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José Luis Palacios∗, Arianna Santamaŕıa

Electrical and Computer Engineering Department, The University of New

Mexico, Albuquerque, NM 87131, USA

jpalacios@unm.edu, ari@unm.edu

(Received September 30, 2024)

Abstract

We prove a new inequality between the HT index and the Kirch-
hoff index, as well as the facts that the value of the HT index for any
tree is an integer, and that this new index is not monotonic under
edge addition. Then we focus on the computation of the values of
this index, in closed form, for several families of graphs containing
one or two cutpoints.

1 Introduction

In what follows, a graph G = (V,E) will be a finite simple connected

undirected graph with vertex set V = {1, 2, . . . , n}, edge set E and ver-

tex degrees d1, d2, . . . , dn. For all graph theoretical details the reader is

directed to reference [2].

These graphs are used in mathematical chemistry to model molecules,

identifying the vertices as the atoms and the edges as the atomic bonds

between the vertices. Many topological indices, or descriptors, i. e., real-

valued functions on the domain of all graphs, have been defined with the
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purpose of capturing physico-chemical properties of the molecules and clas-

sifying them according to the values of their indices. Many of these indices

are defined in terms of the degrees of the vertices, for example, the first

Zagreb index is given by

M1(G) =
∑
i

d2i .

See [7] for a review of this and many other degree-based indices. Other

indices are based on the distance d(i, j) between the vertices i and j,

defined as the length of the shortest path between i and j. An example of

these is the Wiener index, defined in [14] as

W (G) =
∑
i<j

d(i, j).

Another family of indices uses the eigenvalues of a matrix (incidence,

Laplacian, normalized Laplacian, etc.) associated to the graph. The reader

is directed to reference [5] for a review of these indices.

Yet another family of indices, perhaps smaller in size, relies on con-

cepts taken from probability or electrical networks. One such index is the

Kirchhoff index defined in [1] as

K(G) =
∑
i<j

Rij , (1)

where Rij is the effective resistance between vertices i and j when the

graph is thought of as an electrical network, where all the edges have unit

resistance.

The simple random walk on G is defined as the Markov chain {Xn, n ≥
0} whose state space is V and whose transition probabilities are defined as

uniform, from a vertex i to any of its di neighboring vertices. The hitting

time Tj of the vertex j is defined as the smallest number of jumps needed

by the random walk to reach the vertex j:

Tj = inf{n ≥ 0 : Xn = j},
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and its expected value when the process is started in state i is denoted by

EiTj . We remark that EiTi = 0, and this should not be confused with the

mean return time to vertex i, EiT
+
i = 2|E|

di
, which involves T+

i = inf{n ≥
1 : Xn = i}. For facts about hitting times of Markov chains, the reader is

referred to [6].

In [10] we showed that there is a close relationship between hitting

times and the Kirchhoff index, namely

K(G) =
1

2|E|
∑
i<j

(EiTj + EjTi), (2)

so that one can use probabilistic tools and intuitions to this index, in ad-

dition to several other fruitful approaches. A good introduction to the

relationship between electric networks and random walks on graphs is ref-

erence [8].

A recent probabilistic/electrical index was put forward in [3] by Camby

et al., the random walk index, defined in the following way: for any pair

of vertices i and j, a battery is placed between i and j so that a 1 ampere

current enters i and exits j. This generates a voltage vijx on all vertices

x ∈ V , and a potential difference on any edge (x, y) given by vijx − vijy .

If the polarity of the battery is inverted, then the potential drop on the

edge (x, y) is vijy − vijx , and thus, in order to avoid the dependance on the

polarity of the battery, the authors consider the quantity |vijx − vijy |, and
they add these quantities over all edges of the graph getting

d̂ij =
∑

(x,y)∈E

|vijx − vijy |.

The authors prove that the function d̂ defined on the pairs of vertices ij

by the value d̂ij is a metric, and then define the random walk index as

RW (G) =
∑
i<j

d̂ij . (3)

We defined in [12] a new probabilistic index, the hitting time index
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HT (G) of a graph G, as

HT (G) =
∑
i<j

D(i, j), (4)

where D(i, j) = max{EiTj , EjTi}.
We showed that D(i, j) is actually a distance on the set of all vertices of

G, found some inequalities involving HT (G), K(G), W (G), and RW (G),

and computed HT (G) for some families of graphs.

A simple way to compute HT (G) starts by finding the transition prob-

ability P of the random walk on G, with entries P (i, j) = 1
di

in case i and j

are neighbors, and zero otherwise. We also use the matrix W , all of whose

rows are identical to the stationary distribution π = 1
2|E| [d1, d2, . . . , dn].

Then we find the so-called fundamental matrix

Z = (I − P +W )−1,

where I is the n×n identity matrix. Now, the matrix E of expected hitting

times is found via the matrix Z. Its entries are

E(i, j) = EiTj = (Z(j, j)− Z(i, j))/πj .

See [6] for a discussion of the matrices Z and E. Finally, the HT index of

the graph under consideration is found by adding
(
n−1
2

)
terms,∑

i<j

max{E(i, j), E(j, i)}.

In this article, we continue with the study of HT (G). First we prove three

refinements for the values that this index may take, and then we focus

on finding closed-from formulas for the values of HT in some families of

graphs endowed with one or two cutpoints.
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2 Three refinements

We showed in [12] that

HT (G) ≤ 2|E|K(G).

This inequality is improved in the following

Proposition 1. For any graph G we have

HT (G) ≤ 2|E|K(G)−W (G), (5)

where the equality is attained in case G = P2. For any tree T we have

HT (T ) ≤ 2|E|K(T )−W2(T ), (6)

where W2(G) =
∑

i<j d(i, j)
2 is the generalized Wiener index with param-

eter 2. The equality is attained for P2 and P3.

Proof. For any two real numbers x, y we have max{x, y} = x+y−min{x, y}
and therefore

HT (G) = 2|E|K(G)−
∑
i<j

min{EiTj , EjTi}. (7)

The number of jumps needed for the random walk to reach j starting from

i is bounded below by d(i, j). Therefore, so is its expected value, i.e.,

EiTj ≥ d(i, j). The same holds for EjTi. Then min{EiTj , EjTi} ≥ d(i, j),

and inserting this inequality into (7) yields (5). For trees, we use:

EiTj = d(i, j)2 + 2
∑
x∈P

|Ex|d(x, j), (8)

a formula found in [9], where P is the unique path between i and j and

Ex is the connected component of E−P containing x. It is obvious, then,

that for i and j in a tree, we have EiTj ≥ d(i, j)2. The same occurs for

EjTi, and a similar argument to the one used for (5), yields (6).

From the proof of the previous proposition we obtain the following
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result:

Proposition 2. For any tree T , the value HT (T ) is an integer

Proof. By the equation (8) it is clear that all expected hitting times in a

tree T are integer, and therefore, so is HT (T ).

Going in a different direction now, it is worth mentioning that, due

to the monotonicity principle for electric circuits, the Kirchhoff index is

monotonic in the number of edges of a graph, that is, if G
′
is the graph

obtained from adding a new edge to the graph G, connecting two of its

vertices, then K(G
′
) < K(G). A simple proof of this fact can be read

in [11]. This is not the case for the HT index, as expressed in the following

Proposition 3. The HT index is not monotonic under edge addition.

Proof. Consider the 4-path graph P4. Then HT (P4) = 50. If we connect

the leaves of P4 with a new edge we obtain the 4-cycle, C4, for which

HP (C4) = 20. But then, if we add an extra edge to C4 we obtain a graph

G for which HT (G) = 23.5.

3 Graphs with cutpoints

A cutpoint c of a graph G is a vertex such that its removal renders the

graph disconnected into two or more connected components. Graphs with

cutpoints often yield easier computations of hitting times, and here is the

fundamental idea in this regard: if c is a cutpoint of G, and i and j belong

to two different components of the disconnected components mentioned,

then if we let the random walk occur in the whole graph G, we have

EiTj = EiTc + EcTj .

This is intuitively obvious because in order to reach j starting from i, the

random walk must necessarily reach first the cutpoint c and then, starting

from c, reach the destination j. See [9] for a discussion of this theme. We

will see how this idea yields closed-form formulas for the HT index of some

graphs not studied in [12].
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Specifically, let’s look at the graph G(n,m) which consists of two com-

plete graphs Kn and Km (we will call these graphs the two petals of

G(n,m)) such that they are disjoint in their edges and their vertices ex-

cept for a vertex that we will choose to be n, that is, the vertex set of

Kn is {1, 2, . . . , n}, and the vertex set of Km is {n, n+ 1, . . . , n+m− 1}.
Then the vertex set of G(n,m) is {1, 2, . . . , n+m− 1} and its edge set is

the union of the edge sets of the two petals Kn and Km. If we look at an

individual petal, say, Kn, it is easy to see that

Lemma 1. For any pair of vertices i and j in Kn we have

(i) Rij =
2
n

(ii) EiTj = n− 1.

Proof. For (i), it is a simple matter of working with the formulas of resistors

in series and in parallel; for (ii) it is easy to see that Tj is a geometric

random variable with probability of success (i.e., of hitting the vertex j)

equal to 1
n−1 . Therefore its expectation is the inverse of the parameter, i.

e., n− 1.

The formulas in the following lemma will be essential for the calcula-

tions of expected hitting times below.

Lemma 2. For any pair of vertices a and b in G we have

EaTb + EbTa = 2|E|Rab. (9)

and

EaTb =
1

2

∑
z

dz [Rab +Rbz −Raz] , (10)

where dz is the degree of vertex z.

The proof of (9) can be found in [4]. That of (10) in [13].

It is clear that the unidirectional formula (10) is stronger than (9),

because if we exchange the roles of a and b in (10), and add the resulting

equation to (10), we obtain

EaTb + EbTa =
∑
z

dzRab = Rab

∑
z

dz = 2|E|Rab.
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However, most of the time we will be using (9) rather than (10).

In what follows, when we talk about a vertex i ∈ G(n,m) which is in

the Kn component, we will simply say that i ∈ Kn. Now we want to prove

the following

Proposition 4. Given i, j ∈ G(n,m),

(i) if i ∈ Kn − {n} we have EiTn = n− 1. Likewise, if i ∈ Km − {n}
we have EiTn = m− 1.

(ii) if i ∈ Kn − {n}, j ∈ Km − {n} we have

EiTj = [n(n− 1) +m(m− 1)]
2

m
−m+ n.

(iii) if i ∈ Km − {n}, j ∈ Kn − {n} we have

EiTj = [n(n− 1) +m(m− 1)]
2

n
− n+m.

(iv) if both i, j ∈ Kn − {n} then

EiTj = EjTi = [n(n− 1) +m(m− 1)]
1

n
.

(v) if both i, j ∈ Km − {n} then

EiTj = EjTi = [n(n− 1) +m(m− 1)]
1

m
.

(vi) if i ∈ Kn − {n}, then EnTi = [n(n− 1) +m(m− 1)] 2n − n+ 1.

(vii) if i ∈ Km − {n}, then EnTi = [n(n− 1) +m(m− 1)] 2m −m+ 1.

Proof. (i) Since the target is n and the start is i ∈ Kn, as long as the

walk has not reached n, it behaves as if the Km did not exist. The same

argument applies if the start vertex is i ∈ Km.

(ii) Because n is a cutpoint, and by part (i) we have

EiTj = EiTn + EnTj = n− 1 + EnTj . (11)



435

Now by (9)

EnTj + EjTn = [n(n− 1) +m(m− 1)]Rjn = [n(n− 1) +m(m− 1)]
2

m
.

Solving for EnTj in the previous formula, using part (i) to find EjTn =

m− 1, and plugging into (11) yields the desired result.

(iii) this is immediate from (ii), exchanging the roles of n and m.

(iv) and (v) are immediate, by symmetry and (9).

(vi) By (9):

EnTi + EiTn = [n(n− 1) +m(m− 1)]Rin = [n(n− 1) +m(m− 1)]
2

n
.

But by part (i), EiTn = n− 1, thus solving for EnTi ends this part of the

proof.

(vii) Similar to (vi), exchanging n with m.

Now we can prove the following

Proposition 5.

HT (G(n,m)) = [n(n− 1) +m(m− 1)]

×

{(
n−1
2

)
n

+
2(n− 1)

n
+

2(m− 1)

m
+

2(m− 1)(n− 1)

min{n,m}
+

(
m−1
2

)
m

}
− (n− 1)2 − (m− 1)2 + |m− n|(m− 1)(n− 1),

(12)

with the particular case

HT (G(n, n)) = 2(n− 1)2(3n− 1). (13)

Proof. From (iv) in the previous proposition, it is clear that

D(i, j) = [n(n− 1) +m(m− 1)]
1

n
, (14)

whenever i, j ∈ Kn − {n}. There are (n−1)(n−2)
2 choices for such i and j.
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Also, by (v) we have

D(i, j) = [n(n− 1) +m(m− 1)]
1

m
, (15)

whenever i, j ∈ Km −{n}. There are (m−1)(m−2)
2 choices for such i and j.

Let us assume now that m ≥ n. Then, from (ii) and (iii) it is easy to

se that

D(i, j) = [n(n− 1) +m(m− 1)]
2

n
− n+m, (16)

whenever i ∈ Kn − {n}, j ∈ Km − {n}. There are (n− 1)(m− 1) choices

for such i and j.

From (i) and (vi) we can see that

D(i, n) = [n(n− 1) +m(m− 1)]
2

n
− n+ 1, (17)

when i ∈ Kn − {n}. There are n− 1 choices for such i.

Finally, from (i) and (vii) we have that

D(i, n) = [n(n− 1) +m(m− 1)]
2

m
−m+ 1, (18)

when i ∈ Km − {n}. There are m− 1 choices for such i.

In order to get the closed form expression for (4) in this case, we add

the values in (14), (15), (16), (17) and (18) multiplied by their respective

number of choices. We get the expression

HT (G(n,m)) = [n(n− 1) +m(m− 1)]

×

{(
n−1
2

)
n

+
2(n− 1)

n
+

2(m− 1)

m
+

2(m− 1)(n− 1)

n
+

(
m−1
2

)
m

}

−(n− 1)2 − (m− 1)2 + (m− n)(m− 1)(n− 1). (19)

If we assume that n ≥ m, all previous derivations hold except (16),

where we need to exchange the roles of n and m, obtaining then

HT (G(n,m)) = [n(n− 1) +m(m− 1)]
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×

{(
n−1
2

)
n

+
2(n− 1)

n
+

2(m− 1)

m
+

2(m− 1)(n− 1)

m
+

(
m−1
2

)
m

}

−(n− 1)2 − (m− 1)2 + (n−m)(m− 1)(n− 1). (20)

Now (19) and (20) imply (12).

We remark that formula (12) is symmetric in n and m, as it should,

because

HT (G(n,m)) = HT (G(m,n)).

We can generalize our results in several directions. If we consider con-

joining several different-sized complete graphs, the number of different

parameters complicates matters rapidly. We choose to consider s equal-

sized Kn’s, that we will label Kn,1,Kn,2, . . . ,Kn,s all conjoined at a single

vertex, say, n. Here we have chosen for simplicity {1, 2, . . . , n} to be the

vertex set of Kn,1, {n, n + 1, . . . 2n − 1} to be the vertex set of Kn,2,

{n, 2n, 2n + 1, . . . 3n − 2} to be the vertex set of Kn,3, etc., though the

labelling does not play any role in the computations below. Let us call

this graph Gs(n), whose edge set E satisfies |E| = sn(n−1)
2 , and let us call

the Kn,r, 1 ≤ r ≤ s, its petals. Then we have

Proposition 6. Given Gs(n),

(i) if i ̸= n then EiTn = n− 1;

(ii) if i ̸= n then EnTi = (2s− 1)(n− 1);

(iii) If both i, j ∈ Kn,r, then EiTj = s(n− 1);

(iv) if i and j are in different petals, i ̸= n, j, ̸= n then EiTj = 2s(n−1).

Proof. (i) is similar to the proof of (i) in Proposition 4;

(ii) we use (9) and (i) and solve for EiTn = 2|E|Rin − EiTn = 2s(n−
1)− (n− 1);

(iiii) by symmetry and (9), EiTj = EjTi = |E|Ri,j = sn(n−1)
2

2
n =

s(n− 1);

(iv) by (ii) and the fact that n is a cutpoint,

EiTj = EiTn + EnTj = n− 1 + (2s− 1)(n− 1) .
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Since there are only four distinct expected hitting times in Gs(n), the

computation of its HT index is reasonable, as the following proposition

shows.

Proposition 7.

HT (Gs(n)) = s(n− 1)2
[
2s− 1 +

s(n− 2)

2
+ s(s− 1)(n− 1)

]
. (21)

Proof. By (i) and (ii) of Proposition 5,

D(i, n) = EnTi = (2s− 1)(n− 1),

and there are s(n−1) target vertices, so these choices of vertices contribute

a total of

s(2s− 1)(n− 1)2, (22)

in the summation (4). If i and j are in the same petal

D(i, j) = EiTj = EjTi = s(n− 1),

and there are s
(
n−1
2

)
ways to select these two vertices, so these choices

contribute

s2(n− 1)2(n− 2). (23)

Finally, when i and j are in different petals, i ̸= n, j ̸= n, we have by (iv)

that

D(i, j) = EiTj = EjTi = (2s− 1)(n− 1).

Since we have
(
s
2

)
ways to choose the pairs of petals, and then (n − 1)2

ways to choose the starting vertex and the target vertex, we have that

these vertices contribute a total of

2s(n− 1)

(
s

2

)
(n− 1)2 = s2(s− 1)(n− 1)3. (24)

Adding (22), (23), and (24) we obtain the desired result.

We notice that G2(n) = G(n, n) and indeed, (13) and (21) coincide

when s = 2.
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Another possible way to generalize Proposition 5 is to consider a linear

chain of copies of Kn’s, conjoined at one point (the two Kn’s on both

ends of the chain) or two points (the intermediate Kn’s). This can get

rapidly unmanageable, and so we will only look at the case of a 3-long

chain composed of three copies of Kn, which we will call Kn,i, 1 ≤ i ≤ 3,

and such that Kn,1 and Kn,2 have one vertex in common, say, vertex n,

and Kn,2 and Kn,3 have also one vertex in common, say, vertex 2n − 1.

Here we have chosen for simplicity {1, 2, . . . , n} to be the vertex set ofKn,1,

{n, n+1, . . . 2n−1} to be the vertex set of Kn,2 and {2n−1, 2n, . . . 3n−2}
to be the vertex set of Kn,3. It is clear that the graph so defined, denoted

by Kn,1,2,3 = (V,E) satisfies |V | = 3n − 2 and |E| = 3
2n(n − 1). With

these conditions we can prove

Proposition 8. In Kn,1,2,3 there are eight different values for the expected

hitting times with the form k(n − 1), for k = 1, 2, 3, 4, 5, 7, 8, 9, according

to the following choices:

(i) EiTn = n − 1, for i ∈ Kn,1 − {n}; EiT2n−1 = n − 1, for i ∈
Kn,3 − {2n− 1}.

(ii) EnTi = 5(n − 1), for i ∈ Kn,1 − {n}, E2n−1Ti = 5(n − 1), for

i ∈ Kn,3 − {2n− 1}.
(iii) EnT2n−1 = E2n−1Tn = 3(n− 1).

(iv) EiTj = 3(n − 1) for i, j ∈ Kn,2 − {n, 2n − 1}. This also holds if

both i, j ∈ Kn,1 − {n} or if both i, j ∈ Kn,3 − {2n− 1}.
(v) EiTn = 4(n − 1) for i ∈ Kn,3 − {2n − 1}, EiT2n−1 = 4(n − 1) for

i ∈ Kn,1 − {n}.
(vi) EiTj = 9(n − 1), for i ∈ Kn,1 − {n}, j ∈ Kn,3 − {2n − 1}. This

also holds when exchanging the roles of i and j.

(vii) EiTn = 2(n− 1), for i ∈ Kn,2 −{n, 2n− 1}. EiT2n−1 = 2(n− 1),

for i ∈ Kn,2 − {n, 2n− 1}.
(viii) EiTj = 7(n−1), for i ∈ Kn,2−{n, 2n−1}, j ∈ Kn,1−{n}. This

also holds if j ∈ Kn,3 − {2n− 1}.
(ix) EnTi = 8(n − 1) for i ∈ Kn,3 − {2n − 1}, E2n−1Ti = 8(n − 1),

i ∈ Kn,1 − {n}.
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(x) EnTi = 4(n− 1), for i ∈ Kn,2 − {n, 2n− 1}. This also holds when

replacing the starting vertex n with 2n− 1.

(xi) EiTj = 5(n− 1) for i ∈ Kn,1 − {n}, j ∈ Kn,2 − {n, 2n− 1}. This

also holds if i ∈ Kn,3 − {2n− 1}.

Proof. (i) The argument is similar to that of (i) in Proposition 4.

For (ii) we have by (9):

EiTn + EnTi = 2|E|Rin = 3n(n− 1)
2

n
= 6(n− 1).

Therefore, by (i) we have

EnTi = 6(n− 1)− (n− 1) = 5(n− 1),

for i ∈ Kn,1, i ̸= n. The argument for E2n−1Ti is similar.

For (iii), by symmetry and (9) we get

EnT2n−1 = E2n−1Tn = |E|Rn,2n−1 =
3

2
n(n− 1)

2

n
= 3(n− 1).

The argument for (iv) is the same as that for (iii). The same argument

holds if i, j ∈ Kn,1 with i, j ̸= n and if i, j ∈ Kn,3, i, j ̸= 2n− 1.

For (iv), if i ∈ Kn,3, i ̸= 2n− 1, since 2n− 1 is a cutpoint we have

EiTn = EiT2n−1 + E2n−1Tn = n− 1 + 3(n− 1) = 4(n− 1).

The argument for EiT2n−1, with i ∈ Kn,1, i ̸= n is similar.

For (v), using that n is a cutpoint, we have

EiTn = EiT2n−1 + E2n−1Tn = n− 1 + 3(n− 1) = 4(n− 1).

The argument for EiT2n−1, i ∈ Kn,1, i ̸= n is similar.

For (vi), using that both n and 2n − 1 are cutpoints, (i), (ii) and (iii)

we get

EiTj = EiTn+EnT2n−1+E2n−1Tj = n−1+3(n−1)+5(n−1) = 9(n−1).
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For (vii), this is the only expected hitting time that cannot be calcu-

lated in closed form using only (9). Thus we will use (10), taking a = i

and b = n.

We notice that the term in the brackets in (10) becomes 0 when z = n

( because we get
[
2
n + 0− 2

n

]
) or when z ∈ Kn,1, z ̸= n, (because we get[

2
n + 2

n − 4
n

]
).

If we take z ∈ Kn,2, with z /∈ {n, i, 2n−1} then the summand becomes

(n− 1)

[
2

n
+

2

n
− 2

n

]
=

2(n− 1)

n
, (25)

and there are n − 3 such summands. If z = i we get the additional

summand

(n− 1)

[
2

n
+

2

n
− 0

]
=

4(n− 1)

n
. (26)

If we take z ∈ Kn,3, with z ̸= 2n− 1 we get

(n− 1)

[
2

n
+

4

n
− 4

n

]
=

2(n− 1)

n
, (27)

and there are n − 1 such summands; finally, if z = 2n − 1 we obtain the

additional summand

2(n− 1)

[
2

n
+

2

n
− 2

n

]
=

4(n− 1)

n
. (28)

Putting together (25), (26), (27) and (31) we get

EiTn =
1

2

[
2(n− 1)(n− 3)

n
+

4(n− 1)

n
+

2(n− 1)2

n
+

4(n− 1)

n

]
= 2(n−1).

(29)

This implies by symmetry that also EiT2n−1 = 2(n − 1), for i ∈ Kn,2

with i ̸= 2n− 1.

For (viii), because of the cutpoint, and using (vii) and (ii) we get

EiTj = EiTn + EnTj = 2(n− 1) + 5(n− 1) = 7(n− 1),

for i ∈ Kn,2, i /∈ {n, 2n− 1}, j ∈ Kn,1, j ̸= n.

The same result holds by symmetry if the target vertex j satisfies j ∈
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Kn,3, j ̸= 2n− 1.

For (ix), because 2n− 1 is a cutpoint, and using (ii) and (iii) we have

EnTi = EnT2n−1 + E2n−1Ti = 3(n− 1) + 5(n− 1) = 8(n− 1),

for i ∈ Kn,3, i ̸= 2n − 1. The same result applies when exchanging the

roles of n with 2n− 1 and Kn,3 with Kn,1

For (x), we have EnTi +EiTn = EnTi + 2(n− 1) = 2|E|Rni = 3n(n−
1) 2n = 6(n − 1). Solving for EnTi shows the result. The other case is

similar.

For (xi), when i ∈ Kn,1 i ̸= n and j ∈ Kn,2, j /∈ {n, 2n − 1}, write
EiTj = EiTn + EnTj and use (i) and (x). The other case is similar.

Figure 1. Shaded regions used in computing HT (Kn,1,2,3).

Proposition 9. For all n we have

HT (Kn,1,2,3) = (n− 1)

(
55n2

2
− 85n

2
+ 13

)
(30)

Proof. The results of the previous proposition can be summarized in the

matrix E of expected hitting times shown in figure 1, where all the integer
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values are multiplied by n − 1. The maxima D(i, j) = max{EiTj , EjTi}
are found in the shaded regions. For example, in the upper left triangle

we add 1 + 2 + · · ·+ n− 2 = (n−1)(n−2)
2 times the constant 3, etc. When

we add all those maxima we get

HT (Kn,1,2,3)

n− 1
=

3(n− 1)(n− 2)

2
+

3(n− 3)(n− 2)

2
+

3(n− 1)(n− 2)

2

+ 5(n− 1) + 4(n− 2) + 7(n− 1)(n− 2) + 7(n− 1)(n− 2) + 8(n− 1)

+ 4(n− 2) + 5(n− 1) + 9(n− 1)(n− 1) + 8(n− 1) + 3

=
55n2

2
− 85n

2
+ 13,

and solving for HT (Kn,1,2,3) we get the expression:

HT (Kn,1,2,3) = (n− 1)

(
55n2

2
− 85n

2
+ 13

)
.

When n = 2 the formula turns out HT (K2,1,2,3) = 38, which coincides

with HT (P4) found with the formula for HT (Pn) given in [12].

3.1 Final note

We have seen in this section how to use cutpoints to our advantage when

computing hitting times because when c is a cutpoint and i and j belong

to different connected components of G− {c}, then EiTj = EiTc + EcTj .

One may ask if, under these conditions, it is also true that

D(i, j) = D(i, c) +D(c, j). (31)

In other words, when c is a cutpoint, does the triangular inequality for

the distance D become an equality? The answer in general is no, as we

can attest by looking at all the graphs covered in the previous proposi-

tions. However, adding another hypothesis, which will occur under mild

symmetry conditions, we can get the equality as in the following

Proposition 10. If c is a cutpoint, and EiTc = EcTi or EcTj = EjTc,

then (31) holds.
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Proof. Suppose without loss of generality that EcTj = EjTc thenD(c, j) =

EcTj . Suppose, also without loss of generality, that D(i, j) = EiTj =

EiTc + EcTj ≥ EjTi = EjTc + EcTi. This implies that EiTc ≥ EcTi, so

that D(i, c) = EiTc and then D(i, j) = EiTj = EiTc + EcTj = D(i, c) +

D(c, j).

For example, consider the path graph P2n on 2n vertices. By symmetry

and (9), we have

D(n, n+ 1) = EnTn+1 = En+1Tn = |E| = 2n− 1. (32)

Also, it is easy to see that E1Tn+1 = n2 and E1Tn = (n− 1)2. Using (9),

we get En+1T1 = 3n2 − 2n and EnT1 = 3n2 − 4n+ 1. Therefore

D(1, n+ 1) = 3n2 − 2n (33)

and

D(1, n) = 3n2 − 4n+ 1. (34)

From (32), (33) and (34) it is plain to see that

D(1, n+ 1) = D(1, n) +D(n, n+ 1).

Wemust remark that even in the graph P2n, not all choices of i, j and c lead

to (31). It would be interesting to know if the conditions of Proposition

10 are also necessary for (31) to hold.
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