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Abstract

A perfect star packing in a fullerene graph is a spanning subgraph
whose every component is isomorphic to the star graph K1,3. A
perfect star packing in a (3, 6)-fullerene graph is called a perfect
star packing of type T0 if no center of a star is on a triangle of G.
A µ-way G-trade consists of µ disjoint decomposition of graph H
into copies of graph G. In this paper, we use the concept of packing
and specify values of the number of copies of G=S(K1,3) for which
there exists a µ-way S(K1,3)-trade when the underlying graph is a
non-trivial (3, 6)-fullerene graph.

1 Introduction

A (3, 6)-fullerene graph F on n vertices, is a 3-regular, 2-connected, or 3-

connected planar graph with four triangles and n
2 − 2 hexagons. For given

graphs, G and H, a perfect H-packing in G is a spanning subgraph of G

whose all components are isomorphic to H. If H is the star graph K1,3, it

is called perfect star packing.
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T. Došlić et al. [4] categorized some fullerene graphs with perfect star

packing and showed that all (3, 6)-fullerene graphs have perfect star pack-

ing.

A decomposition of the graph G is a set of edge-disjoint subgraphs Hi

such that each edge of G belongs to exactly one of the Hi and the Hi

partitions the edges set of G.

A K-decomposition of G is a decomposition such that each subgraph

Hi in the decomposition is isomorphic to K.

A µ-way G-trade (µ ≥ 2) of volume s with underlying graph H consists

of µ disjoint decompositions of H into s edge-disjoint copies of a graph G.

The first introduction to the concept of trade in the block designs was

made by Hedayat [10], but trades were used back in 1917 by White, Cole,

and Cummings [3]. Trades are used in various fields, including combi-

natorial. For example, trade is used in the Latin squares, named Latin

trades [1, 11]. After that trades are introduced and used in graph the-

ory [2,9]. Khademian et al. [12,13] determined all values s for which there

exists a µ-way K1,m-trade of volume s for underlying graph H = K2n,2n

and H=K2n and 3-Way trades for trees with up to three Edges.

Figure 1 shows an example of 10-way K1,3-trade of volume 2 for un-

derlying graph H = K1,6, where V (H) = {1, 2, 3, 4, 5, 6, 7}.

Figure 1. 10-way K1,3-trade of volume 2.
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Let G be a simple graph. A subdivided graph of a graph G, denoted

by S(G), is a graph obtained by placing a new vertex on each edge of G.

If G = K1,3, S(G) is subdivided star graph.

Suppose G is a (3, 6)-fullerene graph, and t, h, n, andm, are the number

of triangles, hexagons, vertices, and edges of G, respectively. By Euler’s

formula, we have

m = 3h+ 6, n = 2h+ 4, t = 4

This shows that a (3, 6)-fullerene graph with n vertices has four triangles

and n
2−2 hexagons, where n is an even number greater than or equal to

four.

Non-trivial (3, 6)-fullerene graphs, are fullerenes in which no two tri-

angles have a common edge. In the rest of this paper, we will restrict our

attention on non-trivial (3, 6)-fullerene graphs.

Each (3, 6)-fullerene graph is characterized by an ordered triple (r, s, t)

where the components r, s, and t are non-negative integers such that r is

equal to the number of hexagonal layers, s is the number of radial edges,

i.e. the edges between each layer, and t is the number of twists. If G is a

non-trivial (3, 6)-fullerene graph, then s is at least equal to 2.

In each (3, 6)-fullerene graph, all vertices are placed on the concentric

circle r. The number of vertices in each circle is twice that of radial edges.

Considering that the number of radial edges is always even, the number of

vertices in each circle is a multiple of four. Figure 2 shows an example of

a (3, 6)-fullerene graph with r = 3 and s = 4. For further reading about

these graphs, references [6–8] are recommended.

In this paper, we obtain the values of s and µ for all µ-way S(K1,3)-

trade and the underlying graph F , which is a non-trivial (3, 6)-fullerene

graph.

2 Perfect star packing of type T0

In this section, we introduce a special type of perfect star packing, called

perfect star packing of type T0, for (3, 6)-fullerene graphs and calculate the
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Figure 2. A (3, 6)-fullerene with r = 3 and s = 4.

number of this packing. In the rest of this paper, we assumed all graphs

are simple.

Let G and H be two graphs. A perfect H-packing in G is a spanning

subgraph of G whose all components are isomorphic with H. If it impos-

sible to cover all the vertices of G by placing disjoint copies of H in G, we

say that G does not have perfect H-packing.

For further study in the field of graph packing, references [4, 5] are

recommended.

It has been proven in reference [4] that all (3, 6)-fullerene graphs have

perfect star packing; that is, they have perfect H-packing, where H is the

star graph K1,3.

A perfect star packing in a (3, 6)-fullerene graph is called a perfect star

packing of type T0 if no center of a star is on a triangle of G. In other

words, if none of the vertices of a triangle is a central vertex of a star.

Figure 3 shows an example of perfect star packing of type T0.

Lemma 1. Trivial (3, 6)-fullerene graphs do not have a perfect star packing

of type T0.

Proof. Let F be a trivial (3, 6)-fullerene graph that a part of it is shown

in Figure 4.

To cover the vertex v1 in a star packing, either the vertex v1 must be
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Figure 3. A perfect star packing of type T0.

Figure 4. A part of a trivial (3, 6)-fullerene.

the central vertex of the star, or one of the vertices v2, v3, v4 should be the

central vertex, and in each case, we have a central vertex on the edges of

the triangle, and therefore there is no perfect star packing of type T0.

In this part, we examine the existence of perfect star packings of type

T0 in a (3, 6)-fullerene graph F in different states.

First, notice that if r = 2, then there is a perfect star packing of type

T0 for F . An example of this packing is shown in Figure 5.

In the following theorem, we state a condition for the existence of a

perfect star packing of type T0 based on the parity of r.

Theorem 1. If F is a (3, 6)-fullerene graph, then if r is odd, F does not

have a perfect star packing of type T0, and if r is even, then F has a

perfect star packing of type T0.

Proof. Figures 6, 7, and 8 show three general patterns that can be consid-

ered for a perfect star packing of type T0 in F , according to the type of
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Figure 5. A perfect star packing of type T0 in mode r = 2.

packing and vertex coverage.

Figure 6. A type of perfect star packing of type T0.

If we have a packing like the one shown in Figures 6 and 7, then the

number of radial edges connected to each circle that participates in the

packing should be an even number. Because suppose the edge e1 is a

radial edge considered a star edge (See Figure 9). To cover the vertex u,

either this vertex itself must be the central vertex, in which case the edge

e2 participates in the packing, or the vertex v must be the central vertex,

and in this case, the vertex w will also be the central vertex, and as a
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Figure 7. A type of perfect star packing of type T0.

Figure 8. A type of perfect star packing of type T0.

result, to cover the vertex y, the vertex z must also be the central vertex

of the star.

And based on this, the edge e3 will be the radial edge participating in

the star packing.

So, we will have another radial edge participating in star packing for

each radial edge as a star edge. And therefore, the number of radial edges

participating in the packing in each circle is an even number.

Also, if we have a packing like the one in Figures 6 and 7, in each

layer, several radial edges must inevitably participate as star edges in the

star packing. If we consider an arbitrary circle, there are radial edges in
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Figure 9. Radial edges in perfect star packing.

the circles before and after that circle, which are part of the perfect star

packing edges. Now we claim that in these two cases, there is no perfect

star packing of type T0. Suppose it is not true. For a perfect star packing

of type T0, we must have the following shape.

Figure 10. A part of a perfect star packing of type T0.

The edge e cannot be the radial edge of the packing; conversely, if

none of the edges e′, e′′, . . . in Figure 10 are radial edges participating in

the packing, then we will have a packing in Figure 8. Otherwise, suppose

that at least one of these edges participates in packing; that is, one of the

Figure 6 or Figure 7 will arise (Figure 11).
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Figure 11. A part of a perfect star packing.

In this case, the triangle T cannot have a packing in the form allowed

in a perfect star packing of type T0. Therefore, there is no perfect star

packing of type T0 in the two cases of packing in Figures 6 and 7, regardless

of whether r is even or odd.

Now suppose that the fullerene graph F has a packing of the type

shown in Figure 8.

As can be seen, the packing of the first two circles in Figure 7 is clear.

We inevitably have a packing in each pair of the following circles, as shown

in Figure 12.

Figure 12. Perfect star packing in a pair of circles.

If r is even, the packing will be done up to the last two remaining layers

in this way; that is, we continue the packing process by placing a star in

each pair of circles. In the last two layers, regardless of where the triangles

are placed, packing can be done similarly. In fact, in the two outer circles,

we will have packing as follows.
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Figure 13. Perfect star packing in the caps.

We note that the structure of the caps does not affect this type of

packing.

Figure 14 shows an example of a (3, 6)-fullerene graph with a perfect

star packing of type T0.

Figure 14. A perfect star packing of type T0 in a (3, 6)-fullerene graph
with odd r.
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If r is odd, with this packing method, one last layer remains, with

several vertices that are a multiple of four. In this layer, there are two

caps, as shown in Figure 15. We consider the vertex v in this cap. To

cover this vertex, one of the vertices v1 or v2 must be the central vertex of

the star, so in this case, the graph cannot have a complete star packing of

type T0.

Figure 15. One cap in the last layer.

Theorem 2. The necessary condition for a (3, 6)-fullerene graph F to

have a perfect star packing of type T0 is that it has 8k (k ∈ N) vertices in

each circle.

Proof. According to the proof of Theorem 1, the (3, 6)-Fullerene graph,

which has a perfect star packing of type T0, appears as shown in Figure

16.

Figure 16. A part of a (3, 6)−fullerene graph with perfect star packing
of type T0.
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In the innermost circle, fourteen vertices v1, v2, . . . , v14 are covered by

the initial packing of triangles. To complete the packing, other vertices of

this circle from vertex v4 to vertex v8 must participate in the packing with

the following pattern.

1 3 1 3 · · · 3 1

In other words, first one vertex and then three vertices of the circle are

covered by stars, and this pattern continues. In this pattern, the number 3

is repeated t(t ∈ N) times, and the number 1 is repeated t+ 1. Therefore,

the sum of these vertices is equal to

3t+ (t+ 1) = 4t+ 1

In the same way, there are 4t + 1 vertices in the path from vertex v7

to vertex v11, and therefore the sum of these vertices is equal to 8t + 2.

These vertices plus the initial 14 vertices covered by triangles will be the

number of 8 + 8t+ 8 = 8s vertices (s ∈ N) in the circle.

The results of Theorems 1 and 2 are summarized in the following The-

orem

Theorem 3. A (3, 6)-fullerene graph F has complete star packings of type

T0 if and only if r is even and the number of vertices of each circle is a

multiple of 8.

If we denote the number of perfect star packings of type T0 of the

(3, 6)-fullerene graph F by T0(F ), then we have the following theorem.

Theorem 4. Let F be a (3, 6)-fullerene graph that applies in the conditions

of the previous corollary then

T0(F ) =

{
1 r = 2

2
r−4
2 r > 2

Proof. First, we consider the case where the number of vertices on the

circle is equals 8. In this case, an example of a perfect star packing of type

T0 for F is shown in Figure 17.
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Figure 17. A perfect star packing of type T0.

This packing is the only perfect star packing of type T0 for F ; there-

fore, in this case, T0(F ) = 1. According to the argument in the proof of

Theorem 1, only in the case of Figure 8, the graph F has a complete star

packing of type T0. Now suppose r = 2. There is only one state to cover

the first two circles; therefore, T0(F ) = 1. Now suppose r > 2. In this

case, we cover the first two circles, as shown in Figure 8, and for the last

two circles, we have the same packing as shown in Figure 14. Therefore,

the number of r − 4 circles remains, which we cover according to the ex-

planation of the proof of Theorem 1 as shown in Figure 12, and so in this

case, we will have

T0 (F ) = 2
r−4
2

3 µ-way S(K1,3)-trade for (3, 6)-fullerene

graphs

In this section, according to the contents of the previous topics, our goal

is to obtain the values of s and µ for all µ-way S(K1,3)-trade for the

underlying graph F , which is a non-trivial (3, 6)-fullerene graph. Before

that, we state and prove the following lemma.

Lemma 2. The number of edges of a (3, 6)-fullerene graph that participate
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in a perfect star packing is precisely equal to the number of edges that do

not.

Proof. Let F be a (3, 6)-fullerene graph with n vertices and m edges, with

perfect star packing. The number of stars in this packing is equal to n
4 ,

and therefore the number of edges of stars in the star packing is 3n
4 . On

the other hand, since F is a 3-regular graph, therefore m = 3n
2 . Thus, the

number of remaining edges other than star edges equals 3n
2 − 3n

4 = 3n
4 .

It is necessary to answer the following question in order to achieve the

stated goal.

Does choosing G=S(K1,3) cover all edges of F?

To answer this question, we note that firstly, because F has a perfect

star packing, then all the vertices of F are covered by stars. Now, according

to Lemma 2, for each edge of the star, there is one edge of graph F that is

not covered by the stars so that edge can be connected to one of the edges

of the star. Since each edge of the star has two choices for connecting

the edge, such a pattern can be continued. We will further examine this

subject. First, we examine the forbidden states of decomposition of graph

F by S(K1,3).

Consider Figure 18, which contains a hexagon with a star packing.

Figure 18. Packing of a hexagon.

Two vertices, v1 and v2, are the central vertices of the star in the

hexagon H in a star packing of graph F . Suppose we have two copies of

graph S(K1,3) with central vertices v1 and v2. If both edges e1 and e2

are outside the hexagon in the decomposition of the graph into versions

S(K1,3), then these two edges will not be present in the decomposition of
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F , so at least one of e1 or e2 must be the edge of S(K1,3) in the graph

decomposition. So, there is one choice per edge for a star centered on a

hexagon.

Now we consider packing a hexagon in the form of Figure 19. If none

of the edges e1 and e2 are edges of S(K1,3) in the star with center v1, then

these edges must be the edges of S(K1,3) in stars with centers v2 and v3.

Therefore the edges e3 and e4 are not covered in the decomposition of F .

So, in this case, at least one of the edges of S(K1,3), with the center v1

(which is on the hexagon), must be the edges e1 and e2, and there is no

second choice.

Figure 19. Packing of a hexagon.

From the above discussion, it is concluded that in every star whose

center is on an arbitrary hexagon H, at least one edge S (K1,3) must be

placed on the hexagon. In other words, in this situation, two edges cannot

be outside the hexagon. (That is, there should not be any hexagon where

two edges of a graph S (K1,3) are outside that hexagon). Therefore, to

count the virtual states in which the graph S (K1,3) can cover all the

edges of F , i.e. S (K1,3) is a decomposition for F , we need the states in

which two edges of a K1,3 are outside of the hexagons subtracted from the

sum of the states.

Suppose e1,e2and e3 are three edges of a star. (Figure 20)
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Figure 20. Three edges of a star in a hexagon.

Considering that every edge connected to a star edge can be a hexag-

onal edge or not, the different states of the edges connected to these three

edges, compared to the corresponding hexagons, are given in Table 1.

Table 1. Different positions of the edges connected to the edges of the
star (Inside or Outside).

e2 and e1 (Hexagon H1) e3 and e2 (Hexagon H2) e3 and e1 (Hexagon H3)
I I I I I I
I O I O I O
O I O I O I
O O O O O O

Therefore, among the 12 possible states that have edges connected to

three-star edges, three states are forbidden states. So every star between

three hexagons can have nine allowed states to decompose the subdivided

star graph S (K1,3).

In the last part of this discussion, we will examine the different states

of triangles. First, we consider the case that F is a trivial (3, 6)-fullerene

graph. In this case, we have the next star packings for two triangles.

Figure 21. Different packings of two stars.

In both cases of Figure 21, the graph cannot be decomposed into copies

of the subdivided star graph S (K1,3), so for this purpose, F must be a non-

trivial (3, 6)-fullerene graph. In the non-trivial case, we have two packing,
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as shown below for a star.

Figure 22. Different packings of a triangle.

In case a, it is impossible to determine the decomposition in the form

of S (K1,3) for the graph. Still, in the case of b, considering the previous

limitations, we can have such a decomposition.

The above discussions lead to the following final theorem.

Theorem 5. Let H be a (3, 6)-fullerene graph on n vertices. If there is

µ-way S(K1,3)-trade of volume s with underlying graph H, we have

s =
n

4
µ = 9 T0(H)

Where T0(H) is the number of perfect star packing of type T0 in graph H.

Proof. According to the stated content, the underlying graph H can be

decomposed into versions of S(K1,3), and all edges of H can be covered

by S(K1,3). On the other hand, since H has a perfect star packing, and

according to the type of formation of S(K1,3), the number of these copies

is equal to the number of stars in the perfect star packing of H that is, it

is equal to n
4 , so s=n

4 . On the other hand, there are 9.T0(H) of this type

of decomposition for graph H because each star can be transformed into

an S(K1,3) in any perfect star packing of type T0.

Figure 23 shows an example of a decomposition of a (3, 6)-fullerene

graph into subdivided star graph.
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Figure 23. A decomposition of a (3, 6)-fullerene graph.

4 Open problems

There are many open problems in the field of packing of fullerene graphs

and the values of s and µ for all µ-way G-trade for the underlying graph

F , which is a General fullerene graph. In the final part of this article, we

list some of these open problems. (4, 6)-fullerene graphs are cubic planar

graphs with only square and hexagonal faces.

In [4], the authors categorized some (4, 6) and (5, 6)-fullerene graphs

with a perfect star packing.

Problem 1. Is it possible to count all these perfect star packings?

Problem 2. What are the values of s and µ for all µ-way G-trade for the

underlying graph F, which is a (4, 6) or (5, 6)-fullerene graph?

Problem 3. Can we obtain different decompositions for fullerene graphs

like decomposition S(K1,3) for non-trivial (3, 6)-fullerene graphs?
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