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Abstract

This article explores the dynamic behavior of a fractional-order
Schnakenberg chemical reaction model. Specifically, we conduct
an analysis of codimension-two bifurcation associated with 1:2, 1:3,
and 1:4 resonances. To achieve these results, we utilize the normal
form method and bifurcation theory. The findings are illustrated
through detailed numerical simulations, including visualizations like
two-parameter bifurcation diagrams and maximum Lyapunov expo-
nent plots. These simulations effectively explore the system’s behav-
ior under the influence of two varying parameters within a three-
dimensional space. Additionally, the simulations vividly demon-
strate the theoretical results and offer valuable insights into the
underlying dynamics.
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1 Introduction

Nature is full of cyclical and oscillatory processes, with circadian rhythms-

found in nearly every aspect of life being perhaps the most recognized of

these repetitive phenomena. In 1979, J. Schnakenberg developed a de-

vice that exhibited sustained oscillations in a simple glycolysis model [1],

which bore a striking resemblance to a system of four reactions known as

the Brusselator [2]. Schnakenberg-type systems are widely applicable, par-

ticularly in analyzing skin and in the pattern formation processes during

embryogenesis [3,4]. A study explored a chemical Schnakenberg model [5],

illustrating autochemical processes with rhythmic behavior that could have

diverse biological and biochemical applications. Considering feedback con-

trol, Noufaey [6] explored semi-analytical solutions for the Schnakenberg

system within a reaction–diffusion cell. Numerical solutions for a variable-

order space-time fractional reaction-diffusion Schnakenberg model were

examined in [7]. Sattari and Tuomela [8] explored the numerical simu-

lation of the Schnakenberg system, with a focus on the dynamics of an

evolving surface. In [9], authors investigated the transient behavior of

the Schnakenberg model within the context of reaction–diffusionadvection

processes. In [10], the authors examined the formation of Turing patterns

in a Schnakenberg-type model, considering the effects of both diffusion

and delay. Liu and Wang [11] investigated the pattern formation in the

Schnakenberg model with a coupled two-cell system. In [12], the authors

conducted a bifurcation analysis of the reaction–diffusion Schnakenberg

system. In [13], the authors considered the reaction–diffusion Schnaken-

berg system for numerical solutions. Ishii and Kurata [14] developed sym-

metric one-peak stationary solutions for the Schnakenberg model in the

presence of heterogeneity. Jasim and Rana [27] studied a codimension one

bifurcations and chaos control of discrete-time fractional order Schnaken-

berg model. For further studies related to different classes of the Schnaken-

berg model, see [15–19] and the references cited therein.

The Schnakenberg model is among the simplest reaction kinetic models,

originating from a series of hypothetical tri-molecular autocatalytic reac-

tions proposed by Schnakenberg [1]. This model was created to identify the
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minimal number of reactions and reactants needed to exhibit limit-cycle

behavior. Schnakenberg demonstrated that a minimum of three reactions,

with at least one being autocatalytic, is necessary for this type of model.

Thus, the following reaction scheme is obtained for the general chemicals

A,X, Y and B:

X
c1
⇄
c−1

A, B
c2−→Y, 2X + Y

c3−→3X, (1)

where A and B are chemicals with constant concentrations. Applying the

law of mass action, we obtain the following differential equations:dUX

dτ = c1UA − c−1UX + c3U
2
XUY ,

dUY

dτ = c2UB − c3U
2
XUY ,

(2)

where UA, UB , UX , and UY represent the quantities of A, B, X, and Y

molecules in the reaction vessel, respectively. To nondimensionalize system

(2), we define the variables and parameters as follows: x =
√

c3
c−1

UX , y =√
c3
c−1

UY , a = c1
c−1

√
c3
c−1

UA, b =
√

c2
c−1

UB , and t = k−1τ . Consequently,

the system transforms accordingly:dx
dt = a+ x2y − x,

dy
dt = b− x2y.

(3)

Unlike conventional integer-order models, fractional-order models include

fractional derivatives in their equations. This approach can offer a more

precise depiction of reaction kinetics. These models are employed to gain

deeper insights into the fundamental mechanisms of chemical reactions,

enhance chemical processes, and create innovative materials and technolo-

gies. They are also utilized in medical applications to simulate drug deliv-

ery systems and analyze physiological processes. In summary, fractional-

order chemical reaction models are a valuable tool in chemistry and related

fields [24].

Taking into account the facts that fractional calculus provides more

accurate modeling of complex systems that cannot be captured by integer-

order differential equations, and that fractional systems can be tailored to
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fit a wide range of data sets, it is more suitable to examine the fractional-

order counterpart of system(3):xn+1 = xn + sm

Γ(m+1)

(
a+ x2

nyn − xn

)
,

yn+1 = yn + sm

Γ(m+1)

(
b− x2

nyn
)
.

(4)

where 0 < m ≤ 1 is fractional derivative of order m, and s > 0 denotes

the step size used for discretization.

Recently, Khan and Din [23] studied a discrete-time fractional or-

der chemical reaction system and explore stability, codimension one and

codimension-two bifurcations. In [2], the Brusselator system is discretized

using the Euler approximation to investigate flip and Hopf bifurcations

and a new exponential-type chaos control method is proposed for the

discrete-time Brusselator system. In [20], the stability, bifurcation, and

chaos control of two discrete classes of the glycolysis system are analyzed.

Din et al. [21] applied the Euler approximation and a nonstandard fi-

nite difference scheme to discretize a chemical reaction system. Din and

Asad [22] studied period-doubling bifurcation, Neimark-Sacker bifurcation

and chaos control in a discretized enzyme model by employing the Euler

forward approximation. Din and Haider [25] studied the Hopf bifurcation

of system (3) and showed that its discrete-time counterpart, obtained via

the Euler approximation, undergoes a Neimark-Sacker bifurcation as well

as a period–doubling bifurcation. To maintain the dynamical consistency

of continuous models, a nonstandard finite difference scheme is proposed

for the Schnakenberg model (3). It is proven that the continuous sys-

tem undergoes a Hopf bifurcation at its interior equilibrium, while the

discrete-time system, using the nonstandard finite difference scheme, un-

dergoes a Neimark–Sacker bifurcation at its interior fixed point. Recently,

Din [26] studied codimension-one and codimension-two bifurcations for

a discrete fractional-order Brusselator model. For more information on

mathematical models related to the chemical reaction dynamics and bi-

furcations of fractional-order systems, readers are encouraged to consult

references [29–37].

The novel contributions of this paper are outlined as follows:
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• The study explores multi-parameter bifurcation phenomena in the

context of a discrete-time fractional order Schnakenberg model. In-

vestigating the 1:2, 1:3, and 1:4 strong resonance conditions reveals

intricate and non-trivial dynamics, such as limit cycles and chaos,

offering a deeper understanding of how the Schnakenberg model be-

haves under these specific resonance states.

• Understanding how fractional order discrete dynamics impact the

Schnakenberg model is a novelty in itself. By discretizing the conti-

nuous-time model, researchers can gain insights into how fractional

order discrete time steps influence the system,s stability and beha-

vior, which is crucial for comprehending real-world biochemical pro-

cesses with inherent discrete nature.

• Studying the coexistence of different resonance regimes provides va-

luable insights into the robustness and sensitivity of the fractional

order Schnakenberg model model under varying parameter values.

This knowledge is essential in understanding how the pathway re-

sponds to changes in the environment and internal conditions.

• The research bridges the gap between the fields of nonlinear dynam-

ics, mathematical biology, and biochemical engineering. The insights

gained from studying discrete-time fractional order models have im-

plications beyond the specific pathway, potentially benefiting other

areas of research involving dynamical systems and complex networks.

The rest of this paper is structured as follows:

Stability analysis of system (4) is discussed in Section 2. Codimension-

two bifurcations (that is, 1:2, 1:3 and 1:4 strong resonances) are studied

in Section 3 and in Section 4 numerical simulations are presented.

2 Stability analysis

It is easy to see that system Eq. (4) has unique positive fixed point

E(x∗, y∗) = (a+ b, b
(a+b)2 ).
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Subsequently, we examine the local stability analysis of E(x∗, y∗) =

(a+ b, b
(a+b)2 ) of system Eq. (4).

To investigate the stability, we compute the Jacobian matrix FJ of

system (4) at E(x∗, y∗) as follow:

FJ(E) =

(
(b−a)sm

(a+b)Γ(m+1) + 1 (a+b)2sm

Γ(m+1)

− 2bsm

(a+b)Γ(m+1) 1− (a+b)2sm

Γ(m+1)

)
.

The characteristic polynomial of FJ at E(x∗, y∗) is given by:

F(ς) = ς2 − τ1(E)ς + τ2(E), (5)

where

τ1(E) = − (a+ b)2sm

Γ(m+ 1)
+

(b− a)sm

(a+ b)Γ(m+ 1)
+ 2,

and

τ2(E) =
sm
(
(a+ b)3sm −

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
(a+ b)Γ(m+ 1)2

+ 1.

The following Lemma is used to explore the stability of fixed point.

Lemma 1. Let F(ς) = ς2 − τ1(E)ς + τ2(E), and F(1) > 0. Moreover, ς1,

varsigma2 are root of 5, then:

(i) |ς1| < 1 and |ς2| < 1 if and only if F(−1) > 0 and τ2(E) < 1;

(ii) |ς1| < 1 and |ς2| > 1 or (|ς1| > 1 and |ς2 < |1)if and only if F(−1) < 0;

(iii) |ς1| > 1 and |ς2| > 1 if and only if F(−1) > 0 and τ2(E) > 1;

(iv) ς1 = −1 and ς2 = −1 if and only if τ1(E) = −2 and τ2(E) = 1;

(v) ς1 and ς2 are complex and ς1,2 = − 1
2 ± ι

√
3
2 if and only if τ1(E) = −1

and τ2(E) = 1;

(vi) ς1 and ς2 are complex and ς1,2 = ±ι if and only if τ1(E) = 0 and

τ2(E) = 1;

As ς1 and ς2 are eigenvalue of (5), we have the following Topological

type results. The fixed point E(x∗, y∗) is known as sink if |ς1| < 1 and

|ς2| < 1 thus the sink is locally asymptotic stable. The fixed point E(x∗, y∗)

is known as source if |ς1| > 1 and |ς2| > 1, thus source is always unstable.
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The fixed point E(x∗, y∗) is known as saddle point if |ς1| < 1 and |ς2| > 1

or (|ς1| > 1 and |ς2| < 1) and the fixed point E(x∗, y∗) is known as non-

hyperbolic fixed point either |ς1| = 1 and |ς2| = 1.

Thus, by applying Lemma 1, we study the local stability of positive

equilibrium point of system (4) by stating the following proposition.

Proposition 1. The positive equilibrium point E(x∗, y∗) of system (4)

satisfies the following results.

(i) The positive fixed point E(x∗, y∗) is sink if and only if:

sm
(
(a+ b)3sm − 2

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
(a+ b)Γ(m+ 1)2

+ 4 > 0,

and

sm
(
(a+ b)3sm −

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
< 0.

(ii) The positive fixed point E(x∗, y∗) is saddle point if and only if:

sm
(
(a+ b)3sm − 2

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
(a+ b)Γ(m+ 1)2

+ 4 < 0.

(iii) The positive fixed point E(x∗, y∗) is source if and only if:

sm
(
(a+ b)3sm − 2

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
(a+ b)Γ(m+ 1)2

+ 4 > 0,

and

sm
(
(a+ b)3sm −

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
> 0.

(iv) The positive fixed point E(x∗, y∗) is non-hyperbolic if and only if:

a = s−3mΓ(m+ 1)
(
s2m + 4smΓ(m+ 1)− 4Γ(m+ 1)2

)
,

b = s−3mΓ(m+ 1) (sm − 2Γ(m+ 1))
2
.

(6)
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ora = 1
2

√
3s−3mΓ(m+ 1)

(
s2m + 3smΓ(m+ 1)− 3Γ(m+ 1)2

)
,

b = −9
√
3s−3mΓ(m+1)5+18

√
3s−2mΓ(m+1)4−9

√
3s−mΓ(m+1)3+

√
3smΓ(m+1)

2(s2m+3smΓ(m+1)−3Γ(m+1)2) .

(7)

ora =
s−3mΓ(m+1)(s2m+2smΓ(m+1)−2Γ(m+1)2)√

2
,

b = −4
√
2s−3mΓ(m+1)5+8

√
2s−2mΓ(m+1)4−4

√
2s−mΓ(m+1)3+

√
2smΓ(m+1)

2(s2m+2smΓ(m+1)−2Γ(m+1)2) .

(8)

3 Codimension-two bifurcations

In this section, we study the codimension-two bifurcation. It is easy to see

that system (4) has a unique positive equilibrium point (x∗, y∗) = (a +

b, b
(a+b)2 ). For an in-depth examination of local stability, co-dimension-1

bifurcation, and chaos control of (4), refer to [27]. In particular, we inves-

tigate the existence of 1:2, 1:3 and 1:4 resonances by implementing normal

form theory and theory of bifurcation. The following curves identify the

occurrence of these resonance points:

Figure 1. Topological classification for system (4).
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R2 :
(b− a)sm

(a+ b)Γ(m+ 1)
− (a+ b)2sm

Γ(m+ 1)
= −4,

R3 :
(b− a)sm

(a+ b)Γ(m+ 1)
− (a+ b)2sm

Γ(m+ 1)
= −3,

R4 :
(b− a)sm

(a+ b)Γ(m+ 1)
− (a+ b)2sm

Γ(m+ 1)
= −2,

and

NS : sm
(
(a+ b)3sm −

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
= 0.

Then, it is easy to observe that NS∩R2, NS∩R3 and NS∩R4 are known

as 1:2 ,1:3 and 1:4 resonance points, respectively. Moreover, for m = 0.577,

s = 0.789, a ∈ [0.001, 2], b ∈ [0.001, 2], the topological classification for

system (4) is shown in Figure 1.

3.1 1:2 strong resonance

This subsection deles with the investigation of 1:2 strong resonance for

system (4) at its positive equilibrium point. For this, a and b are chosen to

be bifurcation parameters. The Jacobian matrix of system (4) computed at

positive equilibrium has eigenvalue -1 with multiplicity two if the following

conditions holds true:


(b−a)sm

(a+b)Γ(m+1) −
(a+b)2sm

Γ(m+1) = −4

sm
(
(a+ b)3sm −

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
= 0.

(9)

Solving system (9) for h and a yields the following solution (a0, b0):

a0 = s−3mΓ(m+ 1)
(
s2m + 4smΓ(m+ 1)− 4Γ(m+ 1)2

)
,

and

b0 = s−3mΓ(m+ 1) (sm − 2Γ(m+ 1))
2
.

Let xn = un + (a + b), yn = vn + b
(a+b)2 , a = a0 + ā and b = b0 + b̄,
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then the system (4) can be transformed as follows:(
u

v

)
→

(
1 + µ11 −µ12

µ21 1 + µ22

)(
u

v

)
+

(
f1(u, v)

f2(u, v, )

)
, (10)

where ā << 1 and b̄ << 1 are small perturbations,

f1(u, v) = µ13uv + µ14u
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v)) = µ23uv + µ24u
2 +O

(
(|u|+ |v|)3

)
.

µ11 =
(b− a)sm

(a+ b)Γ(m+ 1)
, µ12 = − (a+ b)2sm

Γ(m+ 1)
, m21 = − 2bsm

(a+ b)Γ(m+ 1)
,

µ22 = − (a+ b)2sm

Γ(m+ 1)
, µ13 =

2(a+ b)sm

Γ(m+ 1)
, µ23 = −2(a+ b)sm

Γ(m+ 1)
,

µ14 =
bsm

(a+ b)2Γ(m+ 1)
, µ24 = − bsm

(a+ b)2Γ(m+ 1)
.

Next, we consider the following transformation:(
u

v

)
= T

(
w

z

)
, (11)

where T is a nonsingular matrix given by

T =

(
µ12

µ11+2
µ12

(µ11+2)2

1 0

)
.

From (10) and (11), it follows that:
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(
w

z

)
→

(
P10(a, b)− 1 P01(a, b) + 1

Q10(a, b) Q01(a, b)− 1

)(
w

z

)
+

(
f3(w, z, a, b)

f4(w, z, a, b)

)
,

(12)

where

f3(w, z) = P20w
2 + P11wz + P02z

2, f4(w, z) = Q20w
2 +Q11wz +Q02z

2,

P10 =
µ12µ21

µ11 + 2
+ µ22 + 2, P01 =

µ12µ21

(µ11 + 2) 2
− 1,

P20 =
µ12 ((µ11 + 2)µ23 + µ12µ24)

(µ11 + 2) 2
,

P11 =
µ12 ((µ11 + 2)µ23 + 2µ12µ24)

(µ11 + 2) 3
, P02 =

µ2
12µ24

(µ11 + 2) 4
,

Q20 =

(
µ14 − µ23 −

µ12µ24

µ11 + 2

)
µ12 + (µ11 + 2)µ13,

Q11 =
µ13 (µ11 + 2) 2 + µ12 ((µ11 + 2) (2µ14 − µ23)− 2µ12µ24)

(µ11 + 2) 2
,

Q02 =
µ12µ14

(µ11 + 2) 2
, Q01 = µ11 −

µ12µ21

µ11 + 2
+ 2

Q10 = −µ12µ21 − µ11 (µ22 + 2)− 2 (µ22 + 2) .

Next, we assume the following invertible linear transformation:(
w

z

)
= M

(
w̄

z̄

)
, (13)

where

M =

(
1 + P01(a, b) 0

−P01(a, b) 1

)
.
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From (12) and (14), it follows that:(
w̄

z̄

)
→

(
−1 1

ω1(a, b) ω2(a, b)− 1

)(
w̄

z̄

)
+

(
f5(w̄, z̄, a, b)

f6(w̄, z̄, a, b)

)
,

(14)

where

ω1(a, b) = Q10 + P01Q10 − P10Q01, ω2(a, b) = P10 +Q01

f5(w̄, z̄, α, r) = P̄20w̄
2 + P̄11w̄z̄ + P̄02z̄

2,

f6(w̄, z̄, α, r) = Q̄20w̄
2 + Q̄11w̄z̄ + Q̄02z̄

2,

P̄20 =
P02P

2
10

P01 + 1
− P01P11 + P01P20 + P20, P̄11 = P11 −

2P02P10

P01 + 1
,

Q̄11 = P10

(
−2P02P10

P01 + 1
+ P11 − 2Q02

)
+ (P01 + 1)Q11, P̄02 =

P02

P01 + 1
,

Q̄02 =
P02P10

P01 + 1
+Q02,

Q̄20 = (P1 + 1) 2Q20 + P10 (P1 + 1) (P20 −Q11) ,

+
P2P

3
10

P1 + 1
+ P 2

10 (Q2 − P11) .

Taking into account ω1 and ω2, we define the following matrix:

ζ(a0, b0) =

(
∂ω1

∂a (a0, b0)
∂ω1

∂b (a0, b0)
∂ω2

∂a (a0, b0)
∂ωω2

∂b (a0, b0)

)
.

Then by simple calculation detζ(a0, b0) is obtained as follows:

detζ(a0, b0) = − 4s3m

Γ(m+ 1)3
̸= 0. (15)

Condition (15) is called transversality condition, and it is supposed to be

true. Next, we consider ω1(a, b) and ω2(a, b) for the following parametriza-
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tion in the neighborhood of a = a0 and b = b0:

γ1 = ω1(a, b), γ2 = ω2(a, b). (16)

Using (16) in (14), we have the following mapping:

(
w̄

z̄

)
→

(
−1 1

γ1 −1 + γ2

)(
w̄

z̄

)
+

(
f7(w̄, z̄, γ1, γ2)

f8(w̄, z̄, γ1, γ2)

)
, (17)

where

f7(w̄, z̄, γ1, γ2) = g20w̄
2(γ1, γ2) + g11w̄z̄(γ1, γ2) + g02z̄

2(γ1, γ2),

f8(w̄, z̄, γ1, γ2) = h20w̄
2(γ1, γ2) + h11w̄z̄(γ1, γ2) + h02z̄(γ1, γ2),

g20(γ, γ2) = P̄20(γ, γ2), g11(γ, γ2) = P̄11(γ, γ2), g11(γ, γ2) = P̄11(γ, γ2),

h20(γ, γ2) = Q̄20(γ, γ2), h11(γ, γ2) = Q̄11(γ, γ2), h02(γ, γ2) = Q̄02(γ, γ2).

Then, according to Lemma 9.9 [ [28], p. 437], there exists a near–

identity map such that system (14) can be transformed as follows:(
x1

x2

)
→

(
−1 1

γ1 −1 + γ2

)(
z1

z2

)
+

(
0

Cz31 +Dz1z2

)
+O(|z1 + z2|4),

(18)

where

C(γ1, γ2) = g20(γ1, γ2)h20(γ1, γ2) +
1

2
h2
20(γ1, γ2) +

1

2
h20(γ1, γ2)h11(γ1, γ2),
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D(γ1, γ2) =
1

2
g20(γ1, γ2)h11(γ1, γ2) +

5

4
h20(γ1, γ2)h11(γ1, γ2)

+ h2
20(γ1, γ2) +

1

2
h2
11(γ1, γ2) + h20(γ1, γ2)h02(γ1, γ2)

+ 3g220(γ1, γ2) +
5

2
g20(γ1, γ2)h20(γ1, γ2)

+
5

2
g11(γ1, γ2)h20(γ1, γ2).

Taking into account theoretical results cited in [28] and the above com-

putations, we have the following result.

Theorem 2. Assume that C(0, 0) ̸= 0, D(0, 0) + 3C(0, 0) ̸= 0, and

detζ(a0, b0) ̸= 0, then system (4) experiences 1:2 strong resonance at its

positive equilibrium point whenever a and b vary in small neighborhoods of

a0 and b0, respectively.

3.2 1:3 strong resonance

In this subsection, we study codimension-two bifurcation associated with

1:3 strong resonance. For this, assume that a and b are bifurcation param-

eters. Then characteristic equation of variational matrix of system (4) at

(x∗, y∗) has eigenvalues − 1
2 ± ι

√
3
2 if the following condition holds true:

(b−a)sm

(a+b)Γ(m+1) −
(a+b)2sm

Γ(m+1) = −3,

sm
(
(a+ b)3sm −

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
= 0.

(19)

We have the following solution of system (19) for a and b:

a1 =
1

2

√
3s−3mΓ(m+ 1)

(
s2m + 3Γ(m+ 1) (sm − Γ(m+ 1))

)
,

b1 =
1

2

√
3s−3mΓ(m+ 1)

(
s2m − 3smΓ(m+ 1) + 3Γ(m+ 1)2

)
.

Next, assume that un = xn − (a+ b), vn = yn − b
(a+b)2 and a = a1 and

b = b1, then equilibrium point (x∗, y∗) of (4) is shifted at (0, 0). In this
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case (4) transformed into the following map:(
u

v

)
→

(
ξ11 ξ12

ξ21 ξ22

)(
u

v

)
+

(
f1(u, v)

f2(u, v, )

)
, (20)

ξ11 =
(b− a)sm

(a+ b)Γ(m+ 1)
+ 1, ξ12 =

(a+ b)2sm

Γ(m+ 1)
,

ξ21 = − 2bsm

(a+ b)Γ(m+ 1)
, ξ22 = 1− (a+ b)2sm

Γ(m+ 1)
,

f1(u, v) = r11uv + r02u
2 +O

(
(|u|+ |v|)3

)
,

f2(u, v)) = q11uv + q02u
2 +O

(
(|u|+ |v|)3

)
.

r02 =
bsm

(a+ b)2Γ(m+ 1)
, r11 =

2(a+ b)sm

Γ(m+ 1)
,

q02 = − 2bsm

(a+ b)Γ(m+ 1)
, q11 = −2(a+ b)sm

Γ(m+ 1)
.

The eigenvalues of characteristics equation of jacobian matrix of system

(20) are −1
2 ±

√
3
2 ι, let ρ1(a1, b1) and ϱ1(a1, b1) are eigenvector associated

with jacobian matrix of (20) and its transpose, respectively and satisfying

⟨ρ1(a1, b1), ϱ1(a1, b1)⟩ = 1. Then, by simple computation one has;

ρ1(a1, b1) =

 1

−1+
(3−i

√
3)sm

6Γ(m+1)

1

 ,

and

ϱ1(a1, b1) =

(
1 +

i(
√
3+3i)sm

6Γ(m+1)

1

)
.

Further, any Y ∈ R2 can be uniquely described as follows:

Y = wρ1(a1, b1) + w̄ρ̄1(a1, b1), w ∈ C.



342

Therefore, the complex form for the map (20) can be written as follows:

w −→

(
−1

2
+

√
3

2
ι

)
w +

∑
2≤j+k≤3

1

j!k!
Gjkw

jw̄k, (21)

where

Ḡ20 = 3i
√
3s−2mΓ(m+ 1)2 − 1

2
i
(
3
√
3 + (3 + 3i)

)
s−mΓ(m+ 1)

+

(
3− i

√
3
)
sm

4
√
3Γ(m+ 1)

+
1

2

√
3
(
1− i

√
3
)
.

Ḡ11 = −
ibsm (sm − 2Γ(m+ 1))

(
2
√
3sm − 3iΓ(m+ 1)− 3

√
3Γ(m+ 1)

)
Γ(m+ 1) (s2m − 3smΓ(m+ 1) + 3Γ(m+ 1)2)

−
iasm (sm − 2Γ(m+ 1))

(
2
√
3sm − 3iΓ(m+ 1)− 3

√
3Γ(m+ 1)

)
Γ(m+ 1) (s2m − 3smΓ(m+ 1) + 3Γ(m+ 1)2)

+
6ibΓ(m+ 1)

(
ism −

√
3sm + 2

√
3Γ(m+ 1)

)
(a+ b) (s2m − 3smΓ(m+ 1) + 3Γ(m+ 1)2)

− 2i
√
3b

(a+ b)2
.

Ḡ02 =
12i
(√

3 + i
)
asm

(
s2m − 3smΓ(m+ 1) + 3Γ(m+ 1)2

)
Γ(m+ 1)

(
−3ism +

√
3sm + 6iΓ(m+ 1)

)2
+

12i
(√

3 + i
)
bsm

(
s2m − 3smΓ(m+ 1) + 3Γ(m+ 1)2

)
Γ(m+ 1)

(
−3ism +

√
3sm + 6iΓ(m+ 1)

)2
+

36bΓ(m+ 1)
(
i
√
3sm + sm − 2i

√
3Γ(m+ 1)

)
(a+ b)

(
−3ism +

√
3sm + 6iΓ(m+ 1)

)2
+

12i
√
3b
(
s2m − 3smΓ(m+ 1) + 3Γ(m+ 1)2

)
(a+ b)2

(
−3ism +

√
3sm + 6iΓ(m+ 1)

)2 .

and G30 = G03 = G12 = G21 = 0.

Next, according to Lemma 9.12 [ [28], p. 448], there exists a smoothly

parameter–dependent change of variable such that the map (21) can be
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converted into the following form:

z −→

(
−1

2
+

√
3

2
ι

)
z + F (a1, b1)z̄ +K(a1, b1)z|z|2 +

(
|z|4
)
, (22)

where

F (a1, b1) =
1

2
G02,

and

K(a1, b1) =

(
1

2
+

√
3

2
ι

)
G02G11 +

(
1

2
+

−1

2
√
3
ι

)
|G11| .

Next, we consider the following quantities:

F1(a1, b1) =

(
−3

2
+

3
√
3

2
ι

)
F (a1, b1)

K1(a1, b1) = −3 |F (a1, b1)|2 −
3

2
(1 +

√
3ι)K(a1, b1).

Arguing as in Lemma 9.13 [ [28], p. 450], we have the following result.

Theorem 3. Assume that a = a1, b = b1, ReK1(a1, b1) ̸= 0 and

F (a1, b1) ̸= 0, then the system (4) undergoes a 1:3 strong resonance about

its fixed point. Moreover, ReK1(a1, b1) determines the stability nature for

the bifurcating closed invariant curve.

3.3 1:4 strong resonance

In this subsection, we study codimension-two bifurcation associated with

1:4 strong resonance. For this, assume that a and b are bifurcation param-

eters. Then characteristic equation of variational matrix of system (4) at

(x∗, y∗) has eigenvalues ±ι if the following condition holds true:


(b−a)sm

(a+b)Γ(m+1) −
(a+b)2sm

Γ(m+1) = −2,

sm
(
(a+ b)3sm −

(
a3 + 3a2b+ 3ab2 + a+ b3 − b

)
Γ(m+ 1)

)
= 0.

(23)

We have the following solution of system (23) for a and b:
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a2 =
s−3mΓ(m+ 1)

(
s2m + 2Γ(m+ 1) (sm − Γ(m+ 1))

)
√
2

,

b2 =
s−3mΓ(m+ 1)

(
s2m − 2smΓ(m+ 1) + 2Γ(m+ 1)2

)
√
2

.

Next, assume that un = xn − (a+ b), vn = yn − b
(a+b)2 and a = a2 and

b = b2, then equilibrium point (x∗, y∗) of (4) is shifted at (0, 0). In this

case (4) transformed into the following map:(
u

v

)
→

(
θ11 θ12

θ21 θ22

)(
u

v

)
+

(
f3(u, v)

f4(u, v, )

)
, (24)

θ11 =
(b− a)sm

(a+ b)Γ(m+ 1)
+ 1, θ12 =

(a+ b)2sm

Γ(m+ 1)
,

θ21 = − 2bsm

(a+ b)Γ(m+ 1)
, θ22 = 1− (a+ b)2sm

Γ(m+ 1)
,

f3(u, v) = χ11uv + χ02u
2 +O

(
(|u|+ |v|)3

)
,

f4(u, v)) = ς11uv + ς02u
2 +O

(
(|u|+ |v|)3

)
.

χ02 =
bsm

(a+ b)2Γ(m+ 1)
, χ11 =

2(a+ b)sm

Γ(m+ 1)
,

ς02 = − bsm

(a+ b)2Γ(m+ 1)
, ς11 = −2(a+ b)sm

Γ(m+ 1)
.

The eigenvalues of Jacobian matrix of system (24) are ±ι, let p(a2, b2)

and q(a2, b2) are eigenvector associated with jacobian matrix of (24) and

its transpose, respectively and satisfying ⟨p(a2, b2), q(a2, b2)⟩ = 1. Then,

by simple computation one has;

p(a2, b2) =

(
(1+i)Γ(m+1)

sm−(1+i)Γ(m+1)

1

)
,
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and

q(a2, b2) =

(
1− ( 1

2−
i
2 )s

m

Γ(m+1)

1

)
.

Moreover, any Y ∈ R2 can be described uniquely as follows:

Y = wp(a2, b2) + w̄p̄(a2, b2), w ∈ C.

Consequently, the complex form for the map (24) can be written as

follows:

w −→ (ι)w +
∑

2≤j+k≤3

1

j!k!
Ḡjkw

jw̄k, (25)

where

Ḡ20 =

(1−i)(a+b)3sm

Γ(m+1) + (1+i)bΓ(m+1)
sm−(1+i)Γ(m+1) + b

(a+ b)2
,

Ḡ11 = −
2ism

(
(a+ b)3sm +

(
b− 2(a+ b)3

)
Γ(m+ 1)

)
(a+ b)2Γ(m+ 1) (sm − (1− i)Γ(m+ 1))

,

Ḡ02 = = − bsm (sm − (1 + i)Γ(m+ 1))

(a+ b)2 (sm − (1− i)Γ(m+ 1))
2

− (1 + i)asm (sm − (1 + i)Γ(m+ 1))

Γ(m+ 1) (sm − (1− i)Γ(m+ 1))

− (1 + i)bsm (sm − (1 + i)Γ(m+ 1))

Γ(m+ 1) (sm − (1− i)Γ(m+ 1))
,

and Ḡ30 = Ḡ03 = Ḡ12 = Ḡ21 = 0.

Next, according to Lemma 9.13 [ [28], p. 448], there exists a smoothly

parameter–dependent change of variable such that the map (25) can be

converted into the following form:

z1 −→ (ι) z1 + F2(a2, b2)z1|z1|2 +K2(a2, b2)z
3
1 +

(
|z1|4

)
, (26)
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where

F2(a2, b2) = ιḠ11−
1

2
Ḡ11

¯̄G20(1+ ι)+ ¯̄G11Ḡ20+Ḡ02Ḡ11(ι−1)− 1

2
Ḡ11Ḡ20(1−2ι),

and

K2(a2, b2) =
ι− 1

4
Ḡ11Ḡ02 −

ι+ 1

4
Ḡ11Ḡ20.

Next, we consider the following quantities:

F3(a2, b2) = −4ιF2(a2, b2)

K3(a2, b2) = −4ιK2(a2, b2),

whenever K3(a2, b2) ̸= 0, thus we can write jacobian matrix J(a2, b2) =
F3(a2,b2)
|K3(a2,b2)| . Arguing as in Lemma 9.15 [ [28], p. 450], we have the following

result.

Theorem 4. Assume that a = a2, b = b2, ReJ(a2, b2) ̸= 0 and

ImJ(a2, b2) ̸= 0, then the system (4) undergoes a 1:4 resonance about

its fixed point, and ReJ(a2, b2) ̸= 0 determines the stability nature for the

bifurcating closed invariant curve.

4 Numerical simulation

In this section, our main focus is to illustrate theoretical discussion related

to codimension-two bifurcation. For this, appropriate parametric values

are chosen to discuss emergence of 1:2, 1:3 and 1:4 strong resonances with

the help of 3-dimensional bifurcation diagrams and associated maximum

Lyapunov exponents (MLE). Mathematica 13.2 is used for this numerical

simulation.

Let a = 1.104600469484825, b = 0.817790899566213, m = 0.041, s =

0.207, then (x∗, y∗) = (1.922391369051038, 0.22128840448337964). In this

case eigenvalue of Jacobian Matrix at (x∗, y∗) is −1 with multiplicity two.

Moreover, det (ζ(a0, b0)) = − 4s3m

Γ(m+1)3 = −3.52364, C(0, 0) = −8.48385

and D(0, 0) + 3C(0, 0) = 0.573799, which shows the correctness of The-

orem 2.
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(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

(c) Maximum Lyaponov Exponent

Figure 2. Plots of the system (4) for m = 0.041, s = 0.207, a ∈
[1.001, 1.18] and b ∈ [0.8, 0.82] with initial conditions
x0 = 1.922 and y0 = 0.221.

Hence, system (4) undergoes codimension-two bifurcation associated

with 1:2 strong resonance whenever a ∈ [1.001, 1.18] and b ∈ [0.8, 0.82].

Alternatively, the bifurcation diagram in (a, b, xn), (a, b, yn) spaces and

MLE are depicted in Figure 2a, 2b and 2c, respectively.
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(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

(c) Maximum Lyapunov Exponent

Figure 3. Plots of the system (4) for m = 0.935, s = 0.796, a ∈
[0.266, 0.267] and b ∈ [1.822, 1.824] with initial conditions
x0 = 2.088 and y0 = 0.4177.

Next, suppose that a = 0.26642697145189753, b = 1.8222532753312775,

m = 0.935, s = 0.796, then (x∗, y∗) = (2.088680246783, 0.4177003320148).

In this case eigenvalues of Jacobian Matrix at (x∗, y∗) are − 1
2±ι

√
3
2 . More-

over, ReK1(a1, b1) = −12.763 ̸= 0 and F (a1, b1) = −0.272546 + 0.2227ι ̸=
0 , which shows the correctness of Theorem 3. Hence, system (4) un-

dergoes codimension-two bifurcation associated with 1:3 strong resonance

whenever a ∈ [0.2662, 0.2671] and b ∈ [1.8221, 1.8224]. Alternatively, the

bifurcation diagram in (a, b, xn), (a, b, yn) spaces and MLE are depicted



349

in Figure 3a, 3b and 3c, respectively.

(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.

(c) Maximum Lyaponov Exponent

Figure 4. Plots of the system (4) for m = 0.041, s = 0.207, a ∈
[0.6709, 0.672] and b ∈ [0.78, 0.82] with initial conditions
x0 = 1.4752 and y0 = 0.3694.

Finally, suppose that a = 0.6711938138764203, b = 0.8040745822442753,

m = 0.041, s = 0.207, then (x∗, y∗) = (1.4752683961206, 0.36944879641041).

In this case eigenvalues of Jacobian Matrix at (x∗, y∗) are ±ι. Moreover,

K3(a2, b2) = 0.902849 + 10.8891ι, Re (J(a2, b2)) = 1.0878 and

Im (J(a2, b2)) = 0.569205 , which shows the correctness of Theorem 4.

Hence, system (4) undergoes codimension-two bifurcation associated with
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1:4 strong resonance whenever a ∈ [0.6709, 0.672] and b ∈ [0.78, 0.82].

Alternatively, the bifurcation diagram in (a, b, xn), (a, b, yn) spaces and

MLE are depicted in Figure 4a, 4b and 4c, respectively.

5 Conclusion

A chemical reaction model is examined for discretization and qualitative

analysis. The discrete-time fractional-order Schnakenberg chemical reac-

tion model is derived using the Caputo fractional derivative. It is proven

that the system possesses a unique positive equilibrium point. The lo-

cal dynamics of the model are analyzed, with a focus on determining the

parametric conditions required for the local asymptotic stability of the

model described in equation (4). Additionally, the discussion includes

codimension-two bifurcations. By applying the normal form method and

bifurcation theory, it is demonstrated that the fractional-order model de-

scribed in equation (4) experiences codimension-two bifurcations related

to 1:2, 1:3, and 1:4 strong resonances. In the 1:2 resonance scenario, the

system displays a resonance pattern in which the frequency of one oscil-

latory component is twice that of another component. This can cause

certain oscillations in the system to be either amplified or suppressed,

leading to complex behavior. In the 1:3 resonance situation, the system

reveals a resonance pattern where one oscillatory component’s frequency

is three times that of another component. Much like the 1:2 resonance,

this can cause certain oscillations to be either amplified or suppressed,

leading to the emergence of complex dynamics. During 1:4 resonance, the

system exhibits a resonance pattern in which the frequency of one oscilla-

tory component is four times that of another component. This resonance

adds another layer of complexity to the system’s dynamics, impacting the

amplitudes and phases of different oscillatory components.

Codimension-two bifurcations, including the resonances described ear-

lier, reveal how various oscillatory modes interact and affect one another

in the fractional-order Schnakenberg model. The presence of these bi-

furcations can give rise to complex dynamics, including multiple stable

states, chaotic behavior and intricate oscillatory patterns. Analyzing and



351

describing these codimension-two bifurcations are vital for fully grasping

the system’s behavior and its effects on chemical reactions and nonlinear

dynamics.

In other words, analyzing codimension-two bifurcations in a fractional-

order Schnakenberg chemical reaction system can provide insights into the

mechanisms and conditions that lead to the emergence of complex dynam-

ics in chemical reactions, as well as offer strategies to control or manipulate

these dynamics for practical applications. For example, certain chemical

reactions can be utilized to generate signals or patterns for communica-

tion or encryption purposes. By adjusting the fractional order or other

parameters, it is possible to switch between different modes of operation

or improve the system’s security and robustness.
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