—2ncosh71(w)) (1 _ Qe—ncoshfl(w)) )

= tanh(n cosh ™ (x))

Finally, we prove the right-hand side of (11)

2 —1U, 1 (z) o
T -1 tanh(n cosh ™ (x)) (1 +
1

cosh(ncosh ™' (z)) — 1’

re-1)

<1+
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In a special case when & = P,,(n) is a degree m > 1 polynomial in n
with a positive lead coefficient, it is obvious that exp(—n cosh™? x), when
n — oo decays as n~ " for some positive constant c¢. Therefore, from
Lemma 1 we deduce that for any polynomial P, of degree ¢ > 1 with a

positive lead term one has that

Unfl(Pm(n)) o PZ(”) n_cn
P T B 21~ mnmr=p (o)
Sy T

as n — 0o, for some positive constants cy, co.

3 Proof of Theorem 1

In this Section we prove Theorem 1. We start by observing that for j =

1,2,...,n we have
1 1 1 1
j“rf: +
s S 27(j+8) 2m(j+8)
J J a4+ 4/b+ ccos (+) a—4/b+ ccos (JT)

2a
a2 —b—ccos (L(ﬂﬂ)) '

Therefore

n

Sulab,e,8) =Y 2

j=1a?>—b—ccos (

27r(j+,3))

n

2(1 1
o Z 2 b 7r( ‘Jﬁg) : (13)
€ o =4 2 sin? (JT)

Tt is left to evaluate the sum on the right-hand side of (13). We will apply

results given in [39, relations (41) and (42)], where the following formula
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has been derived

1 mz i _ pemistUn—g—i(s+1) + e BU_q (s +1)
M S0 s+ 2sin? ( j+ﬂ) T (s + 1) — cos(279) ’

(14)

for all £ € {0,1,...,m —1} and all complex s such that T, (s+1) —
cos(2mf3) # 0, with the convention U_;(s + 1) = 0. Taking £ = 0 in (14),

and using the fact that the terms for j = 0 and j = n are equal, gives us

i  mUi (st 1)
P21 s+ 2sin? (w%) T (s +1) — cos(273)

(15)

Clearly, the sum (13) is of the form (15) for m = n and s = (a®>—b—c)/c,
and it is well defined when a? —b — ¢ # 0 or 3 # 0. Application of the
identity (15) yields (1). If a> —b—c¢ = 0 and 8 = 0, then s, = 0, which
contradicts the definition of the set S, hence the sum (13) is well defined,

under assumptions of the theorem. The proof is completed.

Remark. Let us note that if ¢ = 0, then elements in S are independent of
j, thus the evaluation of the sum .S, is trivial.
Moreover, when a? —b — ¢ =0 and 8 = 0, then s;; = 0. In that case,

s} = 2a and the sum of reciprocals of non-zero elements of the set S equals
a1 1
¢i= sin? (71) 20’

for a # 0. Application of [3, Corollary 2.3.] yields that

1 m? —1
sin® (Z2) 37

which implies

gz 1 +i_gn2—1+1
czsiHQ(“j) 2¢ ¢ 3 2a°
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When a? —b—c=0, =0 and a = 0 it is trivial to see that the sum

of non-zero reciprocal elements of S is zero.

4 Closed form evaluation of the resolvent

based indices

In this section we combine Theorem 1 with the knowledge of the spectrum
of graphs F,, and M,, to deduce closed form expressions for the resolvent

and the resolvent Estrada indices of those graphs in terms of n.

4.1 Resolvent energies and resolvent Estrada indices

for systems F,, and M,,.

We start by proving Corrolary 1 which gives a closed formula for the
resolvent energy for hexacyclic systems F,, and M,, and then we derive

closed formulas for resolvent Estrada indices for these systems.

Proof of Corollary 1. From the definition of resolvent energy (4), in view
of Proposition 2 and the fact that the number of vertices of F, is 4n, we
have

ER(F.) =Y ! _ 4 ! _
j=1 4n—%—w/%+2cos(2%’) 4n—%+,/%+2cos(2%])

1 + 1
1\4n+2—1/2+2cos (27)  dn+ 1+ /9 +2cos (3T)

In the notation of Theorem 1, we can write the above sums as

3

+

J

19 19
= —2,C dn+ =, - .
ER(F,) =S, <4n 2,4,2,0>+Sn( n+2,472,0>

Application of Theorem 1 completes the proof in the case of F,,. Reasoning

similarly, for the graph M,, we deduce that

19 19 1
ER(M,) =S5, (4n—=,2,2 An+4=,>,2,—=
R( n) Sn(n 274a a0>+5n<n+2a47 ) 2)7
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which, after applying Theorem 1 completes the proof of the corollary. M

Corollary 2. The resolvent Estrada indices for the hexacyclic system

graph F,, and the Mobius system graph M, are

3) Un,1(8n2 — Gn)

EER(F,) = (4n® —n) <(4” T 2) T,(8n2 —6n) — 1

1\ Un—1(8n% —2n—1)
i <4n 2) T,(3n2 —2n—1)— 1

and

seman) = = () iy

1\ Un_1(8n% —2n —1)
dn— = .
* < " 2) T,(8n2 —2n— 1) + 1

Proof. From the definition of the resolvent Estrada index (7), combined

with Proposition 2, in the notation of Theorem 1 we have
39 19
EER(F,) = (4n—1 nldn ——=,-=,2, n | 4n— =, -2, .
R(F,) = (4n )(S(n 51 0>+S<n 51 O))
Application of Theorem 1 completes the proof in the case of Fj,. Similar

calculations yield the result for the system M,,. Namely, in the notation

of Theorem 1 we have
39 19 1
EER(M,) = (4n—1 dn — =, —,2 dn — =, =, 2, —=
Rt = (n =) (5, (40 5.5.2.0) 4.5, (- 5. 525 ).
which, after applying Theorem 1 completes the proof. |

4.2 Laplacian resolvent energies and the signless

Estrada resolvent indices for systems F,, and M,,

By combining Theorem 1 with Propositions 3 and 4 in which the explicit
evaluation of the Laplacian and the signless Laplacian spectrum for hex-
acyclic systems F, and M, is given, we derive closed formulas for the

Laplacian resolvent energies and signless Estrada resolvent index. Proofs
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of Corollaries 3-5 are similar as above, so we omit those.
Corollary 3. The Laplacian resolvent energy of the hexacyclic system
graph F, and the Mobius hexacyclic system graph M,, are

U,_1 (8n2 —4n — %)

RL(Fy) = (4n* = n) T, (8n2 —4n—1) -1
n 2
Up—1 (802 —8n + 1)

27
+(4n 271) T, (8n2—4n+%) 1

and
2_4 _ 1
RL(MH):(ZL'H?*TL) Un—l (8TL nl 2)
T, (8n2—4n—§)—
U,_1 (8n2—8n—|—
4n? — 2 - .
U ) e D

1
2)

Corollary 4. The signless Laplacian energy of the hexacyclic system graph

F,, and the Mébius hexacyclic system graph M, are

Un—1(32n2? — 24n+ 1)
T, (32n% —24n+ 1) — 1
Un,_1 (32712 —32n + E)
2 4 2
+ (8~ dn) (3202 —32n+ ) — 1

RL*(F,) = (8n® — 3n)

and
Up—1(32n — 24n + 1)
T, (32n% —24n+ 1) +1

RL*(M,) = (8n® — 3n)
Un,_1 (32n2 —32n + %)

2
—4 .
+ (8~ dn) (3202 —32n + ) — 1

Corollary 5. The resolvent signless Fstrada index of the hexacyclic sys-
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tem graph F, and the Mébius hexacyclic system graph M, are

U, 1 (3202 — 32n +7)
T,(32n2 —=32n+7)—1

SLEER(F,) = (8n® — 2n) ((8n —4)

+ (8n —5)

Un—1 (32n% — 40n + 11)
T, (32n2 —40n + 11) — 1

and

Un—1(32n? — 32n+7)
T, (32n2 —32n+7) + 1

SLEER(M,) = (8n® — 2n) ((Sn —4)

+ (8n —5)

Un—1 (32n* — 40n + 11)
T, (32n2 —40n +11) —1 )

5 Numerical calculations of resolvent based
indices

Based on derived formulas it is easy to calculate any of the five indices de-
rived in corollaries 1 — 5 for systems F,, and M,,. As an example, we sum-
marise numerical values of the resolvent energy and the resolvent Estrada
index for systems F,, and M, for different values of n in tables 1-4.
Graphs F,, and M,, are similar, hence, as n grows, the difference in
corresponding values for resolvent energies and indices of F,, and M, be-
comes negligible. For example, formulas for the resolvent energy of graphs
F, and M,, (2) and (3) imply very small differences for large n. From
tables 1 and 2 we can see that for n > 5 there is no difference up to 9
decimal places. Similarly, numerical calculations given in tables 3 and 4
show that for n > 4, values of the resolvent Estrada index for F,, and M,

agree up to 7 decimal places.
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ER(F,)

ER(F,)

n

ER(F,)

o ool 3

14
17
20
23
26
29
32
35
38
41
44
47

1.042429792
1.006316473
1.002451470
1.001294131
1.000798263
1.000541149
1.000390882
1.000295515
1.000231229
1.000185849
1.000152627
1.000127578
1.000108226
1.000092965
1.000080719
1.000070742

1.017886868
1.004372208
1.001935288
1.001087052
1.000695256
1.000482644
1.000354519
1.000271391
1.000214412
1.000173662
1.000143515
1.000120588
1.000102746
1.000088590
1.000077170
1.000067825

4

7

10
13
16
19
22
25
28
31
34
37
40
43
46
49

1.009929103
1.003205970
1.001566615
1.000925995
1.000610978
1.000433140
1.000323006
1.000250105
1.000199365
1.000162635
1.000135195
1.000114156
1.000097672
1.000084517
1.000073851
1.000065084

Table 1. Resolvent energy for hexacyclic system F),

ER(M,)

ER(M,)

n

ER(M,)

1.042032967
1.006316473
1.002451470
1.001294131
1.000798263
1.000541149
1.000390882
1.000295515
1.000231229
1.000185849
1.000152627
1.000127578
1.000108226
1.000092965
1.000080719
1.000070742

1.017886334
1.004372208
1.001935288
1.001087052
1.000695256
1.000482644
1.000354519
1.000271391
1.000214412
1.000173662
1.000143515
1.000120588
1.000102746
1.000088590
1.000077170
1.000067825

4

7

10
13
16
19
22
25
28
31
34
37
40
43
46
49

1.009929102
1.003205970
1.001566615
1.000925995
1.000610978
1.000433140
1.000323006
1.000250105
1.000199365
1.000162635
1.000135195
1.000114156
1.000097672
1.000084517
1.000073851
1.000065084

Table 2. Resolvent energy for M&bius hexacyclic system M,
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n EER(F,) || n EER(F,) | n EER(F,)
2 8.4556343 || 3 12.2569353 || 4 16.1811734
) 20.1401387 || 6 24.1143308 || 7 28.0965791
8 32.0836124 || 9 36.0737223 || 10 40.0659284
11 44.0596271 || 12 48.0544268 || 13 52.0500616
14 56.0463454 || 15 60.0431431 || 16 64.0403551
17 68.0379058 || 18 72.0357370 || 19 76.0338030
20 80.0320677 || 21 84.0305020 || 22 88.0290820
23 92.0277885 || 24 96.0266052 || 25 100.0255185
26 104.0245172 || 27 108.0235915 || 28 112.0227332
29 116.0219351 || 30 120.0211912 || 31 124.0204961
32 128.0198452 || 33 132.0192344 || 34 136.0186600
35 140.0181189 || 36 144.0176084 || 37 148.0171258
38 152.0166690 || 39 156.0162359 || 40 160.0158248
41 164.0154340 || 42 168.0150620 || 43 172.0147075
44 176.0143693 || 45 180.0140463 || 46 184.0137376
47 188.0134421 || 48 192.0131590 || 49 196.0128877
Table 3. Resolvent Estrada index for hexacyclic system Fj,
n EER(M,) || n EER(M,) || n EER(M,)
2 8.4502924 || 3 12.2569247 || 4 16.1811734
5 20.1401387 || 6 24.1143308 || 7 28.0965791
8 32.0836124 || 9 36.0737223 || 10 40.0659284
11 44.0596271 || 12 48.0544268 || 13 52.0500616
14 56.0463454 || 15 60.0431431 || 16 64.0403551
17 68.0379058 || 18 72.0357370 || 19 76.0338030
20 80.0320677 || 21 84.0305020 || 22 88.0290821
23 92.0277885 || 24 96.0266052 || 25 100.0255185
26 104.0245172 || 27 108.0235915 || 28 112.0227332
29 116.0219351 || 30 120.0211912 || 31 124.0204961
32 128.0198452 || 33 132.0192344 || 34 136.0186600
35 140.0181189 || 36 144.0176084 || 37 148.0171258
38 152.0166690 || 39 156.0162359 || 40 160.0158248
41 164.0154340 || 42 168.0150620 || 43 172.0147075
44 176.0143693 || 45 180.0140463 || 46 184.0137376
47 188.0134421 || 48 192.0131590 || 49 196.0128877

Table 4. Resolvent Estrada index for hexacyclic system M,
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6 Asymptotic behavior of the resolvent

based indices

In this section we will describe how to derive asymptotic behavior of the
resolvent indices of F,, and M,, for large values of n, using sharp inequalities
(10) and (11) for the Chebyshev polynomials. An asymptotic behavior
of the resolvent energy and the resolvent Estrada index is given in the

following corollary.

Corollary 6. Asn — oo we have the following asymptotics
(i) ER(F,) ~1+0(1/n) and ER(M,,) ~1+O(1/n),
(ii) EER(F,) ~4n+ O(1/n) and EER(M,) ~ 4n+ O(1/n).

Proof. We will prove (ii). The proof of (i) is analogous (and slightly sim-
pler, due to the absence of the linear growth in n).

We use formulas from Corrollary 1 and apply (12) twice. First, we take
Py(n) = 4n — 3/2 and P,,(n) = 8n* — 6n to deduce

3\ Un_1(8n2 — 6n) dn — 3 _
an—= = O(n=m),
( " 2) T, (8n2 —6n) — 1 (8n2 —6n)2 — 1 +0n )

as n — 0o, for some constant ¢; > 0. Then, we take Py(n) = 4n —1/2 and
P,.(n) =8n% —2n — 1 in (12) to deduce

1\ U,_1(8n% —2n —1) dn -1 )
an — 5 = camn
< n 2> T,(8n%2 —2n—1)—1 \/(8n2_2n_1)2_1+0(n ),

as n — oo, for some constant co > 0. Therefore, there exist constants c,
¢ > 0 such that

4n — 3 4n — L
EER(Fn):(4n2—n)< i - oo )

V(B2 —6n)2—1 /(Bn2—-2n-1)2-1
+ O(n—cn)



498

and

V(B2 —6n)2—1 /(8n2 —2n—1)2 -1

4n — 3 4n — L
EER(Mn)—(4n2—n)< - + i )

+0(n~"),

as n — oo. Elementary calculations yield that

(4n*

4n—% 4n—% ) ,
" <\/(8”2—6”)2—1+ \/(8n2—2n—1)2_1) 4n+0<n>

as n — 0o, which completes the proof. |

In a similar manner, by combining (12) with corollaries 3-5 it is pos-

sible to deduce asymptotic behavior of the Laplacian resolvent energies.

Moreover, using inequalities (10) and (11) for the Chebyshev polynomials

it is also possible to deduce sharper and more explicit asymptotics (up to

O(1/n*), for any power positive integer k). We leave those questions to

an interested reader.

Acknowledgment: The authors are grateful to the anonymous referee
for their comments, which helped to improve the exposition of the paper.
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