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Abstract

The hexacyclic system graph Fn is the graph derived from a
linear hexagonal chain Ln with n > 1 hexagons by identifying two
pairs of ends of Ln. The Möbious hexacyclic system graph Mn is the
graph derived from a linear hexagonal chain Ln with n > 1 hexagons
by identifying two pairs of ends of Ln with a twist. In this paper,
we compute, in a closed form, the resolvent energy, the Laplacian
and the signless Laplacian resolvent energy, as well as the resolvent
Estrada index and the resolvent signless Estrada index of Fn and
Mn. All five indices are expressed as a rational function in the
number n of hexagons, defined in terms of Chebyshev polynomials
of the first and the second kind. Those expressions allow for a fast
numerical computation of indices and for deducing sharp bounds on
their growth.

1 Introduction

A topological index of a graph is a graph invariant that represents a certain

number associated with the graph and which further describes its struc-
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ture. The interest in studying topological indices is mainly due to their

use as one of the fundamental tools in QSPR/QSAR modeling employed in

different fields of chemistry in order to describe and predict physical prop-

erties and biological activities of organic compounds from their molecular

structures, see e.g. [40], [59] or [24]. There exist many topological indices

of graphs. Some of those are defined in terms of geometric properties of a

graph, such as (minimal) distances between vertices (the Wiener index).

A topological index may also be expressed in terms of the spectrum

of its adjacency matrix which then also determines the spectrum of the

Laplacian or a modified Laplacian matrix associated to a graph (e.g. sign-

less Laplacian, normalized Laplacian). The energy of a graph, introduced

in [26] equals the sum of absolute values of the eigenvalues of the ad-

jacency matrix, see also [29] and [42] for a comparative study of graph

energies. The Estrada index, introduced by Estrada in [19] equals the sum∑
j exp(λj) over all eigenvalues λj of the adjacency matrix of a graph.

A variety of modifications of the Estrada index have been studied in the

literature and defined in terms of eigenvalues of a matrix associated to

the graph, such as the Laplacian, the normalized Laplacian, the signless

Laplacian, and the maximum Laplacian, to name a few; see the analysis

and comparison in [20] and extensive bibliography therein.

1.1 Resolvent based topological graph indices

Resolvent based indices are closely related to the spectral moments of a

graph and have a vast potential in analyzing structure activity relation-

ships. They possess high discriminating power with respect to both bio-

logical activity and physical properties of a graph model of a molecule, see

e.g. [25], [50] or [21].

More precisely, for an undirected graph G on N vertices with the ad-

jacency matrix A with eigenvalues λ1, . . . , λN its resolvent matrix RA(z)

is defined, for all complex z ∈ C \ {λ1, . . . , λN} as

RA(z) = (zIN −A)−1,

where IN is the identity matrix of order N . The resolvent energy of the
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graph G, denoted by ER(G) is defined in [34] as the sum of eigenvalues of

the matrix RA(N). (Note that all eigenvalues of RA(N) are positive, due

to the fact that λj ≤ N − 1 for all j = 1, . . . , N .) The resolvent energy

can be viewed as the special value at t = N−1 of the generating function

MG(t) :=
1

N

∞∑
k=0

Mk(G)tk

of the spectral moments Mk(G) =
∑

j λ
k
j of G, see [34] where certain

bounds on ER(G) have been deduced. Properties of the resolvent energy,

for different graphs have been studied in [1], [18], [22], [71], [74].

The Laplacian resolvent energy, denoted by RL(G) and associated to

the Laplacian L := D − A, where D is the degree matrix of G, is defined

in [8] as the sum of all eigenvalues of the matrix (N + 1− L)−1.

Some lower bounds for RL(G) are given in [53] and sharpened in [75],

[48]. The signless Laplacian resolvent energy, associated to the signless

Laplacian L+ := D + A, denoted by RL+(G) is defined as the sum of all

eigenvalues of the matrix (2N − 1− L+)−1.

We refer to [8] for further details and [5], [6] for properties of the

normalized signless Laplacian resolvent energy.

The resolvent Estrada index associated to the graph G on N vertices,

was introduced in [21] as

EER(G) :=

∞∑
k=0

Mk(G)(N − 1)−k.

Benzi and Boito showed in [2] that EER(G) actually equals (N −1) times

the sum of the eigenvalues of the resolvent matrix RA(N − 1), in view of

which the index EER(G) was named. Analogously, the resolvent signless

Estrada index SLEER(G) is defined in [52] as 2(N − 1) times the sum of

the eigenvalues of the matrix (2N − 2 − L+)−1. Note that EER(G) and

SLEER(G) are well defined for all graphs G different from the complete

graph KN on N vertices.

The resolvent Estrada index is further studied in [10] and [11]; the lower

bounds for the index have been derived in [72], with further refinements of
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the bounds for both the resolvent Estrada index and the resolvent signless

Laplacian Estrada index deduced in [73]. The extremal properties of the

resolvent Estrada index have been studied in [33], [32], [52], and [71].

1.2 Hexagonal chains and systems

In theoretical and mathematical chemistry, hexagonal systems are one of

the very important categories of structures that can be viewed as a natural

graph representation of different molecules. For example, they can be

considered as representations of (unbranched catacondensed) benzenoid

hydrocarbons, see e.g. [28], [30], [31], [57].

There exist different types of hexagonal systems, depending on a way

hexagons are connected. The simplest hexagonal system is a linear hexag-

onal chain with n hexagons. By identifying the end edges of a linear

hexagonal chain one can create a hexacyclic or a Möbius hexacyclic chain,

see Figure 1 below.

Properties of hexagonal chains have been extensively studied by mathe-

maticians, chemists and physicists. For example, in [35] perfect matchings

in random hexagonal chain graphs have been studied; the Wiener index of

hexagonal chain was computed in [16], its edge-Szeged index in [61], while

the Kirchhoff and the degree Kirchhoff indices of hexagonal chains were

computed in [65] and [37], respectively. Global mean first passage time of

random walks on a hexagonal chain was computed in [66].

The energy of directed hexagonal systems has been derived in [56],

the characteristic polynomial of prolate rectangle of benzenoid system has

been computed in [45], the Kirchoff index and the degree-Kirchhoff in-

dex for hexagonal Möbius graphs (chains) were obtained in [62] and [46],

respectively. Pan and Li [54] computed the degree-Kirchhoff index and

the number of spanning trees of the linear crossed hexagonal chains, while

Huang and Li [36] determined resistance distances and Kirchhoff indices of

hexagonal cylinder chains. Further recent results on properties of hexag-

onal chains and hexagonal systems (in chronological order) can be found

in [17], [13], [4], [49], [68], [12], [64], [60], [15], [38], [69], [51], [63], [9], [67],

[70], [47]; see also [16] and an extensive bibliography there.
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1.3 Our main results

In spite of a very extensive bibliography related to various topological

indices of hexagonal systems, the resolvent energy indices and the resolvent

Estrada indices have not been evaluated for any of the hexagonal chains

and systems described above.

The main purpose of this paper is to evaluate, in a closed form the

resolvent energy, the Laplacian and the signless Laplacian resolvent energy,

as well as the resolvent Estrada index and the resolvent signless Estrada

index of hexacyclic system graphs Fn and Möbius hexacyclic system graphs

Mn. (For more details on the structure of those graphs, see Section 2.2

below.)

The closed form evaluations of the five resolvent indices listed above

are derived in corollaries 1 – 5 below. They follow from our main theorem:

Theorem 1. Let a, b, c, β ∈ R and c ̸= 0 be arbitrary constants such that

S =

{
s±j = a±

√
b+ c cos

(
2π(j+β)

n

)
: j = 1, . . . , n

}
is a set of 2n ≥ 2

non-zero numbers. Then

Sn(a, b, c, β) :=

n∑
j=1

(
1

s+j
+

1

s−j

)
=

2a

c

nUn−1

(
a2−b

c

)
Tn

(
a2−b

c

)
− cos 2πβ

. (1)

Here, Tm and Um,m ∈ N∪{0} denote the Chebyshev polynomials of the

first and the second kind, respectively. Those are the unique polynomials

satisfying

Tm (cos θ) = cos (mθ) ,

Um (cos θ) sin θ = sin ((m+ 1) θ) ,

see [58] for their properties and a long list of applications.

Though Chebyshev polynomials have a vast number of applications,

to the best of our knowledge, there is only one paper relating topological

indices of graphs to Chebyshev polynomials. Namely, in [23] it is proved

that the Chebyshev polynomials provide approximations to Estrada index

of certain graphs.

As an illustration of our main result, we present the following corollary
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in which the resolvent energy of graphs Fn and Mn is expressed in terms

of Chebyshev polynomials depending singly on the number n of hexagons.

Corollary 1. The resolvent energy of the hexacyclic system graph Fn and

the Möbius hexacyclic system graph Mn are

ER(Fn) =

(
4n− 1

2

)
nUn−1(8n

2 − 2n− 1)

Tn(8n2 − 2n− 1)− 1

+

(
4n+

1

2

)
nUn−1(8n

2 + 2n− 1)

Tn(8n2 + 2n− 1)− 1
(2)

and

ER(Mn) =

(
4n− 1

2

)
nUn−1(8n

2 − 2n− 1)

Tn(8n2 − 2n− 1)− 1

+

(
4n+

1

2

)
nUn−1(8n

2 + 2n− 1)

Tn(8n2 + 2n− 1) + 1
. (3)

We find the new closed formulas very useful for numerical calculations

since many computational tools provide very efficient and precise built-

in algorithms for numerical evaluations of Chebyshev polynomials. Some

calculations are presented in tables 1–4. We also notice that there is a very

small difference between the resolvent energies ER(Fn) and ER(Mn), even

for a modest value of n. This is expected because those graphs differ only

in one edge twist.

Finally, the ratio of Chebyshev polynomials of large index and argu-

ment satisfy very sharp bounds, as derived in Lemma 1 below. Those

bounds imply very sharp bounds for all five resolvent indices computed in

this paper. For example, we show that there exists a positive constant c

such that

EER(Fn) = (4n2 − n)

(
4n− 3

2√
(8n2 − 6n)2 − 1

+
4n− 1

2√
(8n2 − 2n− 1)2 − 1

)
+O(n−cn),
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EER(Fn) = (4n2 − n)

(
4n− 3

2√
(8n2 − 6n)2 − 1

+
4n− 1

2√
(8n2 − 2n− 1)2 − 1

)
+O(n−cn),

as n → ∞.

1.4 Organization of the paper

After introducing the necessary background material and proving a bound

for the ratio of Chebyshev polynomials in Section 2, we prove our main

theorem in Section 3. A closed evaluation of resolvent indices is given in

Section 4. Numerical computations of indices are presented in Section 5,

while the asymptotic behavior of the resolvent energy and the resolvent

Estrada index is derived in Section 6.

2 Preliminaries

In this section, we provide necessary background material for the paper.

More precisely, we introduce resolvent based indices of a graph, define the

hexacyclic system and the Möbius hexacyclic system graphs and review

existing results on the spectrum of those graphs. In the last subsection, we

prove a sharp inequality for a certain ratio of the Chebyshev polynomials

that will be used to deduce sharp upper and lower bounds for the resolvent

based indices.

2.1 Resolvent based graph indices

Let G = (V (G), E(G)) be a simple, undirected and unweighted graph

with the set of vertices V (G) having N elements and the set of edges

E(G). We denote by A = A(G) the adjacency matrix of G and by D =

D(G) its degree matrix. The Laplacian matrix attached to G is defined

by L = L(G) = D(G) − A(G), while the signless Laplacian matrix is

L+ = L+(G) = D(G) +A(G).

The adjacency matrix is symmetric, hence its spectrum is real. Let us

denote the spectrum of A(G) by λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λN , the spectrum
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of the Laplacian L by µ1 ≤ µ2 ≤ µ3 ≤ . . . ≤ µN , and the signless Laplacian

spectrum by q1 ≤ q2 ≤ q3 ≤ . . . ≤ qN . It is well known that λN ≤ N − 1,

µN ≤ N and qN ≤ 2(N − 1), and the equality holds true if and only if G

is a complete graph KN on N vertices, see [14].

The resolvent indices associated to A, L and L+ are defined as follows.

The resolvent energy of a graph G is defined in [34] by

ER(G) =

N∑
j=1

1

N − λj
, (4)

while the Laplacian resolvent energy and signless Laplacian resolvent en-

ergy are defined in [8] by

RL(G) =

N∑
j=1

1

N + 1− µj
(5)

and

RL+(G) =

N∑
j=1

1

2N − 1− qj
, (6)

respectively. The resolvent Estrada index is defined in [21] by

EER(G) =

N∑
j=1

N − 1

N − 1− λj
=

N∑
j=1

(
1− λj

N − 1

)−1

, (7)

while the resolvent signless Estrada index is defined in [52] as

SLEER(G) =

N∑
j=1

2N − 2

2N − 2− qj
=

N∑
j=1

(
1− qj

2(N − 1)

)−1

. (8)

Note that the indices (4)–(6) are well-defined for all graphs, while indices

(7) and (8) are well defined for all graphs different from KN .
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2.2 Linear hexacyclic system graphs and their spectra

A hexagonal system graph is a structure composed of connected hexagonal

units. Different arrangements and ways of connecting these units produce

various hexagonal systems. A linear hexagonal chain is a structure where

hexagons are arranged in a straight sequential line with each hexagon

sharing an edge with the next one. This arrangement produces a chain-

like structure with unconnected ends.

The hexacyclic system Fn is a graph consisting of n > 1 hexagons

arranged in a circular sequence, connected end-to-end to form a symmetric

ring of hexagons, see Figure 1(a). The Möbius hexacyclic system a graph

consisting of n > 1 hexagons arranged in a circular sequence, formed by

twisting a hexacyclic chain before connecting its ends, introducing a single

twist. It can be understood as a graph on the Möbius strip, see Figure

1(b). Graphs Fn and Mn possess N = 4n vertices and 5n edges.

(a) Hexacyclic system Fn (b) Möbius hexacyclic system Mn

Figure 1. Hexagonal systems

The spectra of the adjacency matrix and of the Laplacian and signless

Laplacian of graphs Fn and Mn is given in the following propositions.

Proposition 2 ([27], p. 309, [43], Corollary 4.1., see also [55], [41]).

(i) The spectrum SpAF of the adjacency matrix for the graph Fn, equals
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SpAF1 ∪ SpAF2, where

SpAF1 =

{
1

2
±

√
9

4
+ 2 cos

(
2πj

n

)
: j = 1, . . . , n

}
,

SpAF2 =

{
−1

2
±

√
9

4
+ 2 cos

(
2πj

n

)
: j = 1, . . . , n

}
.

(ii) The spectrum SpAM of the adjacency matrix for the graph Mn equals

SpAM1 ∪ SpAM2, where SpAM1 = SpAF1 and

SpAM2 =

{
−1

2
±

√
9

4
+ 2 cos

(
(2j − 1)π

n

)
: j = 1, . . . , n

}
. (9)

The spectra of the Laplacian matrices for graphs Fn and Mn are easily

derived from the corresponding characteristic polynomials (see [44], The-

orem 2.1 and Theorem 3.1). They are given in the following propositions.

Proposition 3 ([44], Theorems 2.2 and 3.2.).

(i) The spectrum SpLF associated with the Laplacian matrix of the graph

Fn equals SpLF1 ∪ SpLF2, where

SpLF1 =

{
2±

√
2 + 2 cos

(
2πj

n

)
: j = 1, . . . , n

}
,

SpLF2 =

{
3±

√
3 + 2 cos

(
2πj

n

)
: j = 1, . . . , n

}
.

(ii) The spectrum SpLM associated with the Laplacian matrix of the

graph Mn equals SpLM1 ∪ SpLM2, where SpLM1 = SpLF1 and

SpLM2 =

{
3±

√
3 + 2 cos

(
(2j − 1)π

n

)
: j = 1, . . . , n

}
.

Notice that sets SpLF1 and SpLM1 contain the trivial eigenvalue µ = 0.

The spectrum SpsLF of the signless Laplacian associated to Fn is easily

deduced from the fact that Fn is a bipartite graph. Thus, from [7, Propo-
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sition 1.3.10] we see that SpsLF = SpLF . The signless Laplacian spectrum

of Mn can be calculated using the procedure used in [44] to obtain the

Laplacian spectrum. More precisely, the following proposition holds true.

Proposition 4. (i) SpsLF = SpLF .

(ii) The spectrum SpsLM associated with the signless Laplacian matrix

of the Möbius hexacyclic system graph Mn equals SpsLM1 ∪SpsLM2,

where

SpsLM1 =

{
2±

√
2 + 2 cos

(
(2j − 1)π

n

)
: j = 1, . . . , n

}
,

SpsLM2 =

{
3±

√
3 + 2 cos

(
2jπ

n

)
: j = 1, . . . , n

}
.

2.3 Inequalities for the Chebyshev polynomials of

large order and argument

In this section we deduce two inequalities for the ratio of the Chebyshev

polynomials Un−1(x) and Tn(x) ± 1 for large levels n and arguments x.

More precisely, we will prove the following lemma.

Lemma 1. For any integer n ≥ 1 and real number x > 1 we have the

following inequalities

(
1− 2e−2n cosh−1(x)

)(
1− 2e−n cosh−1(x)

)
≤

√
x2 − 1Un−1(x)

Tn(x) + 1
≤ 1 (10)

and (
1− 2e−2n cosh−1(x)

)
≤

√
x2 − 1Un−1(x)

Tn(x)− 1

≤
(
1 +

1

cosh(n cosh−1(x))− 1

)
. (11)

Here cosh−1 denotes the inverse function of the function cosh, meaning

that for all x > 1 one has cosh−1 x = log(x+
√
x2 − 1).
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Proof. We start by observing that, for x > 1 we have

√
x2 − 1Un−1(x)

Tn(x)
=

sinh(n cosh−1(x))

cosh(n cosh−1(x))
= tanh(n cosh−1(x)).

Trivially, for y > 1 one has the bounds

1− 2e−2y ≤ tanh y ≤ 1,

hence

√
x2 − 1Un−1(x)

Tn(x) + 1
≤

√
x2 − 1Un−1(x)

Tn(x)
≤ 1

and

√
x2 − 1Un−1(x)

Tn(x)− 1
≥

√
x2 − 1Un−1(x)

Tn(x)
≥ 1− 2e−2n cosh−1(x).

This proves the right-hand side of (10) and the left-hand side of (11).

Next, we prove the left-hand side of (10)

√
x2 − 1Un−1(x)

Tn(x) + 1
= tanh(n cosh−1(x))

Tn(x)

Tn(x) + 1

≥
(
1− 2e−2n cosh−1(x)

)(
1− 1

Tn(x) + 1

)
=
(
1− 2e−2n cosh−1(x)

)(
1− 2

en cosh−1(x) + e−n cosh−1(x) + 2

)
≥
(
1− 2e−2n cosh−1(x)

)(
1− 2e−n cosh−1(x)

)
.

Finally, we prove the right-hand side of (11)

√
x2 − 1Un−1(x)

Tn(x)− 1
= tanh(n cosh−1(x))

(
1 +

1

Tn(x)− 1

)
≤ 1 +

1

cosh(n cosh−1(x))− 1
.
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In a special case when x = Pm(n) is a degree m ≥ 1 polynomial in n

with a positive lead coefficient, it is obvious that exp(−n cosh−1 x), when

n → ∞ decays as n−cn for some positive constant c. Therefore, from

Lemma 1 we deduce that for any polynomial Pℓ of degree ℓ ≥ 1 with a

positive lead term one has that

Pℓ(n)
Un−1(Pm(n))

Tn(Pm(n))± 1
=

Pℓ(n)√
(Pm(n)2 − 1)

(
1 +O(n−c1n)

)
=

Pℓ(n)√
(Pm(n)2 − 1)

+O(n−c2n), (12)

as n → ∞, for some positive constants c1, c2.

3 Proof of Theorem 1

In this Section we prove Theorem 1. We start by observing that for j =

1, 2, . . . , n we have

1

s+j
+

1

s−j
=

1

a+

√
b+ c cos

(
2π(j+β)

n

) +
1

a−
√
b+ c cos

(
2π(j+β)

n

)
=

2a

a2 − b− c cos
(

2π(j+β)
n

) .
Therefore

Sn(a, b, c, β) =

n∑
j=1

2a

a2 − b− c cos
(

2π(j+β)
n

)
=

2a

c

n∑
j=1

1

a2−b−c
c + 2 sin2

(
π(j+β)

n

) . (13)

It is left to evaluate the sum on the right-hand side of (13). We will apply

results given in [39, relations (41) and (42)], where the following formula
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has been derived

1

m

m−1∑
j=0

e2πi
jℓ
m

s+ 2 sin2
(
π j+β

m

) = e2πi
βℓ
m
Um−ℓ−1 (s+ 1) + e2πiβUℓ−1 (s+ 1)

Tm (s+ 1)− cos(2πβ)
,

(14)

for all ℓ ∈ {0, 1, . . . ,m− 1} and all complex s such that Tm (s+ 1) −
cos(2πβ) ̸= 0, with the convention U−1(s + 1) ≡ 0. Taking ℓ = 0 in (14),

and using the fact that the terms for j = 0 and j = n are equal, gives us

m∑
j=1

1

s+ 2 sin2
(
π j+β

m

) =
mUm−1 (s+ 1)

Tm (s+ 1)− cos(2πβ)
. (15)

Clearly, the sum (13) is of the form (15) form = n and s = (a2−b−c)/c,

and it is well defined when a2 − b − c ̸= 0 or β ̸= 0. Application of the

identity (15) yields (1). If a2 − b − c = 0 and β = 0, then s−n = 0, which

contradicts the definition of the set S, hence the sum (13) is well defined,

under assumptions of the theorem. The proof is completed.

Remark. Let us note that if c = 0, then elements in S are independent of

j, thus the evaluation of the sum Sn is trivial.

Moreover, when a2 − b − c = 0 and β = 0, then s−n = 0. In that case,

s+n = 2a and the sum of reciprocals of non-zero elements of the set S equals

a

c

n−1∑
j=1

1

sin2
(
πj
n

) + 1

2a
,

for a ̸= 0. Application of [3, Corollary 2.3.] yields that

m−1∑
j=1

1

sin2
(
πj
m

) =
m2 − 1

3
,

which implies

a

c

n−1∑
j=1

1

sin2
(
πj
n

) + 1

2a
=

a

c

n2 − 1

3
+

1

2a
.
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When a2 − b− c = 0, β = 0 and a = 0 it is trivial to see that the sum

of non-zero reciprocal elements of S is zero.

4 Closed form evaluation of the resolvent

based indices

In this section we combine Theorem 1 with the knowledge of the spectrum

of graphs Fn and Mn to deduce closed form expressions for the resolvent

and the resolvent Estrada indices of those graphs in terms of n.

4.1 Resolvent energies and resolvent Estrada indices

for systems Fn and Mn.

We start by proving Corrolary 1 which gives a closed formula for the

resolvent energy for hexacyclic systems Fn and Mn, and then we derive

closed formulas for resolvent Estrada indices for these systems.

Proof of Corollary 1. From the definition of resolvent energy (4), in view

of Proposition 2 and the fact that the number of vertices of Fn is 4n, we

have

ER(Fn) =

n∑
j=1

 1

4n− 1
2
−

√
9
4
+ 2 cos

(
2πj
n

) +
1

4n− 1
2
+

√
9
4
+ 2 cos

(
2πj
n

)


+

n∑
j=1

 1

4n+ 1
2
−

√
9
4
+ 2 cos

(
2jπ
n

) +
1

4n+ 1
2
+

√
9
4
+ 2 cos

(
2jπ
n

)
 .

In the notation of Theorem 1, we can write the above sums as

ER(Fn) = Sn

(
4n− 1

2
,
9

4
, 2, 0

)
+ Sn

(
4n+

1

2
,
9

4
, 2, 0

)
.

Application of Theorem 1 completes the proof in the case of Fn. Reasoning

similarly, for the graph Mn we deduce that

ER(Mn) = Sn

(
4n− 1

2
,
9

4
, 2, 0

)
+ Sn

(
4n+

1

2
,
9

4
, 2,−1

2

)
,
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which, after applying Theorem 1 completes the proof of the corollary.

Corollary 2. The resolvent Estrada indices for the hexacyclic system

graph Fn and the Möbius system graph Mn are

EER(Fn) = (4n2 − n)

((
4n− 3

2

)
Un−1(8n

2 − 6n)

Tn(8n2 − 6n)− 1

+

(
4n− 1

2

)
Un−1(8n

2 − 2n− 1)

Tn(8n2 − 2n− 1)− 1

)
and

EER(Mn) = (4n2 − n)

((
4n− 3

2

)
Un−1(8n

2 − 6n)

Tn(8n2 − 6n)− 1

+

(
4n− 1

2

)
Un−1(8n

2 − 2n− 1)

Tn(8n2 − 2n− 1) + 1

)
.

Proof. From the definition of the resolvent Estrada index (7), combined

with Proposition 2, in the notation of Theorem 1 we have

EER(Fn) = (4n− 1)

(
Sn

(
4n− 3

2
,
9

4
, 2, 0

)
+ Sn

(
4n− 1

2
,
9

4
, 2, 0

))
.

Application of Theorem 1 completes the proof in the case of Fn. Similar

calculations yield the result for the system Mn. Namely, in the notation

of Theorem 1 we have

EER(Mn) = (4n− 1)

(
Sn

(
4n− 3

2
,
9

4
, 2, 0

)
+ Sn

(
4n− 1

2
,
9

4
, 2,−1

2

))
,

which, after applying Theorem 1 completes the proof.

4.2 Laplacian resolvent energies and the signless

Estrada resolvent indices for systems Fn and Mn

By combining Theorem 1 with Propositions 3 and 4 in which the explicit

evaluation of the Laplacian and the signless Laplacian spectrum for hex-

acyclic systems Fn and Mn is given, we derive closed formulas for the

Laplacian resolvent energies and signless Estrada resolvent index. Proofs
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of Corollaries 3–5 are similar as above, so we omit those.

Corollary 3. The Laplacian resolvent energy of the hexacyclic system

graph Fn and the Möbius hexacyclic system graph Mn are

RL(Fn) =
(
4n2 − n

) Un−1

(
8n2 − 4n− 1

2

)
Tn

(
8n2 − 4n− 1

2

)
− 1

+
(
4n2 − 2n

) Un−1

(
8n2 − 8n+ 1

2

)
Tn

(
8n2 − 4n+ 1

2

)
− 1

and

RL(Mn) =
(
4n2 − n

) Un−1

(
8n2 − 4n− 1

2

)
Tn

(
8n2 − 4n− 1

2

)
− 1

+
(
4n2 − 2n

) Un−1

(
8n2 − 8n+ 1

2

)
Tn

(
8n2 − 4n+ 1

2

)
+ 1

.

Corollary 4. The signless Laplacian energy of the hexacyclic system graph

Fn and the Möbius hexacyclic system graph Mn are

RL+(Fn) =
(
8n2 − 3n

) Un−1

(
32n2 − 24n+ 7

2

)
Tn

(
32n2 − 24n+ 7

2

)
− 1

+
(
8n2 − 4n

) Un−1

(
32n2 − 32n+ 13

2

)
Tn

(
32n2 − 32n+ 13

2

)
− 1

and

RL+(Mn) =
(
8n2 − 3n

) Un−1

(
32n2 − 24n+ 7

2

)
Tn

(
32n2 − 24n+ 7

2

)
+ 1

+
(
8n2 − 4n

) Un−1

(
32n2 − 32n+ 13

2

)
Tn

(
32n2 − 32n+ 13

2

)
− 1

.

Corollary 5. The resolvent signless Estrada index of the hexacyclic sys-
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tem graph Fn and the Möbius hexacyclic system graph Mn are

SLEER(Fn) =
(
8n2 − 2n

)(
(8n− 4)

Un−1

(
32n2 − 32n+ 7

)
Tn (32n2 − 32n+ 7)− 1

+ (8n− 5)
Un−1

(
32n2 − 40n+ 11

)
Tn (32n2 − 40n+ 11)− 1

)

and

SLEER(Mn) =
(
8n2 − 2n

)(
(8n− 4)

Un−1

(
32n2 − 32n+ 7

)
Tn (32n2 − 32n+ 7) + 1

+ (8n− 5)
Un−1

(
32n2 − 40n+ 11

)
Tn (32n2 − 40n+ 11)− 1

)
.

5 Numerical calculations of resolvent based

indices

Based on derived formulas it is easy to calculate any of the five indices de-

rived in corollaries 1 – 5 for systems Fn and Mn. As an example, we sum-

marise numerical values of the resolvent energy and the resolvent Estrada

index for systems Fn and Mn for different values of n in tables 1-4.

Graphs Fn and Mn are similar, hence, as n grows, the difference in

corresponding values for resolvent energies and indices of Fn and Mn be-

comes negligible. For example, formulas for the resolvent energy of graphs

Fn and Mn, (2) and (3) imply very small differences for large n. From

tables 1 and 2 we can see that for n ≥ 5 there is no difference up to 9

decimal places. Similarly, numerical calculations given in tables 3 and 4

show that for n ≥ 4, values of the resolvent Estrada index for Fn and Mn

agree up to 7 decimal places.



495

n ER(Fn) n ER(Fn) n ER(Fn)
2 1.042429792 3 1.017886868 4 1.009929103
5 1.006316473 6 1.004372208 7 1.003205970
8 1.002451470 9 1.001935288 10 1.001566615
11 1.001294131 12 1.001087052 13 1.000925995
14 1.000798263 15 1.000695256 16 1.000610978
17 1.000541149 18 1.000482644 19 1.000433140
20 1.000390882 21 1.000354519 22 1.000323006
23 1.000295515 24 1.000271391 25 1.000250105
26 1.000231229 27 1.000214412 28 1.000199365
29 1.000185849 30 1.000173662 31 1.000162635
32 1.000152627 33 1.000143515 34 1.000135195
35 1.000127578 36 1.000120588 37 1.000114156
38 1.000108226 39 1.000102746 40 1.000097672
41 1.000092965 42 1.000088590 43 1.000084517
44 1.000080719 45 1.000077170 46 1.000073851
47 1.000070742 48 1.000067825 49 1.000065084

Table 1. Resolvent energy for hexacyclic system Fn

n ER(Mn) n ER(Mn) n ER(Mn)
2 1.042032967 3 1.017886334 4 1.009929102
5 1.006316473 6 1.004372208 7 1.003205970
8 1.002451470 9 1.001935288 10 1.001566615
11 1.001294131 12 1.001087052 13 1.000925995
14 1.000798263 15 1.000695256 16 1.000610978
17 1.000541149 18 1.000482644 19 1.000433140
20 1.000390882 21 1.000354519 22 1.000323006
23 1.000295515 24 1.000271391 25 1.000250105
26 1.000231229 27 1.000214412 28 1.000199365
29 1.000185849 30 1.000173662 31 1.000162635
32 1.000152627 33 1.000143515 34 1.000135195
35 1.000127578 36 1.000120588 37 1.000114156
38 1.000108226 39 1.000102746 40 1.000097672
41 1.000092965 42 1.000088590 43 1.000084517
44 1.000080719 45 1.000077170 46 1.000073851
47 1.000070742 48 1.000067825 49 1.000065084

Table 2. Resolvent energy for Möbius hexacyclic system Mn
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n EER(Fn) n EER(Fn) n EER(Fn)
2 8.4556343 3 12.2569353 4 16.1811734
5 20.1401387 6 24.1143308 7 28.0965791
8 32.0836124 9 36.0737223 10 40.0659284
11 44.0596271 12 48.0544268 13 52.0500616
14 56.0463454 15 60.0431431 16 64.0403551
17 68.0379058 18 72.0357370 19 76.0338030
20 80.0320677 21 84.0305020 22 88.0290820
23 92.0277885 24 96.0266052 25 100.0255185
26 104.0245172 27 108.0235915 28 112.0227332
29 116.0219351 30 120.0211912 31 124.0204961
32 128.0198452 33 132.0192344 34 136.0186600
35 140.0181189 36 144.0176084 37 148.0171258
38 152.0166690 39 156.0162359 40 160.0158248
41 164.0154340 42 168.0150620 43 172.0147075
44 176.0143693 45 180.0140463 46 184.0137376
47 188.0134421 48 192.0131590 49 196.0128877

Table 3. Resolvent Estrada index for hexacyclic system Fn

n EER(Mn) n EER(Mn) n EER(Mn)
2 8.4502924 3 12.2569247 4 16.1811734
5 20.1401387 6 24.1143308 7 28.0965791
8 32.0836124 9 36.0737223 10 40.0659284
11 44.0596271 12 48.0544268 13 52.0500616
14 56.0463454 15 60.0431431 16 64.0403551
17 68.0379058 18 72.0357370 19 76.0338030
20 80.0320677 21 84.0305020 22 88.0290821
23 92.0277885 24 96.0266052 25 100.0255185
26 104.0245172 27 108.0235915 28 112.0227332
29 116.0219351 30 120.0211912 31 124.0204961
32 128.0198452 33 132.0192344 34 136.0186600
35 140.0181189 36 144.0176084 37 148.0171258
38 152.0166690 39 156.0162359 40 160.0158248
41 164.0154340 42 168.0150620 43 172.0147075
44 176.0143693 45 180.0140463 46 184.0137376
47 188.0134421 48 192.0131590 49 196.0128877

Table 4. Resolvent Estrada index for hexacyclic system Mn
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6 Asymptotic behavior of the resolvent

based indices

In this section we will describe how to derive asymptotic behavior of the

resolvent indices of Fn andMn for large values of n, using sharp inequalities

(10) and (11) for the Chebyshev polynomials. An asymptotic behavior

of the resolvent energy and the resolvent Estrada index is given in the

following corollary.

Corollary 6. As n → ∞ we have the following asymptotics

(i) ER(Fn) ∼ 1 +O(1/n) and ER(Mn) ∼ 1 +O(1/n),

(ii) EER(Fn) ∼ 4n+O(1/n) and EER(Mn) ∼ 4n+O(1/n).

Proof. We will prove (ii). The proof of (i) is analogous (and slightly sim-

pler, due to the absence of the linear growth in n).

We use formulas from Corrollary 1 and apply (12) twice. First, we take

Pℓ(n) = 4n− 3/2 and Pm(n) = 8n2 − 6n to deduce(
4n− 3

2

)
Un−1(8n

2 − 6n)

Tn(8n2 − 6n)− 1
=

4n− 3
2√

(8n2 − 6n)2 − 1
+O(n−c1n),

as n → ∞, for some constant c1 > 0. Then, we take Pℓ(n) = 4n− 1/2 and

Pm(n) = 8n2 − 2n− 1 in (12) to deduce(
4n− 1

2

)
Un−1(8n

2 − 2n− 1)

Tn(8n2 − 2n− 1)− 1
=

4n− 1
2√

(8n2 − 2n− 1)2 − 1
+O(n−c2n),

as n → ∞, for some constant c2 > 0. Therefore, there exist constants c,

c̃ > 0 such that

EER(Fn) = (4n2 − n)

(
4n− 3

2√
(8n2 − 6n)2 − 1

+
4n− 1

2√
(8n2 − 2n− 1)2 − 1

)
+O(n−cn)
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and

EER(Mn) = (4n2 − n)

(
4n− 3

2√
(8n2 − 6n)2 − 1

+
4n− 1

2√
(8n2 − 2n− 1)2 − 1

)
+O(n−c̃n),

as n → ∞. Elementary calculations yield that

(4n2 − n)

(
4n− 3

2√
(8n2 − 6n)2 − 1

+
4n− 1

2√
(8n2 − 2n− 1)2 − 1

)
= 4n+O

(
1

n

)

as n → ∞, which completes the proof.

In a similar manner, by combining (12) with corollaries 3–5 it is pos-

sible to deduce asymptotic behavior of the Laplacian resolvent energies.

Moreover, using inequalities (10) and (11) for the Chebyshev polynomials

it is also possible to deduce sharper and more explicit asymptotics (up to

O(1/nk), for any power positive integer k). We leave those questions to

an interested reader.
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[57] M. Randić, Aromaticity of polycyclic conjugated hydrocarbons,
Chem. Rev. 103 (2003) 3449–3605.

[58] T. J. Rivlin, Chebyshev Polynomials, Wiley, New York, 1990.

[59] T. W. Schultz, M. T. D. Cronin, J. D. Walker, A. O. Aptula, Quanti-
tative structure-activity relationships (QSARS) in toxicology: a his-
torical perspective, J. Mol. Struct. 622 (2003) 1–22.

[60] C. Song, Q. Huang, The characteristic polynomial of a kind of hexag-
onal system and its application, Ars Comb. 127 (2016) 209–223.

[61] S. Z. Wang, B. L. Liu, A method of calcutaing the edge–Szeged in-
dex of hexagonal chain, MATCH Commun. Math. Comput. Chem. 68
(2012) 91–96.

[62] G. Wang, B. Xu, Kirchhoff index of hexagonal Möbius graphs, in:
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New bounds for some spectrum-based topological indices of graphs,
MATCH Commun. Math. Comput. Chem. 86 (2021) 685–701.
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