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Abstract

Proteins are large biomolecules that regulate all living organ-
isms and consist of one or several chains. The primary structure
of a protein chain is a sequence of amino acid residues whose three
main atoms (alpha-carbon, nitrogen, and carbonyl carbon) form
a protein backbone. The tertiary structure is the rigid shape of
a protein chain represented by atomic positions in 3-dimensional
space. Because different geometric structures often have distinct
functional properties, it is important to continuously quantify dif-
ferences in rigid shapes of protein backbones. Unfortunately, many
widely used similarities of proteins fail axioms of a distance metric
and discontinuously change under tiny perturbations of atoms.

This paper develops a complete invariant that identifies any pro-
tein backbone in 3-dimensional space, uniquely under rigid motion.
This invariant is Lipschitz bi-continuous in the sense that it changes
up to a constant multiple of a maximum perturbation of atoms, and
vice versa. The new invariant has been used to detect thousands
of (near-)duplicates in the Protein Data Bank, whose presence in-
evitably skews machine learning predictions. The resulting invariant

∗Corresponding author.

https://doi.org/10.46793/match.94-1.097A


98

space allows low-dimensional maps with analytically defined coor-
dinates that reveal substantial variability in the protein universe.

1 Motivations and the problem statement

A protein is a large biomolecule consisting of one or several chains of amino

acid residues. The primary structure (sequence) of a protein chain is a

string of residue labels (represented by one or three letters), each denoting

one of (usually) 20 standard amino acids [37]. The secondary structure

consists of frequent semi-rigid subchains such as α-helices and β-strands

[31]. A sequence of a protein is easy to experimentally determine but

important functional properties such as interactions with drug molecules

depend on a 3-dimensional geometric shape (a tertiary structure or fold)

represented by an embedding of all its atoms in R3 [45], see Fig. 1 (left).

Figure 1. Left: all main atoms Ni, Ai, Ci of a protein chain form a
backbone embedded in R3. Middle: each triangle △NiAiCi

defines an orthonormal basis ui,vi,wi. The coordinates of

the bonds
−−−−−→
CiNi+1,

−−−−−−−→
Ni+1Ai+1,

−−−−−−−→
Ni+1Ai+1 in this basis form

the complete Backbone Rigid Invariant BRI. Right: All
rigidly equivalent backbones form a single rigid class. All
rigid classes of backbones form the Backbone Rigid Space.

In 1973, Nobel laureate Anfinsen conjectured that the sequence of any

protein chain determines its 3D geometric shape [1]. Following this con-

jecture, neural networks such as AlphaFold2 and RosettaFold [3,20,34,47]

optimize millions of parameters to predict a protein fold from its sequence

but need re-training [19] on the growing number of experimental structures

in the Protein Data Bank (PDB) [6]. The reported accuracies of prediction

are based on the LDDT (Local Distance Difference Test) [32, p. 2728] and

TM-score [55], which fail the metric axioms. Then clustering algorithms

can produce pre-determined clusters and may not be trustworthy [41].
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Backbones of the same length (number of residues) can be optimally

aligned to minimize the Root Mean Square Deviation (RMSD) between

corresponding atoms [13]. This RMSD is slow to compute for all pairs of

proteins and gives only distances without mapping the protein universe.

We develop a different approach by mapping the space of protein back-

bones in analytically defined coordinates similar to geographic-style maps

of a new planet. The first question that we should ask about any real data

such as protein tertiary structures is “same or different” [43].

Any embedded protein in R3 can be rigidly moved (translated or ro-

tated), which changes all atomic coordinates but the underlying structure

remains the same in the sense that different images of a protein under rigid

motion have the same properties in a fixed environment. Though proteins

are flexible molecules, it is important to distinguish their rigid shapes that

can differently interact [14] with other molecules including medical drugs.

Definition 1.1 (Backbone Rigid Space BRISm). A protein backbone is

a sequence of m ordered triplets of main chain atoms (nitrogen Ni, α-

carbon Ai, and carbonyl carbon Ci) given by their geometric positions in

R3. A rigid motion is a composition of translations and rotations matching

backbones in R3 (denoted by S ∼= Q). The classes of all backbones of m

triplets under rigid motion form the Backbone Rigid Space BRISm.

Rigid classes of backbones can be distinguished only by an invariant

I defined as a descriptor preserved under any rigid motion. Any non-

invariant descriptor J always has a false negative pair of backbones S ∼= Q

with J(S) ̸= J(Q). The number of residues is invariant, while the center

of mass moves together with a backbone and is not invariant.

Backbones were studied by incomplete invariants such as torsion angles,

which allow false positive pairs of non-equivalent backbones S ̸∼= Q with

I(S) = I(Q). Because all atoms in a backbone S are ordered, their dis-

tance matrix determines S ⊂ R3 up to isometry (any distance-preserving

transformation), but is large in size (quadratic, O(m2)) and fails to dis-

tinguish mirror images. Adding a sign of orientation creates discontinuity

for backbones that are almost (not exactly) mirror-symmetric.
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Problem 1.2 formalizes the practically important conditions that were

not all previously proved for earlier descriptors of proteins, see section 2.

Problem 1.2 (mapping the Backbone Rigid Space). For any m ≥ 1,

design a map I : BRISm → Rk for some k satisfying the conditions below.

(a) Completeness: any backbones S,Q ⊂ R3 are rigidly equivalent if and

only if I(S) = I(Q), i.e. I has no false negatives and no false positives.

(b) Reconstruction: any protein backbone S ⊂ R3 can be reconstructed

from its invariant value I(S) uniquely under rigid motion.

(c) Lipschitz continuity: there is a distance d satisfying the metric

axioms (1) d(a, b) = 0 if and only if a = b; (2) d(a, b) = d(b, a); (3) triangle

inequality d(a, b) + d(b, c) ≥ d(a, c) for all invariant values a, b, c; and a

constant λ such that, for any ε > 0, if Q is obtained from S by perturbing

every atom up to Euclidean distance ε, then d(I(S), I(Q)) ≤ λε.

(d) Atom matching: there is a constant µ such that, for any backbones

S,Q with δ = d(I(S), I(Q)), all their atoms can be matched up to a

distance µδ by a rigid motion.

(e) Respecting subchains: for any subchain of residues Ri ∪ · · · ∪Ri+j

in a backbone S, the invariant I(Ri ∪ · · · ∪ Ri+j) can be obtained from

I(S) in linear time O(j) with respect to the length of the subchain.

(f) Linear time: the invariant I, the metric d, a reconstruction in (b),

and a rigid motion in (d) can be computed in time O(m) for m residues.

The completeness in 1.2(a) means that I is the strongest possible invari-

ant and hence distinguishes all protein backbones that cannot be exactly

matched by rigid motion. The reconstruction in 1.2(b) is more practical

because I may not allow an efficiently computable inverse map I−1 from

an invariant value I(S) to a backbone S ⊂ R3. The metric axioms for a

distance d in 1.2(c) are essential because if the triangle axiom fails with

any positive error, results of clustering can be made arbitrary [41].

The continuity in 1.2(c) fails for invariants based on principal directions

that can discontinuously change (or become ill-defined) in degenerate cases
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when eigenvalues become equal. The atom matching in 1.2(d) says that,

after finding a rigid motion f in R3, any atom p ∈ S (say, α-carbon Ai(S)

in the i-th residue) has Euclidean distance at most µδ to the corresponding

atom q ∈ f(Q), also the α-carbon atom Ai(Q) in the i-th residue of Q.

Conditions 1.2(c,d) guarantee the Lipschitz continuity of I and its in-

verse on the image I(BRISm) ⊂ Rk. New condition 1.2(e) is important for

identifying secondary structures, which are subchains in full backbones.

The linear time in 1.2(f) makes all previous conditions practically useful

because even the distance matrix needs O(m2) time and space, substan-

tially slower than linear time O(m) for thousands of residues.

The key contribution is the Backbone Rigid Invariant BRI, a map

BRISm → R9m−6 that solves Problem 1.2. Conditions 1.2(d,e) are stated

for the first time to the best of our knowledge. Section 6 will describe how

BRI detected thousands of unexpected geometric duplicates in the PDB,

some of which require corrections, already confirmed by their authors.

The numerical components of BRI play the role of geographic-style co-

ordinates on the space BRISm, where any protein chain has a uniquely

defined location. Sections 3 and 5 will discuss 2D projections of the full

Backbone Rigid Space BRIS =
⋃

m≥2

BRISm and reveal substantial variabil-

ity of traditional invariants in the PDB such as bond angles and lengths,

which were previously expected to have fixed values for all proteins.

2 Past work on similarities of proteins

In the more general context of crystal structures, a canonical description

in a reduced unit cell [38] can be achieved by the program TYPIX [39] for

inorganic compounds and ACHESYM [24] for macromolecular crystals.

Such conventional settings can be considered a complete invariant in the

sense of condition (1.2a). However, a reduced cell discontinuously changes

under almost any perturbation of atoms, which has been known at least

since 1965 [29, p. 80] and was resolved only for generic crystals [49].
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The majority of past approaches to quantify protein similarity use a

geometric alignment by finding an optimal rigid motion that makes a given

structure as close as possible to a template structure.

The widely used TM-score [55] TM = max

{
1

LN

LT∑
i=1

1
1+(di/d0)2

}
∈ [0, 1]

is maximized over all spatial alignments of two backbones, where di

d0
is a

normalized distance between aligned Cα atoms, LT is the length of the tem-

plate structure, LN is the length of a given structure. Since any identical

proteins (with all equal x, y, z coordinates) have TM-score 1, the simplest

way to convert this similarity into a distance is to set TMD = 1− TM so

that TMD(S, S) = 0 for any structure S. Unfortunately, this and many

other conversions such as − log(TM) fail the triangle inequality of a met-

ric already for 3 atoms. Indeed, if LT = LN = 1 and di/d0 are pairwise

distances 1
2 ,

1
3 ,

1
4 between 3 atoms, which satisfy the triangle axiom, then

d = 1 − TM takes the values 1
5 ,

1
10 ,

1
17 , which fail this axiom, see 1.2(c),

also for the (approximate) values 0.22, 0.11, 0.06 of d = − log(TM).

If the triangle axiom fails with any additive error, results of the cluster-

ing algorithms k-means and DBSCAN can be arbitrarily pre-determined

[41]. The authors of another similarity LDDT (Local Distance Difference

Test) concluded in [32, p. 2728] that “One disadvantage of the LDDT score

is that it does not fulfill the mathematical criteria to be a metric. However,

the same is true for most scores”. One metric satisfying all axioms is the

Root Mean Square Deviation (RMSD) between optimally aligned ordered

atoms [7]. This RMSD is slow to compute for all-vs-all comparisons in the

PDB. As a result, many pairs with RMSD = 0 remained unnoticed.

If the order of atoms is ignored, the optimal alignment is NP-complete

(provably too slow) [28]. Applying random rotations [10] creates many

more structures that look different but should be considered rigidly equiv-

alent. This ‘data augmentation’ makes the classification even harder.

The PDB recently implemented a structural superposition [11] of pro-

tein backbones by computing the score equal to the sum of absolute values

in the upper triangle of the distance-difference matrix (DDM) for the dis-

tance matrices between all α-carbon atoms Cα. The description in [11]



103

adds that “to account for possible gaps in the DDMs, caused by a lack of

residue coordinates, these scores are multiplied by a scalar between 0-1,

where 1 represents the absence of any gaps ... low scores represent chains

with high structural similarity.” This scaling by values less than 1 likely

affects the triangle axiom, which needs checking in the light of the recent

reviews [19,35,46] of protein folding prediction [20,30,34].

More importantly, to efficiently navigate in the protein universe, in

addition to distances, we need a map showing all known structures and

also under-explored regions, where new proteins can be discovered. Such

a geographic-style map needs a complete invertible and bi-continuous in-

variant I like the pair of latitude and longitude coordinates on Earth.

Protein backbones are traditionally represented by torsion (dihedral)

angles φi, ψi visualized in Ramachandran plots [40]. For a general polyg-

onal line on points S ⊂ R3, the sequence {ϕi, ψi} is invariant under rigid

motion but incomplete. Indeed, for any successive points pi, pi+1 ∈ S, we

can shift all points pi+1, . . . , pm by a vector t(p⃗i+1 − p⃗i) for any t ̸= 0,

which changes the overall rigid shape of S but keeps all relative angles

between any straight segments and planes through successive points.

For protein backbones, even if all bond lengths and angles are fixed at

ideal values, all torsion angles still should be ordered according to given

residues to completely determine the rigid class of a backbone. Even if

we keep all torsion angles in order, three invariants per residue cannot

uniquely determine a rigid backbone having 3 atoms with 9 coordinates

per residue in R3. AlphaFold2 [20] used 6 parameters per residue to define

a rigid transformation on every i-th triplet (residue triangle) on the main

atoms Ni, Ai, Ci to the next (i+1)-st residue triangle. However, the analy-

sis in section 3 will show that rigid shapes of residue triangles substantially

vary across the PDB. Our paper strengthens the past approach by defining

9 invariants per each of m residues, which gives 9m− 6 invariants in total

after subtracting 6 parameters of a global rigid motion in R3.

If we consider a backbone S of 3m ordered atoms modulo isometry

including reflections, the easier complete invariant known since 1935 [44] is

the 3m×3mmatrixD(S) of all pairwise distances whose entryDij(S) is the



104

Euclidean distance between the i-th and j-th points of S. Any backbone

S can be reconstructed from D(S) or, equivalently, from the Gram matrix

of scalar products as in [9, Theorem 1], uniquely up to isometry in R3.

The matrix D(S) satisfies almost all conditions of Problem 1.2 apart from

the linear time/size requirement, which is essential for large proteins.

If a protein is considered a cloud of unordered atoms (ignoring the

order along a backbone), such clouds of different sizes can be visualized by

eigenvalue invariants (or moments of inertia) characterizing the elongation

of the cloud along its principal directions. In 1996, probably the first map

of all 4K entries in the PDB appeared in [16, Fig. 5] based on the two largest

eigenvalues, see the recent updates in [53, Fig. 2] and PDB-Explorer [18].

In 2020, Holm called for faster visualization of the protein space [17]:

“It would be nice to restore the ability to move a lens across fold space in

real-time ... this ability was based on pre-computed all-against-all struc-

tural similarities, which is not manageable with current data”.

In 1977, Kendall [22] started to study configuration spaces of ordered

points modulo rigid motion in Rn under the name of size-and-shape spaces

[23]. If we consider sequences equivalent also under uniform scaling, the

smaller shape space Σm
2 of m ordered points in R2 can be described as a

complex projective space CPm−1 due to the group SO(2) being identified

with the unit circle in the complex space C1 = R2. However, there is no

easy description of the space Σm
3 of m-point sequences in R3, which has no

multiplicative group structure similar to R2 = C1. This algebraic obstacle

prevented a simple solution to Problem 1.2 in dimension n = 3.

3 The backbone rigid invariant (BRI)

We start with the simpler triangular invariant that describes the rigid

shape of each residue triangle △NiAiCi on three main atoms per each

of m residues: nitrogen Ni, α-carbon Ai, and carbonyl carbon Ci, for

i = 1, . . . ,m, see Fig. 1 (middle). For any points A,B ∈ R3, let |
−−→
AB| be

the Euclidean length of the vector
−−→
AB from A to B. We denote vectors by

u ∈ R3, their scalar and vector products by u · v and u× v, respectively.
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Definition 3.1 (triangular invariant TRIN). Let a backbone S ⊂ R3 have

3m ordered atoms Ni, Ai, Ci, i = 1, . . . ,m. In the plane of △NiAiCi, for

the 2D basis obtained by Gaussian orthogonalization of
−−−→
AiNi,

−−−→
AiCi, the

vector
−−−→
AiNi has the coordinates x(AiNi) = |

−−−→
AiNi|, y(AiNi) = 0, while

−−−→
AiCi has x(AiCi) =

−−−→
AiCi ·

−−−→
AiNi

|
−−−→
AiNi|

and y(AiCi) =
∣∣∣−−−→AiCi − x(AiCi)

−−−→
AiNi

|
−−−→
AiNi|

∣∣∣.
The triangular invariant TRIN(S) is the m × 3 matrix whose i-th row

consists of the coordinates x(AiNi), x(AiCi), y(AiCi) for i = 1, . . . ,m.

The i-th row of TRIN(S) uniquely determines the shape of △NiAiCi.

Many past approaches including AlphaFold2 [20] assumed that all these

residue triangles are rigidly equivalent. To test this assumption on the

PDB, we filter out unsuitable chains as follows. On May 4, 2024, the PDB

had 213,191 entries with 1,091,420 chains. Protocol 3.2 below produced

104, 688 ≈ 49% entries with 707410 ≈ 65% chains in 4 hours 48 min 11 sec.

All experiments were run on CPU Core i7-11700 @2.50GHz RAM 32Gb.

Protocol 3.2 (selecting a subset of 707K+ chains in the PDB). The PDB

was filtered by removing the following entries and individual chains.

(1) 4513 non-proteins (the entity is labeled as ‘not a protein’).

(2) 178153 disordered chains whose some atoms have occupancies < 1.

(3) 201648 chains with residues having non-consecutive indices.

(4) 9941 incomplete chains missing one of the main atoms Ni, Ai, Ci.

(5) 4364 chains with non-standard amino acids.

Example 3.3 (variability of residue triangles). Fig. 2 (row 1) shows

the heatmaps of the invariants x(AiNi), x(AiCi), y(AiCi) on a logarith-

mic scale from Definition 3.1 across all 110+ million residues from the

707K+ cleaned backbones obtained by Protocol 3.2. Though standard de-

viations of these invariants are about 0.01Å, the maximum deviations of

x(AiNi), x(AiCi), y(AiCi) have high values of 1.2, 1.7, 2.7Å, respectively.

Table 1 below shows the coordinates of TRIN and BRI (see Defini-

tion 3.4) for the two hemoglobin chains A in proteins 2hhb and 1hho,

which are shown in Fig. 3 (top middle) and discussed in Example 5.2.

To guarantee new condition 1.2(e) respecting subchains, Definition 3.4

will represent atomsNi+1, Ai+1, Ci+1 in a basis of the previous i-th residue.
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Table 1. Coordinates of TRIN and BRI for the first 3 residues of the
chains A in 2hhb (top) and 1hho (bottom) with their means.

Res x(AN) x(AC) y(AC) x(N) y(N) z(N) x(A) y(A) z(A) x(C) y(C) z(C)
VAL 1.45 -0.54 1.44 1.45 0 0 0 0 0 -0.54 1.44 0
LEU 1.47 -0.50 1.47 -0.91 0.25 -0.90 -0.64 1.32 0.02 -1.10 0.01 1.10
SER 1.47 -0.48 1.45 -0.77 0.36 -0.98 -0.66 1.31 -0.05 -1.11 0.02 1.06
mean 1.47 -0.55 1.43 0.52 0.84 0.46 -0.48 1.38 0.05 0.01 0.65 -1.01

Res x(AN) x(AC) y(AC) x(N) y(N) z(N) x(A) y(A) z(A) x(C) y(C) z(C)
VAL 1.48 -0.51 1.46 1.48 0.00 0.00 0.00 0.00 0.00 -0.51 1.46 0.00
LEU 1.49 -0.55 1.42 -0.14 0.66 1.16 -0.69 1.31 0.19 -1.51 -0.16 -0.03
SER 1.44 -0.41 1.44 -0.63 0.27 -1.10 -0.36 1.36 -0.30 -1.43 0.14 0.40
mean 1.47 -0.53 1.43 0.56 0.81 0.44 -0.43 1.38 0.06 0.04 0.65 -1.02

The first residue needs only three invariants from Definition 3.1 to deter-

mine the rigid shape of △N1A1C1 in R3. Due to cleaning in Protocol 3.2,

all consecutive atoms along any backbone have distances d ≥ 0.01Å and

all angles in any residue triangle △NiAiCi are at least 3◦, which makes

the bases of all residue triangles well-defined in Definition 3.4 below.

Definition 3.4 (backbone rigid invariant BRI(S) of a protein backbone

S). In the notations of Definition 3.1, define the orthonormal basis vectors

ui =

−−−→
AiNi

|
−−−→
AiNi|

, vi =
hi

|hi|
for hi =

−−−→
AiCi − bi

−−−→
AiNi, bi =

−−−→
AiCi ·

−−−→
AiNi

|
−−−→
AiNi|2

, and

wi = ui × vi. The backbone rigid invariant BRI(S) is the m × 9 matrix

whose i-th row for i = 2, . . . ,m contains the coefficients x, y, z of the

vectors
−−−−→
Ci−1Ni,

−−−→
NiAi,

−−−→
AiCi in the basis ui−1,vi−1,wi−1. So the nine

columns of BRI(S) contain the coordinates x(Ni), y(Ni), z(Ni) of
−−−−→
Ci−1Ni,

followed by the six coordinates x(Ai), . . . , z(Ci). For i = 1, the first row of

BRI(S) has only three non-zero coordinates x(N1) = x(A1N1), x(C1) =

x(A1C1), y(C1) = y(A1C1) from the first row of TRIN(S) in Definition 3.1.

Fig. 2 shows heatmaps of the PDB cleaned by Protocol 3.2. We mapped

each of 110+ million residues across all 707+ thousand chains to a pair of

coordinates (x, y) from the invariants TRIN and BRI. When many points

(x, y) were discretized to a single pixel, its color reflects the number of

such points on a logarithmic scale in the color bars of all heatmaps.

For a backbone of m residues, the first row of the m×9 matrix BRI(S)

contains only three non-zero coordinates. Hence the matrix BRI(S) can
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Figure 2. Heatmaps of the invariants TRIN and BRI from Defini-
tions 3.1 and 3.4 for all 110M+ residues in the 707K+ chains
obtained by Protocol 3.2. The color indicates the number of
residues whose pair of invariants is discretized to each pixel.
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be considered a vector of length 9(m − 1) + 3 = 9m − 6. The simplest

metric on backbone rigid invariants as vectors in R9m−6 is L∞ equal to

the maximum absolute difference between all corresponding coordinates.

A small value δ of L∞(BRI(S),BRI(Q)) guarantees by Theorem 4.8

that backbones S,Q are closely matched by rigid motion. Another metric

such as Euclidean distance or its normalization by the chain length has no

such guarantees and can be small even for a few outliers that can affect

the rigid shape and hence functional properties of a protein. Theorem 3.5

proves conditions 1.2(a,b,c,e,f) in Problem 1.2 for the invariant BRI(S).

Theorem 3.5 (completeness, reconstruction, and subchains). (a) Under

any rigid motion in R3, the matrix TRIN(S) in Definition 3.1 is invariant,

BRI(S) in Definition 3.4 is a complete invariant, so any backbones S,Q ⊂
R3 are matched by rigid motion if and only if BRI(S) = BRI(Q).

(b) The invariant BRI(S), metric L∞ between invariants, and a recon-

struction of S ⊂ R3 from BRI(S) can be computed in time O(m).

(c) Let Q be a subchain of j consecutive residues in a backbone S ⊂ R3.

If Q includes the first residue of S, then BRI(Q) consists of the first j

rows of BRI(S). If Q starts from the i-th residue of S for i > 1, the rows

2, . . . , j of BRI(Q) coincide with the rows i + 1, . . . , i + j − 1 of BRI(S),

and the 1st row of BRI(Q) is computed from the i-th row of BRI(S) in a

constant time. Hence BRI(Q) is computed from BRI(S) in time O(j).

Proof of Theorem 3.5. (a,b) The formulae of the basis vectors in Defini-

tion 3.4 guarantee that all vectors have unit length |ui| = |vi| = |wi| = 1

and are orthogonal to each other due to ui ·vi = vi ·wi = wi ·ui = 0. Any

rigid motion f acting on a backbone S ⊂ R3 has the form f(p) = v⃗+R(p⃗)

for a fixed vector v⃗ ∈ Rn, an orthogonal map R ∈ O(R3), and any p ∈ R3.

Then f maps every orthonormal basis ui,vi,wi with the origin at a point

Ai ∈ R3 to another orthonormal basis R(ui), R(vi), R(wi) at the new

origin f(Ai). Hence the image of any vector
−−→
AiPi = xui+yvi+zwi under

f has the same coordinates in the rigidly transformed basis: f(
−−→
AiPi) =

R(
−−→
AiPi) = xR(ui) + yR(vi) + zR(wi), so BRI(S) = BRI(f(S)).

For any residue having a fixed index i, Definition 3.4 needs only a
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constant time O(1) to compute the basis vectors and coordinates of
−−−−→
Ci−1Ni

in the basis of the previous residue. The total time for computing them×9

matrix BRI(S) is O(m). The metric L∞ has a linear time in the size 9m.

The completeness will follow by showing that any backbone S ⊂ R3

can be efficiently reconstructed from BRI(S), uniquely after fixing the first

residue whose shape is determined by the three non-zero values in the first

row of BRI(S). In the first residue, the α-carbon A1 can be moved to the

origin 0 ∈ R3 by translation. Using x(N1) = |
−−−→
A1N1|, the N -terminal atom

N1 can be fixed in the positive x-axis by an orthogonal map from SO(3). A

suitable rotation around the x-axis can move C1 to the upper xy-plane. All

these transformations preserve the lengths and scalar products. The final

position of C1 is uniquely determined by x(C1), y(C1) in Definition 3.4.

After fixing △N1, A1, C1, it remains to prove that any other atom of S

is uniquely determined by its x, y, z coordinates in BRI(S). Indeed, N2 is

obtained from C1 by adding
−−−→
C1N2, whose coordinates are the first three

elements in the 2nd row of BRI(S). Then A2 is obtained from N1 by

adding
−−−→
N2A2, whose coordinates are the next three elements in the 2nd

row of BRI(S). Then C2 is obtained from A2 by adding
−−−→
A2C2 and so on.

(c) Since the complete invariant BRI(S) of a backbone S is locally defined

by determining any i-th residue triangle △NiAiCi in the basis of the pre-

vious (i−1)-st triangle, all rows of the matrix BRI(Q) for any subchain Q

in the full backbone S coincide with the corresponding rows of BRI(S).

The only exception is the first row if Q starts from the i-th residue of

S for i > 1. In this case, the three non-zero invariants in the first row of Q

can be obtained from the i-th row of TRIN(S) whose values are expressed

in terms of the vectors
−−−→
NiAi and

−−−→
AiCi in Definition 3.1. This computation

needs only a constant time independent of j because the coordinates of

the vectors
−−−→
AiNi and

−−−→
AiCi are given in the i-th row of BRI(S).

Corollary 3.6 (completeness under isometry). Any mirror image S̄ of

a backbone S ⊂ R3 has the invariant BRI(S) := BRI(S̄) obtained by

reversing the signs in all z-columns of BRI(S). The unordered pair of

BRI(S) and BRI(S) is complete under isometry.



110

Proof of Corollary 3.6. To prove that BRI(S) := BRI(S̄) is obtained from

BRI(S) by reversing the signs in all z-columns of BRI(S), consider the

main atoms Ni, Ai, Ci in the i-th residue of S for any i = 2, . . . ,m. The

mirror image S̄ has the corresponding atoms N̄i, Āi, C̄i. There is a rigid

motion f in R3 that matches these atoms so that Ni = f(N̄i), Ai = f(Āi),

Ci = f(C̄i), and f(S̄) is obtained from S by the reflection g in the plane of

the residue triangle △NiAiCi. This reflection g preserves the basis vectors

ui,vi,wi from Definition 3.4 of the i-th residue of the backbone S.

In the orthonormal basis of ui, vi, wi = ui × vi, the coordinates of

the vector
−−−−→
CiNi+1 = x(Ni+1)ui + y(Ni+1)vi + z(Ni+1)wi determine the

coordinates of the mirror image f(
−−−−−→
C̄iN̄i+1) = x(Ni+1)ui + y(Ni+1)vi −

z(Ni+1)wi, where only the sign of the coefficient of wi is reversed as re-

quired. Since the index i = 2, . . . ,m was arbitrarily chosen, it remains

to notice that the first residue triangles △N1A1C1 and △N̄1Ā1C̄1 can be

matched by rigid motion, so all 3 non-zero invariants in the first rows of

BRI(S) and BRI(S̄) coincide, while all z-coordinates are zeros. Finally,

the unordered pair of BRI(S) and BRI(S) is invariant under any rigid mo-

tion by Theorem 3.5(a) and under reflection, which swaps the invariants

in this pair. By Theorem 3.5(b), any of BRI(S) and BRI(S) suffices to

reconstruct S or S̄ up to rigid motion, hence S up to isometry in R3.

4 Lipschitz bi-continuity of the invariant BRI

Theorem 4.1 will prove the Lipschitz continuity of BRI in condition 1.2(c).

For a given backbone S and its perturbation Q, let lN,A and LN,A denote

the minimum and maximum bond length between any α-carbon Ai and

nitrogen Ni in S,Q, respectively. The maximum bond lengths LA,C , LC,N

are similarly defined for other types of bonds.

Theorem 4.1 (Lipschitz continuity of BRI). For any ε > 0, let Q be

obtained from a backbone S ⊂ R3 by perturbing every atom of S up to

Euclidean distance ε. Let h = mini |y(AiCi)| be the minimum height in

triangles △NiAiCi at Ci for all residues in the backbones S,Q. Set L =

max{LC,N , LN,A, LA,C}, K =
1

lN,A
+

2

h

(
1+2

LA,C

lN,A

)
, and λ = 2(1+2LK).
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Then L∞(BRI(S),BRI(Q)) ≤ λε.

Theorem 4.1 needs Lemmas 4.2, 4.3, 4.4, 4.5, and Proposition 4.6.

Lemma 4.2 (length difference). Any u,v ∈ Rn satisfy | |u|−|v| | ≤ |u−v|.

Proof. The triangle inequality for the Euclidean distance implies that |u| ≤
|u−v|+ |v|, so |u|−|v| ≤ |u−v|. Swapping the vectors, we get |v|−|u| ≤
|u − v|. Combining the inequalities ±(|u| − |v|) ≤ |u − v|, we conclude

that | |u| − |v| | ≤ |u− v| as required.

Lemma 4.3 (perturbation of a vector). Let A′, B′ be any ε-perturbations

of points A,B ∈ Rn, respectively, i.e. |A − A′| ≤ ε, |B − B′| ≤ ε. Then

|
−−−→
A′B′ −

−−→
AB| ≤ 2ε.

Proof. Apply the triangle inequality:

|
−−−→
A′B′ −

−−→
AB| = |

−−→
A′A+

−−→
BB′| ≤ |

−−→
A′A|+ |

−−→
BB′| ≤ 2ε.

Lemma 4.4 (a normalized vector). Let u be a δ-perturbation of a vector

v ∈ Rn, i.e. |u− v| ≤ δ. Then

∣∣∣∣ u|u| − v

|v|

∣∣∣∣ ≤ 2δ

l
, where l = max{|u|, |v|}.

Hence if u =
−−→
AN and u′ =

−−−→
A′N ′ are vectors between atoms Ai, Ni and

their ε-perturbations, then

∣∣∣∣ u|u| − v

|v|

∣∣∣∣ ≤ 4ε

lN,A
, where lN,A is the minimum

bond length between Ni, Ai.

Proof. Assume that max{|u|, |v|} = |v|, which we denote by l. Then∣∣∣∣ u|u| − v

|v|

∣∣∣∣ = ∣∣∣∣ |v|u− |u|v
|u| · |v|

∣∣∣∣ = | (|v| − |u|)u+ |u|(u− v) |
|u| · |v|

≤

| |u| − |v| | · |u|+ |u| · |u− v|
|u| · |v|

=
| |u| − |v| |+ |u− v|

|v|
≤ 2|u− v|

|v|
≤ 2δ

l
,

where we used the triangle inequality, Lemma 4.2, and |u − v| ≤ δ.

The second inequality follows for δ = 2ε from Lemma 4.3 and lN,C ≤
max{|u|, |v|}.

Lemma 4.5 (products). For any u,u′,v,v′ ∈ Rn, if |v′| = |v| = 1, then

(a) |(u′ · v′)− (u · v)| ≤ |u′ − u|+ |u| · |v′ − v|,

(b) |(u′ × v′)− (u× v)| ≤ |u′ − u|+ |u| · |v′ − v|,
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(c) |(u′ · v′)v′ − (u · v)v| ≤ |u′ − u|+ 2|u| · |v′ − v|.

Proof. (a) Any scalar and vector product has the upper bound |u| · |v|.

|(u′ · v′)− (u · v)| = |(u′ − u) · v′ + u · (v′ − v)| ≤

≤ |(u′ − u) · v′|+ |u · (v′ − v)| ≤≤ |u′ − u| · |v′|+ |u| · |v′ − v| =

= |u′ − u|+ |u| · |v′ − v| due to |v′| = 1.

(b) Prove as (a) with the vector product instead of the scalar product.

(c) It follows by using |v| = 1 and part (a):

|(u′ · v′)v′ − (u · v)v| = |(u′ · v′ − u · v)v′ + (u · v)(v′ − v)| ≤

≤ |u′ · v′ − u · v| · |v′|+ |u · v| · |v′ − v| ≤

≤ |u′ · v′ − u · v|+ |u| · |v| · |v′ − v| ≤ |u′ − u|+ 2|u| · |v′ − v|

as required.

Recall that lN,A denotes the minimum bond length between Ni and

Ai, and LA,C is the maximum distance between Ai and Ci, while h is the

minimum height in △NiAiCi at Ci for all residues in given backbones.

Proposition 4.6 (perturbations of a basis). In the conditions of Theo-

rem 4.1, if any atom is perturbed up to ε, the basis vectors from Defini-

tion 3.4 are perturbed as follows:

(a) |u′
i − ui| ≤

4ε

lN,A
;

(b) |v′
i − vi| ≤

8ε

h
(1 + 2

LA,C

lN,A
);

(c) |w′
i−wi| ≤ 4εK, whereK =

1

lN,A
+
2

h

(
1+2

LA,C

lN,A

)
for all i = 1, . . . ,m.

Proof. (a) In Definition 3.4 the vector ui =

−−−→
AiNi

|
−−−→
AiNi|

satisfies the inequality

|u′
i − ui| ≤

4ε

lN,A
by Lemma 4.4.
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(b) The second vector is vi =
hi

|hi|
for hi =

−−−→
AiCi − bi

−−−→
AiNi and bi =

−−−→
AiCi ·

−−−→
AiNi

|
−−−→
AiNi|2

. Set pi =
−−−→
AiCi, qi =

−−−→
AiNi

|
−−−→
AiNi|

, so |qi| = |q′
i| = 1, where any

dash denotes a perturbation of a point or a vector. Also, |pi| = |
−−−→
AiCi| has

the upper bound LA,C . By Lemma 4.5(c):

|b′i
−−−→
A′

iN
′
i − bi

−−−→
AiNi| = |(p′

i · q′
i)q

′
i − (pi · qi)qi| ≤

|p′
i − pi|+ 2|pi| · |q′

i − qi| ≤ 2ε+ 2LA,C
4ε

lN,A
,

where we used |pi| ≤ LA,C and |q′
i − qi| ≤

4ε

lN,A
by Lemma 4.4. Then

|h′
i − hi| = |p′

i − b′i
−−−→
A′

iN
′
i − (pi − bi

−−−→
AiNi)| ≤

≤ |p′
i − pi|+ |b′i

−−−→
A′

iN
′
i − bi

−−−→
AiNi| ≤ 2ε+ 2ε+ ε

LA,C

lN,A
= 4ε(1 + 2

LA,C

lN,A
).

The vectors hi, pi, and bi
−−−→
AiNi = (pi · qi)qi form a right-angled triangle

with the hypotenuse |pi|. The length |hi| = |
−−−→
AiCi| sin∠NiAiCi is the

height in △NiAiCi at the atom Ci. Using the given minimum height

h ≤ |hi|, Lemma 4.4 for δ = 4ε(1 + 2
LA,C

lN,A
) implies that

|v′
i − vi| =

∣∣∣∣ h′
i

|h′
i|
− hi

|hi|

∣∣∣∣ ≤ 2δ

h
≤ 8ε

h
(1 + 2

LA,C

lN,A
).

(c) The perturbation of wi = ui × vi is estimated by Lemma 4.5(b):

|w′
i −wi| = |(u′

i × v′
i)− (ui × vi)| ≤ |u′

i − ui|+ |ui| · |v′
i − vi| ≤

≤ 4ε

lN,A
+

8ε

h

(
1 + 2

LA,C

lN,A

)
= 4εK, where K =

1

lN,A
+

2

h

(
1 + 2

LA,C

lN,A

)
as required.

Proof of Theorem 4.1. In the perturbed backbone Q, let N ′
i , A

′
i, C

′
i denote

ε-perturbations of atoms N,Ai, Ci from the backbone S for i = 1, . . . ,m.
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We prove that any coordinate of BRI(S) changes by at most λε for the

given Lipschitz constant λ. The first coordinate x(N1) changes by at most

2ε because |x(N ′
1)−x(N1)| =

∣∣ |−−−→A′
1N

′
1|− |

−−−→
A1N1|

∣∣ ≤ 2ε by Lemma 4.2. For

the coordinate x(C1) =

−−−→
A1C1 ·

−−−→
A1N1

|
−−−→
A1N1|

, set u =
−−−→
A1C1 and v =

−−−→
A1N1

|
−−−→
A1N1|

, so

|v| = 1. We write the perturbed versions of all vectors with a dash.

Then |x(C ′
1) − x(C1)| = |u′ · v′ − u · v| ≤ |u′ − u| + |u| · |v′ − v| by

Lemma 4.5(a). Lemma 4.3 implies that |u′ − u| ≤ 2ε. Lemma 4.4 for

u =
−−−→
A′

1N
′
1 and v =

−−−→
A1N1 implies that |v′ − v| ≤ 4ε

lN,A
, where lN,A is the

minimum length of the bond between an α-carbon Ai and Ni across all

backbones. Also, the Euclidean length |u| = |
−−−→
A1C1| has the upper bound

LA,C equal to the maximum length of the bond between Ai and Ci across

all backbones. Then |x(C ′
1)− x(C1)| ≤ 2ε

(
1 + 2

LA,C

lN,A

)
.

In the notations above, the last non-zero coordinate in the first row of

BRI(A) is y(C1) = |
−−−→
A1C1 − x(C1)

−−−→
A1N1

|
−−−→
A1N1|

| = |u − x(C1)v|. We estimate

the perturbation first by Lemma 4.2:

|y(C ′
1)− y(C1)| = | |u′ − x(C ′

1)v
′| − |u− x(C1)v| | ≤

≤ |u′ − x(C ′
1)v

′ − (u− x(C1)v)| ≤ |u′ − u|+ |x(C ′
1)v

′ − x(C1)v| ≤

≤ 2ε+ |(x(C ′
1)− x(C1))v

′ + x(C1)(v
′ − v)| ≤

≤ 2ε+ |x(C ′
1)− x(C1)|+ |x(C1)| · |v′ − v| ≤

≤ 2ε+ 2ε
(
1 + 2

LA,C

lN,A

)
+ |

−−−→
A1C1|

4ε

lN,A
≤ 4ε

(
1 + 2

LA,C

lN,A

)
,

where we substituted |x(C ′
1)−x(C1)| ≤ 2ε(1+2

LA,C

lN,A
) and |v′−v| ≤ 4ε

lN,A
.

In any i-th row for i = 2, . . . ,m, we estimate by Proposition 4.6(a):

|x(N ′
i)− x(Ni)| = |

−−−−−→
C ′

i−1N
′
i · u′

i −
−−−−→
Ci−1Ni · ui| ≤ |

−−−−−→
C ′

i−1N
′
i −

−−−−→
Ci−1Ni|+

+ |
−−−−→
Ci−1Ni| · |u′

i − ui| ≤ 2ε+ LC,N
4ε

lN,A
= 2ε(1 + 2

LC,N

lN,A
)
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due to the upper bound |
−−−−→
Ci−1Ni| ≤ LC,N . For the other coordinates y, z,

similarly use Proposition 4.6(b,c):

|y(N ′
i)− y(Ni) = |

−−−−−→
C ′

i−1N
′
i · v′

i −
−−−−→
Ci−1Ni · vi| ≤

≤ |
−−−−−→
C ′

i−1N
′
i −

−−−−→
Ci−1Ni|+ |

−−−−→
Ci−1Ni| · |v′

i − vi| ≤

≤ 2ε+ LC,N · 8ε
h
(1 + 2

LA,C

lN,A
) = 2ε

(
1 + 4

LC,N

h
(1 + 2

LA,C

lN,A

)
.

|z(N ′
i)− z(Ni)| = |

−−−−−→
C ′

i−1N
′
i ·w′

i −
−−−−→
Ci−1Ni ·wi| ≤

≤ |
−−−−−→
C ′

i−1N
′
i −

−−−−→
Ci−1Ni|+ |

−−−−→
Ci−1Ni| · |w′

i −wi| ≤

≤ 2ε+ LC,N · 4εK = 2ε(1 + 2LC,NK), for K =
1

lN,A
+

2

h

(
1 + 2

LA,C

lN,A

)
.

For the atoms Ai, Ci, we get similar upper bounds by replacing the

factor LC,N with LN,A, LA,C , respectively. Taking into account all up-

per bounds above, the overall upper bound for the L∞ metric on in-

variants is L∞(BRI(S),BRI(Q)) ≤ λε, where λ = 2(1 + 2LK) for L =

max{LC,N , LN,A, LA,C} and K =
1

lN,A
+

2

h

(
1 + 2

LA,C

lN,A

)
as required.

Example 4.7 (continuity in practice). For all 707K+ cleaned chains, the

median upper bound for λ is about 34.5 but the real values are smaller

as in the example below. Consider the backbone S of the chain A (141

residues) from the standard hemoglobin 2hhb in the PDB.

We perturb S to Q by adding to each coordinate x, y, z of all atoms

in S some uniform noise up to various thresholds ε = 0.01, 0.02, . . . , 0.1Å.

Fig. 3 (top left) shows how the distance L∞(BRI(S),BRI(Q)) averaged

over 20 perturbations depends on ε As expected by Theorem 4.1, the

metric L∞ is perturbed linearly up to λε, where λ ≈ 4.

Because the metric L∞ between invariants BRI (m × 9 matrices) can

be computed in linear time O(m), Theorem 4.1 also completes condition

(1.2f) in Problem 1.2. Theorem 4.8 will prove condition in 1.2(d).

Theorem 4.8 (inverse continuity of BRI). For any δ > 0 and backbones

S,Q ⊂ R3 with L∞(BRI(S),BRI(Q)) < δ, there is a rigid motion f of R3

such that any atom of S is µδ-close to the corresponding atom of f(Q) for
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µ =
√
3
(8LK)m−1 − 1

8LK − 1
. Let B̂RI(S) be BRI(S) after multiplying the i-th

row by
(8LK)i−1 − 1

8LK − 1
for i = 2, . . . ,m. Then L∞(B̂RI(S), B̂RI(Q)) < δ

guarantees a rigid motion f of R3 such that any atom of the backbone S

is
√
3δ-close to the corresponding atom of f(Q).

Proof of Theorem 4.8. Choose the origin of R3 at the first alpha-carbon

atom A1 of the backbone S, the positive x-axis through the vector
−−−→
A1N1,

and the y-axis so that the triangle N1A1C1 belongs to the upper half of

the xy-plane. Shift another backbone Q so that its first alpha-carbon atom

A′
1 coincides with the origin A1. Rotate the image of Q so that its first

nitrogen atom N1 is in the x-axis through the atoms A1, N1 of S and the

next carbon C ′
1 of Q is in the upper xy-plane.

For the resulting motion f , we will prove that the atoms of S are µδ-

close to the corresponding atoms of the image of Q, which we still denote

by N ′
i , A

′
i, C

′
i for simplicity. Because the atom N ′

1 is in the x-axis through
−−−→
A1N1, the first basis vectors of length 1 coincide (u′

1 = u1) and hence also

uniquely define the other basis vectors (v′
1 = v1, w

′
1 = w1).

Then |x(N ′
1)− x(N1)| ≤ δ implies that the atom N ′

1 is δ-close to N1 in

the x-axis. The atoms C1, C
′
1 are δ

√
2-close due to

|C ′
1 − C1| =

√
|x(C ′

1)− x(C1)|2 + |y(C ′
1)− y(C1)|2 ≤

√
δ2 + δ2 = δ

√
2.

Because the first bases coincide, we consider the second residue:

|N ′
2 −N2| =

= |x(N ′
2)u1 + y(N ′

2)v1 + z(N ′
2)w1 − x(N2)u1 − y(N2)v1 − z(N2)w1| =

=
√

|x(N ′
2)− x(N2)|2 + |y(N ′

2)− y(N2)|2 + |z(N ′
2)− z(N2)|2 ≤

≤
√
δ2 + δ2 + δ2 = δ

√
3.

Similarly, we get the upper bound ε = δ
√
3 for the deviations |A′

2−A2|
and |C ′

2 − C2|. We will prove the following upper bound on deviations of
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atoms by induction on the number m ≥ 2 of residues.

max{|N ′
m−Nm|, |A′

m−Am|, |C ′
m−Cm|} ≤

√
3(1+8LK+· · ·+8(LK)m−2)δ,

where L = max{LC,N , LN,A, LA,C}, K =
1

lN,A
+

2

h

(
1 + 2

LA,C

lN,A

)
.

The base m = 2 was completed above. The inductive assumption says

that the upper bound ε =
√
3(1 + 8LK + · · · + (8LK)i−2)δ holds for a

single value of i ≥ 2. The inductive step below is for the next value i+1.

Proposition 4.6 estimates deviations of vectors in the second basis:

|u′
2 − u2| ≤

4ε

lN,A
, |v′

2 − v2| ≤
8ε

h

(
1 + 2

LA,C

lN,A

)
, |w′

2 −w2| ≤ 4εK.

For nitrogens, we split the deviations in the (i + 1)-st residue into the

deviations proportional to the differences in coordinates and the deviations

proportional to the differences in basis vectors as follows:

|N ′
i+1 −Ni+1| = |x(N ′

i+1)u
′
i + y(N ′

i+1)v
′
i + z(N ′

i+1)w
′
i−

− x(Ni+1)ui − y(Ni+1)vi − z(Ni+1)wi| = |(x(N ′
i+1)u

′
i − x(Ni+1)ui)+

+ (y(N ′
i+1)v

′
i − y(Ni+1)vi) + (z(N ′

i+1)w
′
i − z(Ni+1)wi)| =

=
∣∣∣(x(N ′

i+1)− x(Ni+1)
)
u′

i + x(Ni+1)(u
′
i − ui) +

(
y(N ′

i+1)− y(Ni+1)
)
v′
i+

+ y(Ni+1)(v
′
i − vi) +

(
z(N ′

i+1)− z(Ni+1)
)
w′

i + z(Ni+1)(w
′
i −wi)

∣∣∣ ≤
≤

∣∣∣(x(N ′
i+1)− x(Ni+1)

)
u′

i +
(
y(N ′

i+1)− y(Ni+1)
)
v′
i+

+
(
z(N ′

i+1)− z(Ni+1)
)
w′

i

∣∣∣+ ∣∣∣x(Ni+1)(u
′
i − ui)

∣∣∣+
+

∣∣∣y(Ni+1)(v
′
i − vi)

∣∣∣+ ∣∣∣z(Ni+1)(w
′
i −wi)

∣∣∣.
In the last upper bound, the first big modulus is the Euclidean length of

a vector written in the orthonormal basis u′
i,v

′
i,w

′
i. Since the coordinates

of this vector have absolute values at most δ, this length has the upper

bound δ
√
3. In the second row of the matrix BRI, we estimate each term by

replacing absolute values of coordinates with the maximum bond lengths
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and by using |x(Ni+1)| ≤ LC,N and Proposition 4.6 as follows:

|x(Ni+1)| · |u′
i − ui| ≤ LC,N

4ε

lN,A
,

|y(Ni+1)| · |v′
i − vi| ≤ LC,N

8ε

h

(
1 + 2

LA,C

lN,A

)
,

|z(Ni+1)| · |w′
i −wi| ≤ LC,N · 4εK, where K =

1

lN,A
+

2

h

(
1 + 2

LA,C

lN,A

)
.

Taking the sum of these estimates, the final deviation is

|N ′
i+1 −Ni+1| ≤

√
3δ + 4εLC,N

( 1

lN,A
+

2

h

(
1 + 2

LA,C

lN,A

)
+

1

lN,A
+

2

h

(
1 + 2

LA,C

lN,A

))
=

=
√
3δ + 8LC,NεK ≤

√
3(1 + 8LK(1 + · · ·+ (8LK)i−2)δ =

=
√
3(1 + · · ·+ (8LK)i−1)δ.

For the atoms Ai+1, Ci+1 in the (i + 1)-st residue, we get the same

bound by replacing LC,N with LN,A, LA,C ≤ L. The bound for i = m is
√
3(1 + · · ·+ (8LK)m−2))δ =

√
3
(8LK)m−1 − 1

8LK − 1
δ.

Now consider the modified invariant B̂RI(S) obtained by multiplying

the i-th row of BRI(S) by
(8LK)i−1 − 1

8LK − 1
for i = 2, . . . ,m. Then the

δ-closeness of the corresponding invariant components in the metric L∞

means smaller deviations |x(N ′
i)− x(Ni)| ≤ δ

8LK − 1

(8LK)i−1 − 1
, similarly for

other components. This extra multiplicative factor gives the upper bound

|N ′
i+1 −Ni+1| ≤

√
3δ, similarly for all other atoms.

A Lipschitz constant µ plays no significant role because any metric

on invariant values can be divided by µ, which makes this constant 1.

The second part of Theorem 4.8 offers a smarter adjustment of BRI(S)

to the modified invariant B̂RI(S) depending on a row index of BRI(S) to

guarantee the smaller Lipschitz constant
√
3.
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5 Average invariant, diagrams, barcodes

This section simplifies the complete invariant BRI to its average vector in

R9 and introduces the diagram and barcode that visually represent BRI.

Definition 5.1 (average invariant Brain, standard deviation of invari-

ants, diagram BID, and barcode BIB). For any protein backbone S of m

residues, the backbone rigid average invariant Brain(S) ∈ R9 is the vector

of nine column averages in BRI(S) excluding the first row. The stan-

dard deviation can be computed in a similar way. The backbone invari-

ant diagram BID(S) consists of nine polygonal curves going through the

points (i, c(i)), i = 2, . . . ,m, where c is one of the coordinates (columns)

of BRI(S), see Fig. 3 (middle). For each atom type such as N , the co-

ordinates (x(Ni), y(Ni), z(Ni)) are linearly converted into the RGB color

value for i = 1, . . . ,m. The resulting three color bars for the ordered atoms

N,A,C form the backbone invariant barcode BIB(S), see Fig. 3 (bottom).

Example 5.2 (hemoglobins). The PDB contains thousands of hemoglobin

structures. We consider here the structure 2hhb as a standard, and com-

pare it with oxygenated 1hho, which contains an extra oxygen whose trans-

port is facilitated by hemoglobin. In both cases, we considered the main

chains (entity 1, model 1, chain A) of 141 residues. Table 1 showed the

TRIN and BRI invariants for the first 3 residues of 2hhb and 1hho.

The top left image in Fig. 3 (top) shows that the Lipschitz constant

from Theorem 4.1 is λ ≈ 4 for both hemoglobins. Fig. 3 (middle) illustrates

the complexity of identifying similar proteins that can be given with very

distant coordinates. The similarity under rigid motion becomes clearer by

comparing their diagrams and barcodes in Fig. 3 (rows 2, 3).

More importantly, a rigidly repeated pattern such as α-helix or β-

strand has constant invariants over several residue indices, which are easily

detectable in BID and visible in BIB as intervals of uniform color. The

PDB uses the baseline algorithm DSSP (Define Secondary Structure of

Proteins) [21], which depends on several manual parameters and sometimes

outputs α-helices of only two residues. For instance, the PDB files 1hho

and 2hhb in Fig. 3 (right) include HELX P4 consisting of only residues 50
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Figure 3. Row 1: the Lipschitz continuity of BRI from Theorem 4.1
is illustrated on the left by perturbing hemoglobins in Ex-
ample 4.7, whose main chains A of 141 residues are shown
in the middle (oxygenated 1hho in green, standard 2hhb in
cyan) and eight α-helices found by [21] on the right. Row 2:
the Backbone Invariant Diagram (BID) of the hemoglobins
1hho vs 2hhb in the PDB, see Definition 5.1. Row 3: the
Backbone Invariant Barcode (BIB), see Example 5.2.

and 51, and HELX P5 of length 20 over residue indices i = 52, . . . , 71.

Fig. 3 shows that a ‘constant’ interval of little noise appears only for

i = 54, . . . , 70. Hence new invariants allow a more objective detection

of secondary structures, which will be explored in future work.

While the complete BRI(S) can be used to compare backbones of the

same length, the average invariant Brain(S) ∈ R9 and the standard de-

viation invariant can help to visualize all backbones of different lengths

on the same heatmap. In each image of Fig. 4, any protein backbone is

represented by a single point (x, y) whose coordinates are the two simplest

statistics (average and standard deviation) of a fixed invariant across all

residues in a fixed chain. The top images in Fig. 4 show that the deviations

of all three invariants from Definition 3.1 can be as large as 0.25Å. So the
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shapes of residue triangles can substantially vary even for a fixed backbone,

while AlphaFold2 [20] assumes that they all have identical shapes.

Figure 4. Heatmaps of average and standard deviations of the invari-
ants TRIN and BRI across all 707K+ chains obtained by
Protocol 3.2. The color indicates (on the logarithmic scale)
the number of chains whose pairs (x, y) of the average x and
the standard deviation y are discretized to each pixel.
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6 Duplicates with identical coordinates

The linear time of the complete invariant BRI(S) has enabled all-vs-all

comparisons for all tertiary structures in the PDB, which was additionally

cleaned by Protocol 3.2. To speed up comparisons, Lemma 6.1 proves

that the metric L∞(BRI(S),BRI(Q)) between complete invariants is not

smaller than the much faster distance L∞(Brain(S),Brain(Q)) between

the averaged invariants (vectors of 9 coordinates) from Definition 5.1.

Lemma 6.1 (relation between metrics on the invariants BRI and Brain).

Any protein backbones S,Q of the same number of residues satisfy the

inequality L∞(Brain(S),Brain(Q)) ≤ L∞(BRI(S),BRI(Q)).

Proof of Lemma 6.1. If protein backbones S,Q have m residues and δ =

L∞(BRI(S),BRI(Q)), then any corresponding elements of the m× 9 ma-

trices BRI(S),BRI(Q) differ by at most δ. For any j = 1, . . . , 9, their

averages of the j-th columns differ by at most δ because∣∣∣∣∣ 1m
m∑
i=1

BRIij(S)−
1

m

m∑
i=1

BRIij(Q)

∣∣∣∣∣ ≤
1

m

m∑
i=1

|BRIij(S)− BRIij(Q)| ≤ 1

m

m∑
i=1

δ = δ.

Hence L∞(Brain(S),Brain(Q)) ≤ δ as required.

The complete invariants and their statistical summaries (averages and

deviations) were computed in 3 hours 18 min 21 sec. After comparing all

(888+ million) pairs of same-length backbones within 1 hour, we found

13907 pairs S,Q with the exact zero-distance L∞(BRI(S),BRI(Q)) = 0

between complete invariants meaning that all these backbones S,Q are

related by rigid motion, but they may not be geometrically identical.

However, 9366 of these pairs turned out to have x, y, z coordinates of all

main atoms identical to the last digit despite many of them (763) coming

from different PDB entries. Table 2 lists nine pairs whose geometrically

identical chains unexpectedly differ in the sequences of amino acids.
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Table 2. Chains with identical backbones but different sequences.

PDB id1 method and PDB id2 all atoms have different
& chain resolutions, Å & chain identical x, y, z residues

1a0t-B X-ray, 2.4, 2.4 1oh2-B all 3× 413 9
1ce7-A X-ray, 2.7, 2.7 2mll-A all 3× 241 1, GLY ̸=HIS
1ruj-A X-ray, 3, 3 4rhv-A all 3× 237 1, GLY ̸=SER
1gli-B/D X-ray, 2.5, 1.7 3hhb-B/D all 3× 146 1, MET ̸=VAL
2hqe-A X-ray, 2, 2 2o4x-A all 3× 217 1, GLN ̸=GLU
5adx-T EM, 4, 8.2 5afu-Z all 3× 165 1, ILE ̸=VAL
5lj3-O EM, 3.8, 10 5lj5-P all 3× 252 1, ALA ̸=VAL
8fdz-A X-ray, 2.5, 2.2 8fe0-A all 3× 200 1, THR ̸=SER

In a similar case [49], when five pairs of unexpected duplicates were

found in the Cambridge Structural Database (CSD). Their integrity office

agreed that a single atomic replacement should perturb geometry at least

slightly, so all coordinates cannot remain the same. Five journals started

investigations into the data integrity of the relevant publications [8].

We e-mailed all authors of the experimental structures listed in Table 2

whose contacts we found. Two authors replied with details and confirmed

that their PDB entries should be corrected, see appendix A.

The duplicates from Table 2 were shown to the PDB validation team,

who did not know about the found coincidences (in coordinates) and dif-

ferences (in amino acids) because the PDB validation is currently done for

an individual protein (checking atom clashes, outliers etc).

The recently published method [12] didn’t report any duplicates. Right

now anyone can download the PDB files from Table 2 and see all co-

incidences of x, y, z coordinates with their own eyes without any com-

putations. Here are the links to the identical files in the first row of

Table 2, where the 4-letter PDB id can be replaced with any other id:

https://files.rcsb.org/download/1A0T.cif and

https://files.rcsb.org/download/1OH2.cif.

The histogram in Fig. 5 reveals the scale of near-duplicates among

707K+ cleaned chains up to small distances L∞ ≤ 0.01Å on the horizontal

axis. Each of 10 vertical bins over an interval of length 0.001Å indicates

the number of pairs (on the logarithmic scale) of backbones S,Q whose
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distance L∞(BRI(S),BRI(Q)) is within this interval. Since all atomic

coordinates in the PDB have 3 decimal places, all distances were rounded

to 0.001Å. The bound of 0.01Å is considered noise because the smallest

inter-atomic distance is about 100 times larger at 1Å = 10−10 m.

The physical meaning of distances follows from the bi-continuity con-

ditions (c,d) in Problem 1.2. If every atom of a backbone S is shifted up

to Euclidean distance ε, then BRI(S) changes up to λε in L∞. The Lip-

schitz constant λ was expressed in Theorem 4.1 and estimated as λ ≈ 4

for the hemoglobin chains in Example 5.2. So any small perturbation of

atoms yields a small value of L∞ in Angstroms. The inverse Lipschitz con-

tinuity in (1.2d) implies that a small distance L∞(BRI(S),BRI(Q)) = δ

guarantees that all atoms of S,Q can be matched (after a suitable rigid

motion) up to Euclidean distance µδ, see Theorem 4.8. For all 775K+

pairs in Fig. 5, the median of the maximum atomwise deviation (of op-

timally aligned chains) divided by L∞(BRI(S),BRI(Q)) is about 0.4. So

the closeness of BRIs practically guarantees the closeness by RMSD.

Figure 5. Histograms of near-duplicate chains (of the same length) on
the log scale. Top row: 783075 pairs with L∞ ≤ 0.01Å on
BRIs including 13907 pairs of exact duplicates with L∞ = 0.
Bottom row: the same pairs with traditional RMSD. Left
column: 7151 pairs with different sequences of amino acids.
Right column: 775852 pairs with identical sequences.
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One potential explanation of identical coordinates is the molecular re-

placement method [42], which uses an existing protein structure, often a

previous PDB deposit or part thereof, to solve a new structure. If the

newly calculated electron density map does not allow for further refine-

ment then the coordinates may (reasonably) remain unchanged.

The same coincidences can happen with lower-quality cryo-EM maps in

which an existing PDB structure may be placed but where the resolution

may not allow for further refinement of atomic coordinates [15,36].

We have checked that the found duplicate backbones also have identical

distance matrices on 3m ordered atoms, which were slower to compute in

time O(m2) over two days on a similar machine. The widely used DALI

server [13] also confirmed the found duplicates by the traditional Root

Mean Square Deviation (RMSD) through optimal alignment. The DALI

took about 30 min on average to find a short list of nearest neighbors

of one chain in the whole PDB. Extrapolating this time to all pairwise

comparisons for 707K+ cleaned chains yields 40+ years, slower by orders

of magnitude than 6 hours needed for all comparisons of the complete

invariants BRI on the same desktop computer. Our implementation of

RMSD for Fig. 5 has the median time of 534 microseconds per pair of

chains (of the same length), about 10 times slower than L∞ on BRIs.

The FoldSeek algorithm [47] is claimed to be 4000 times faster than

RMSD by Dali due to optimal alignments of 3-residue subchains instead

of full original chains, which takes 3.65 days by the estimates above, still an

order of magnitude slower than L∞ on BRIs. But any similarity distance

needs a proof of all metric axioms for trustworthy clustering [41].

The ultra-fast speed of all-vs-all comparisons by BRI is explained by

the hierarchical nature of this complete invariant. To find near-duplicates

in the PDB, we first compared only average invariants Brain(S) ∈ R9. By

Lemma 6.1 the full comparisons by BRI are needed only for a tiny pro-

portion of backbones with the closest vectors Brain(S). This hierarchical

speed-up is unavailable for any distance without underlying invariants.
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7 Discussion of the PDB and data integrity

Using protein structures as an important example, this paper advocates

a justified approach to any real data objects. The first and often missed

step is to define an equivalence relation for given data because real objects

can be digitally represented in (usually infinitely) many different ways.

For instance, a human can be recognized in a huge number of digital

photos but science progressed to discover the human genome and other

biometric data, which are being included even in passports. All other ob-

jects (protein backbones for example) similarly need complete invariants

for unambiguous identification because a distance metric alone is insuffi-

cient to understand deeper relations beyond pairwise similarities.

There is little sense in distinguishing most objects (including flexible

molecules) under rigid motion because translations and rotations preserve

their properties in the same environment. Hence the input of all prediction

algorithms should be invariant, ideally a complete continuous invariant.

The Lipschitz bi-continuity is essential because adding a small noise

to input should not lead to a drastically different output and vice versa.

Earlier versions of Problem 1.2 with weaker conditions were solved for 2D

lattices [5, 25], periodic crystals [48, 49], and finite clouds of unordered

points [26,50] within the new area of Geometric Data Science [2, 51].

The crucial novelty in the proposed approach is treating (the rigid

class of) any experimental structure (protein backbone) from the PDB as

an objective ground truth instead of labels assigned manually or by earlier

algorithms with many parameters. Problem 1.2 asked for an analytically

defined invariant I whose explicit formula should remain unchanged for

any new data without required re-training in machine learning.

While traditional approaches explored finite datasets within infinite

spaces in a ‘horizontal’ way, solutions to Problem 1.2 and its analogs for

other data [52] provide ‘vertical’ breakthroughs by building ‘geographic’

maps of continuous data spaces as viewed from a satellite [4].

Fig. 2 and 4 can be zoomed at any spot and mapped by using fur-

ther invariants. Such navigation maps with invertible coordinates enable
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inverse design while any dimensionality reduction to a latent space was

proved [27] to be discontinuous (making close points distant) or collapsing

an unbounded region to a point (losing an infinite amount of data).

The main contributions are Theorems 3.5, 4.1, and 4.8, which solved

Problem 1.2 for protein backbones, detected thousands of (near-)duplicates

in the PDB and enabled a justified exploration of the protein universe.

The supplementary data (available by request) include the Python code

and a table of exact duplicates whose corresponding coordinates coincide

in all decimal places and hence might need further refinement. Improving

the PDB validation is needed to avoid unjustified predictions and claims

of ‘solutions’ based on skewed data [33]. The recent analysis of the PDB

revealed large numbers of waterless structures [54] and raised concerns.
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Engineering Fellowship IF2122/186, EPSRC New Horizons EP/X018474/1,
and Royal Society APEX fellowship APX/R1/231152. The authors thank
Mariusz Jaskolski, Alex Wlodawer, and Daniel Rigden for their helpful
comments on early drafts and all other reviewers for their valuable time.

A Appendix: updates on PDB duplicates

This appendix discusses several duplicates that were found by the new
invariants and later confirmed by their authors, and subsequent updates
in the PDB. After finding the first duplicates in Table 2, we emailed the
authors of the underlying publications whose contact details were still
possible to find. The common author of the PDB entries 1a0t and 1oh2,
Kay Diederichs, confirmed the error in December 2022 (see Fig. 6).

John Helliwell studied our duplicates including those with the same
sequences of amino acids. After finding his pair of duplicates, he e-mailed
us to confirm this error on 15th February 2023 (see Fig. 7). After meeting
with the PDB validation team on February 27, 2023, where John was also
present, the webpage https://www.rcsb.org/structure/removed/3UNR
was updated without any reference to our work reporting the error: “Entry
3UNR was removed from the distribution of released PDB entries (status
Obsolete) on 2023-03-01. It has been replaced (superseded) by 4YTA”.
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Figure 6. Author’s confirmation of the duplicates 1a0t and 1oh2.

Figure 7. John Helliwell’s confirmation of the duplicates 3unr and
4yta.

The PDB validation team confirmed that PDB entries are updated only
by authors’ request or by their permission. After we e-mailed all authors
of the first found duplicates in December 2022, five entries from our list
were updated in the PDB without acknowledging our work, see Table 3.
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Table 3. These five PDB entries had duplicates similar to Table 2 but
were modified after our initial contacts in December 2022. All
original and updated files are still accessible online.

PDB entry date of modification reason of modification
4rhv 2023-01-18 Remediation
1ruj 2023-01-18 Remediation
1gli 2023-02-08 Remediation
3hhb 2023-02-08 Remediation
1cov 2023-04-19 Remediation

The older versions of the PDB files are still available via the web link
ftp://snapshots.rcsb.org/20230102. Other duplicates in Table 2 were not
previously reported, so their PDB files show the duplication of geometry
with differences in sequences on December 19, 2024.

Because all x, y, z coordinates in the PDB are given with three decimal
places relative to 1Å, a distance of less than 0.01Å can be considered
negligible, especially due to floating point errors.
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