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Abstract

The complementary second Zagreb index of a graph G is defined
as cM2(G) =

∑
uv∈E(G) |(du(G))2− (dv(G))2|, where du(G) denotes

the degree of a vertex u in G and E(G) represents the edge set of
G. Let G∗ be a graph having the maximum value of cM2 among all
connected graphs of order n. Furtula and Oz [MATCH Commun.
Math. Comput. Chem. 93 (2025) 247–263] conjectured that G∗ is
the join Kk + Kn−k of the complete graph Kk of order k and the
complement Kn−k of the complete graph Kn−k such that the in-
equality k < ⌈n/2⌉ holds. We prove that (i) the maximum degree of
G∗ is n−1 and (ii) no two vertices of minimum degree in G∗ are ad-
jacent; both of these results support the aforementioned conjecture.
We also prove that the number of vertices of maximum degree in
G∗, say k, is at most − 2

3
n+ 3

2
+ 1

6

√
52n2 − 132n+ 81, which implies

that k < 5352n/10000. Furthermore, we establish results that sup-
port the conjecture under consideration for certain bidegreed and
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tridegreed graphs. In the aforesaid paper, it was also mentioned
that determining the k as a function of the n is far from being an
easy task; we obtain the values of k for 5 ≤ n ≤ 149 in the case
of certain bidegreed graphs by using computer software and found
that the resulting sequence of the values of k does not exist in “The
On-Line Encyclopedia of Integer Sequences” (an online database of
integer sequences).

1 Introduction

Molecular descriptors offer a fundamental tool for the virtual screening of

molecule libraries and for predicting the physicochemical characteristics

of molecules [1]. According to Todeschini and Consonni [13], “the final

result of a logic and mathematical procedure which transforms chemical

information encoded within a symbolic representation of a molecule into

a useful number or the result of some standardized experiment” is known

as a molecular descriptor. Those molecular descriptors that are defined

via the graph of a molecule are usually referred to as topological indices in

chemical graph theory [14,15]. (The graph-theoretical and chemical graph-

theoretical terminology used in this study not defined here can be found

in [2, 4] and [14, 15], respectively.) The readers interested in the chemical

applications of topological indices are referred to the recent publications

[5, 11].

Those topological indices that are defined using the vertex degrees of

graphs are commonly known as degree-based topological indices [7]. Gut-

man [8] introduced a geometric approach to devise degree-based topolog-

ical indices. This approach was extended in [9]. Recently, Furtula and

Oz [6] presented a new way of contemplating the concept of “geometri-

cal” degree-based topological indices. Using the definition of the second

Zagreb index (see [3, 10]), they [6] defined the so-called “complementary

second Zagreb index” (CSZ index, in short). The CSZ index of a graph G

is defined [6] by

cM2(G) =
∑

uv∈E(G)

|(du(G))2 − (dv(G))2|,
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where du(G) denotes the degree of a vertex u in G and E(G) represents

the set of edges of G. As observed in [6], the CSZ index was not introduced

there for the first time. This index was proposed independently in several

recent papers under different names, including the nano Zagreb index, the

F-minus index, the first Sombor index, and the modified Albertson index

(see [6]).

Let H1 and H2 be two graphs with disjoint vertex sets. The join of H1

and H2 is denoted by H1 +H2 and is defined as a graph with the vertex

set V (H1) ∪ V (H2) and edge set

E(H1) ∪ E(H2) ∪ {h1h2 : h1 ∈ V (H1), h2 ∈ V (H2)}.

Throughout this paper, whenever we use the notation or terminology con-

cerning the join of two graphs, it would be understood that the graphs

under consideration have disjoint vertex sets. The complete graph of or-

der n is denoted by Kn. The complement of a graph G is represented as

G. In [6], the following conjecture was posed:

Conjecture 1. If G∗ is a graph having the maximum value of cM2 among

all connected graphs of order n then G∗ is isomorphic to Kk +Kn−k for

some k satisfying k < ⌈n/2⌉, where n ≥ 5 and the graph Kk + Kn−k is

shown in Figure 1.

n−k︷ ︸︸ ︷

Kk

Figure 1. The graph Kk +Kn−k.
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In [6], the following problem was also posed:

Problem 1. Assuming that Conjecture 1 is true, determine k as a func-

tion of n.

In [6], it was mentioned that solving Problem 1 is “far from being an

easy task”. In the present paper, we provide some results concerning the

solutions to Conjecture 1 and Problem 1. More precisely, we prove that

(i) the maximum degree of the graph G∗ defined in Conjecture 1 is n− 1

and (ii) no two vertices of minimum degree in G∗ are adjacent; both of

these results support the Conjecture 1. We also prove that the number of

vertices of maximum degree in G∗ is at most

−2

3
n+

3

2
+

1

6

√
52n2 − 132n+ 81.

Furthermore, we establish results that support Conjecture 1 for certain

bidegreed and tridegreed graphs. Concerning Problem 1, we obtain the

values of k for 5 ≤ n ≤ 149 in the case of certain bidegreed graphs by using

computer software and found that the resulting sequence of the values of

k does not exist in “The On-Line Encyclopedia of Integer Sequences” [12].

2 Results

By an n-order graph, we mean a graph of order n. For a graph G and a

vertex u ∈ V (G), let NG(u) denote the set of vertices adjacent to u.

Proposition 2. If G is a graph having the maximum value of cM2 among

connected n-order graphs, n ≥ 4, then the maximum degree of G is n− 1.

Proof. Let ∆ be the maximum degree of G. We assume that ∆ < n − 1

and seek a contradiction. We pick a vertex v ∈ V (G) of degree ∆ and

choose another vertex u ∈ V (G) that is not adjacent to v. We also define

N1 := {y ∈ NG(u) : dy(G) > du(G)}. Let G′ be the graph obtained from

G by adding the edge uv. In the rest of the proof, we take ds = ds(G) for
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every vertex s ∈ V (G′) = V (G). Then we have

cM2(G
′)− cM2(G) =

∑
w∈NG(v)

[
((∆ + 1)2 − d2w)− (∆2 − d2w)

]
+

∑
x∈NG(u)\N1

[
((du + 1)2 − d2x)− (d2u − d2x)

]
+

∑
y∈N1

[
(d2y − (du + 1)2)− (d2y − d2u)

]
+ (∆+ 1)2 − (du + 1)2

=∆(2∆ + 1) + (du − |N1|)(2du + 1)

− |N1|(2du + 1) + (∆ + 1)2 − (du + 1)2

=∆(2∆ + 1) + (du − 2|N1|)(2du + 1)

+ (∆ + 1)2 − (du + 1)2. (1)

If du = ∆, then |N1| = 0, and hence Equation (1) yields

cM2(G
′)− cM2(G) = 2∆(2∆ + 1) > 0,

a contradiction to the maximality of cM2(G). Next, we assume that the

inequality du < ∆ holds. Since |N1| ≤ du, we get

du − 2|N1| ≥ −|N1| ≥ −du > −∆.

Hence, Equation (1) yields

cM2(G
′)− cM2(G) >∆(2∆ + 1)−∆(2du + 1) + (∆ + 1)2 − (du + 1)2

=2∆(∆− du) + (∆ + 1)2 − (du + 1)2 > 0,

again a contradiction. Therefore, the maximum degree of G is n− 1.

Proposition 3. If G is a graph having the maximum value of cM2 among

all connected n-order graphs with n ≥ 4, then no two vertices of minimum
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degree in G are adjacent.

Proof. Let δ be the minimum degree of G. Contrarily, we suppose that

x, y ∈ V (G) are adjacent vertices of degree δ. Since n ≥ 4, we have δ ≥ 2.

If G′ is the graph obtained from G by removing the edge xy, then we have

cM2(G
′)− cM2(G) =

∑
u∈N(x)\{y}

[
(d2u − (dx − 1)2)− (d2u − d2x)

]
+

∑
v∈N(y)\{x}

[
(d2v − (dy − 1)2)− (d2v − d2y)

]
=2(δ − 1)(2δ − 1) > 0,

a contradiction to the maximality of cM2(G), where we used the notation

ds = ds(G) for every vertex s ∈ V (G′) = V (G). Thus, no two vertices of

minimum degree in G are adjacent.

We remark here that Propositions 2 and 3 support Conjecture 1. Next,

we derive an upper bound on the number of vertices of maximum degree

in a graph having the maximum value of cM2 among all connected n-order

graphs. For a graph G, denote by M(G) the set of those vertices of G that

have the maximum degree.

Proposition 4. If G is a graph having the maximum value of cM2 among

all connected n-order graphs with n ≥ 4, then

|M(G)| ≤ −2

3
n+

3

2
+

1

6

√
52n2 − 132n+ 81.

Proof. Let k = |M(G)|. By Proposition 2, we have du(G) = n−1 for every

u ∈ M(G). We choose an edge xy ∈ E(G) in such a way that the vertex x

has the maximum degree and the vertex y has the minimum degree. Let

G′ denote the graph obtained from G by removing the edge xy. In the

rest of the proof, we take ds = ds(G) for every vertex s ∈ V (G′) = V (G).
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Now, we have

0 ≥ cM2(G
′)− cM2(G)

=
∑

u∈M(G)\{x}

[
(n− 1)2 − (n− 2)2

]
+

∑
v∈NG(x)\(M(G)∪{y})

[
((n− 2)2 − d2v)− ((n− 1)2 − d2v)

]
+

∑
w∈NG(y)\{x}

[
((dw)

2 − (dy − 1)2)− (d2w − d2y)
]
− ((n− 1)2 − d2y)

=(k − 1)(2n− 3) + (n− k − 1)(3− 2n) + (dy − 1)(2dy − 1)

+ d2y − (n− 1)2

=(2k − n)(2n− 3) + (dy − 1)(2dy − 1) + d2y − (n− 1)2. (2)

Since dy ≥ |M(G)| = k, the expression given on the right most of (2) is

greater than or equal to

(2k − n)(2n− 3) + (k − 1)(2k − 1) + k2 − (n− 1)2,

which is equal to 3k2+(4n− 9)k− 3n2+5n. Therefore, from (2), we have

3k2 + (4n− 9)k − 3n2 + 5n ≤ 0,

which implies that the product of the expressions

k +
2

3
n− 3

2
+

1

6

√
52n2 − 132n+ 81

and

k +
2

3
n− 3

2
− 1

6

√
52n2 − 132n+ 81

is less than or equal to 0. Therefore, we have

k +
2

3
n− 3

2
− 1

6

√
52n2 − 132n+ 81 ≤ 0,

which gives the desired bound on |M(G)|.



454

Since, for n ≥ 4, the inequality

−2

3
n+

3

2
+

1

6

√
52n2 − 132n+ 81 <

5352

10000
n

holds, from Proposition 4, the next result follows.

Corollary 1. If G is a graph having the maximum value of cM2 among

all connected n-order graphs with n ≥ 4, then

|M(G)| < 5352

10000
n.

The primary motivation of establishing Proposition 4 and its corollary

is the inequality |M(G)| < ⌈n/2⌉ given in Conjecture 1.

The degree set of a graph G is the set of all distinct degrees of the

vertices of G. By an ℓ-degreed graph, we mean a graph having a degree

set consisting of exactly ℓ elements. If ℓ = 1, 2, or 3, then the corresponding

ℓ-degreed graph is called a regular graph, a bidegreed graph, or a tridegreed

graph, respectively.

Since the extremal graph mentioned in Conjecture 1 is a bidegreed

graph and because the maximum degree of this extremal graph is n−1 by

Proposition 4, we next prove Conjecture 1 for the class of n-order bidegreed

connected graphs with maximum degree n − 1. Also, in the next result,

we assume that n ≥ 11 because the required extremal graphs are already

known for n ≤ 10; see [6].

Proposition 5. Let G be a connected bidegreed n-order graph of maximum

degree n− 1, with n ≥ 11 and |M(G)| = k. Then

cM2(G) ≤ k(n− k)
(
(n− 1)2 − k2

)
, (3)

with equality if and only if G = Kk +Kn−k. Also, the inequality

cM2(G) ≤ ϵ n2(1− ϵ)
(
(n− 1)2 − ϵ2n2

)
(4)

holds for some ϵ lying between 372/1000 and 392/1000.

Proof. If δ is the minimum degree of G, then n− 2 ≥ δ ≥ k ≥ 1 and hence
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we have

cM2(G) = k(n− k)((n− 1)2 − δ2) ≤ k(n− k)
(
(n− 1)2 − k2

)
, (5)

where the right equality in (5) holds if and only if δ = k; this completes

the proof of (3). Next, we define the function f as

f(x, y) = x(y − x)((y − 1)2 − x2)

for real variables x and y satisfying y ≥ x+ 2 ≥ 3 and y ≥ 11. Then

∂f

∂x
= 4x3 − 3yx2 − 2(y − 1)2x+ y(y − 1)2.

If 1 ≤ x ≤ 373
1000y and y ≥ 11, then we note that ∂f

∂x > 0. Also, for the

case when 391
1000y ≤ x ≤ y − 2 and y ≥ 11, then we have ∂f

∂x < 0. Hence,

for every fix y ≥ 11, f(x, y) attain its maximum value over the interval

[1, y − 2] at some x lying between 372
1000y and 392

1000y. Now, (4) follows from

(5).

Since the difference 4
10n − 3

10n is strictly greater than 1 for n ≥ 11,

from the proof of Proposition 5 the next result follows.

Corollary 2. If G is a graph having the maximum value of cM2 over the

class {Kk +Kn−k : 1 ≤ k ≤ n− 2, n ≥ 11}, then 3
10n < k < 4

10n.

As mentioned in the introduction section, solving Problem 1 is “far

from being an easy task” [6]. By restricting ourselves to n-order con-

nected bidegreed graphs of maximum degree n−1, and by using computer

software, we find the values of k (see Table 1) for 5 ≤ n ≤ 149. The se-

quence consisting of the values of k given in Table 1 (that is, 2, 2, 3, 3, 3, 4,

4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13,

. . . ) does not exist in “The On-Line Encyclopedia of Integer Sequences”

[12].

Next, we prove a lemma, which is needed to prove Conjecture 1 for

n-order tridegreed connected graphs of maximum degree n− 1.
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Table 1. The values of k (the number of vertices of degree n − 1) in
n-order connected bidegreed graphs with maximum cM2 for
5 ≤ n ≤ 149.

n k n k n k n k n k
5 2 34 13 63 24 92 36 121 47
6 2 35 13 64 25 93 36 122 47
7 3 36 14 65 25 94 37 123 48
8 3 37 14 66 26 95 37 124 48
9 3 38 15 67 26 96 37 125 49
10 4 39 15 68 26 97 38 126 49
11 4 40 15 69 27 98 38 127 49
12 4 41 16 70 27 99 38 128 50
13 5 42 16 71 28 100 39 129 50
14 5 43 17 72 28 101 39 130 51
15 6 44 17 73 28 102 40 131 51
16 6 45 17 74 29 103 40 132 51
17 6 46 18 75 29 104 40 133 52
18 7 47 18 76 29 105 41 134 52
19 7 48 19 77 30 106 41 135 53
20 8 49 19 78 30 107 42 136 53
21 8 50 19 79 31 108 42 137 53
22 8 51 20 80 31 109 42 138 54
23 9 52 20 81 31 110 43 139 54
24 9 53 21 82 32 111 43 140 54
25 10 54 21 83 32 112 44 141 55
26 10 55 21 84 33 113 44 142 55
27 10 56 22 85 33 114 44 143 56
28 11 57 22 86 33 115 45 144 56
29 11 58 22 87 34 116 45 145 56
30 12 59 23 88 34 117 45 146 57
31 12 60 23 89 35 118 46 147 57
32 12 61 24 90 35 119 46 148 58
33 13 62 24 91 35 120 47 149 58

Lemma 6. Let x, y, z be real numbers such that 0 ≤ x ≤ y ≤ z. Then for

any nonnegative real numbers a, b, c, the following inequality holds:

a(z2 − y2) + b(z2 − x2) + c(y2 − x2) ≤ (b+max{a, c}) (z2 − x2).
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Proof. Note that

a(z2 − y2) + b(z2 − x2) + c(y2 − x2) ≤max{a, c}(z2 − y2) + b(z2 − x2)

+ max{a, c}(y2 − x2)

=(b+max{a, c})(z2 − x2).

Let G be an ℓ-degreed connected graph with degree set {d1, d2, · · · , dℓ}
such that d1 < d2 < · · · < dℓ and ℓ ≥ 2. For every i ∈ {1, 2, · · · , ℓ}, we
define Vi = {u ∈ V (G) : du(G) = di} and νi = |Vi|. Also, for every

i ∈ {1, · · · , t− 1} and j ∈ {i+ 1, · · · , t}, we define

ai,j =
∣∣{uv ∈ E(G) : u ∈ Vi, v ∈ Vj}

∣∣.
Then

cM2(G) =

t−1∑
i=1

t∑
j=i+1

ai,j(d
2
j − d2i ) (6)

Proposition 7. If G is a tridegreed connected n-order graph with degree

set {d1, d2, d3} such that d1 < d2 < d3 = n− 1 and n ≥ 11, then

cM2(G) < cM2(Kt +Kn−t)

for some t lying between 3
10n and 4

10n.

Proof. By using (6), we have

cM2(G) = ν3ν2((n− 1)2 − d22) + ν3ν1((n− 1)2 − d21) + a1,2(d
2
2 − d21). (7)

Case 1. ν3ν2 > a1,2.

By utilizing Lemma 6 in Equation (7), we obtain

cM2(G) < ν3(ν1 + ν2)((n− 1)2 − d21). (8)

Since every vertex of the set V3 is adjacent to all vertices of V1, we obtain

ν3 = |V3| ≤ d1. Additionally, we have ν1 + ν2 = n− ν3. Thus, from (8) it

follows that

cM2(G) < ν3(n− ν3)((n− 1)2 − ν23) = cM2(Kν3
+Kn−ν3

),

which implies the desired inequality because of Corollary 2.
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Case 2. ν3ν2 ≤ a1,2.

By using Lemma 6 in Equation (7), we obtain

cM2(G) ≤ (a1,2 + ν3ν1)((n− 1)2 − d21). (9)

Case 2.1. ν2 + ν3 ≤ d1.

We note that a1,2 ≤ ν1ν2. If any of the inequalities ν3ν2 ≤ a1,2, ν2 + ν3 ≤
d1, and a1,2 ≤ ν1ν2, is strict, then from (7) and (9) it follows that

cM2(G) < ν1(ν2 + ν3)((n− 1)2 − (ν2 + ν3)
2) (10)

= cM2(Kν2+ν3
+Kn−ν2−ν3

).

If ν3ν2 = a1,2, ν2 + ν3 = d1, and a1,2 = ν1ν2, then ν1 = ν3 and hence

ν2 + ν3 > n/2 (for otherwise, the inequality ν2 + ν3 ≤ n/2 gives ν1 ≥ n/2,

which gives ν1+ ν3 ≥ n/2+n/2, a contradiction); therefore, from (7), (9),

and Corollary 2, it follows that

cM2(G) = ν1(ν2 + ν3)((n− 1)2 − (ν2 + ν3)
2)

= cM2(Kν2+ν3
+Kn−ν2−ν3

) < cM2(Kt +Kn−t),

for some t lying between 3
10n and 4

10n.

Case 2.2. ν2 + ν3 > d1.

In this case, we have ν1 = n−(ν2+ν3) < n−d1. Now, for every x ∈ V1, we

have dx = |NG(x)∩ V1|+ |NG(x)∩ V2|+ |NG(x)∩ V3|. Since V3 ⊆ NG(x),

and dx = d1, we get |NG(x) ∩ V2| ≤ d1 − ν3; by summing this over all

elements x of V1, we obtain a1,2 ≤ ν1(d1 − ν3). Hence, from (9) we obtain

cM2(G) < (n− d1)d1((n− 1)2 − d21) = cM2(Kd1
+Kn−d1). (11)

Now, (11) implies the desired inequality because of Corollary 2.

Acknowledgement : This work is supported by the Scientific Research
Deanship, University of Ha’il, Ha’il, Saudi Arabia, through project number
RG-24 059.



459

References

[1] S. C. Basak (Ed.), Mathematical Descriptors of Molecules and
Biomolecules: Applications in Chemistry, Drug Design, Chemical
Toxicology, and Computational Biology, Springer, Cham, 2024.

[2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, Heidelberg,
2008.
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