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Abstract

We examine a simple algorithm that uses simulated annealing to
find molecules with a specific boiling point and melting point. For
testing purposes, we consider molecules that contain only carbon,
oxygen, nitrogen and hydrogen atoms. We represent these molecules
as SMILES strings and use seven distinct operators to modify these
strings.

1 Introduction

Most Ab Initio and semiempirical chemical methods can easily calculate

a variety of molecular properties. Solving the inverse problem, finding

a given molecule that has a particular property, is difficult because the

solution space is vast and the variables are discrete rather than continuous.

Any algorithm developed to find molecules with specific properties requires

a mechanism for describing the molecule’s structure, a process to change

that structure and an optimization program to guide those changes toward

the property of interest. Many methods arrange a set of chemical building

blocks (atoms, functional groups, etc.) using either combinatorial methods

[6, 10, 14] or genetic algorithms [3, 20, 33]. Because these building blocks

∗Corresponding author.

https://doi.org/10.46793/match.94-1.077A


78

describe a molecule as a simple string (e.g., ABC. . . ), the program can

easily restrict the generated compounds to specific chemical families such

as acids, alcohols, or phenols.

Kvasnicka and Pospichal developed an alternative to the building block

approach [19]. They used simulated annealing to search for cyclic and

acyclic hydrocarbons with simple properties. Their paper used a tree struc-

ture to represent these molecules and described operations on this struc-

ture in the language of molecular graph theory. By altering the branches of

these trees, Kvasnicka and Pospichal generated new molecules that became

the inputs to their simulated annealing algorithm.

Several years later, Alexander used simulated annealing to calculate a

series of neutral acyclic hydrocarbons with specific magnetic susceptibil-

ities [2]. This annealing algorithm searched for the desired molecule by

adding or deleting individual carbon atoms on a square lattice; an adja-

cency matrix recorded which atoms were connected and with what type

of bond (single, double or triple). Although the results in this paper were

encouraging, when we tried to generalize our method to accommodate

molecules with more than one type of atom or molecules with rings, our

solutions were almost always worse than those from the acyclic hydrocar-

bon calculation.

In this paper, we use a SMILES string [34] to represent a molecule’s

structure and seven mutation operators to modify a SMILES string from

one form into another. A brief description of this molecular representation

method is presented in Section 2. In Section 3 we outline how simulated

annealing can be used to generate a set of molecules with specific proper-

ties. To illustrate the performance of this algorithm, we use it to find a

molecule that has a specified boiling point and melting point. For testing

purposes, we consider only molecules that contain carbon, oxygen, nitro-

gen, and hydrogen atoms. The rings in our molecules are also limited to

those with 4, 5 or 6 atoms. Finally, in Section 4, we take a closer look at the

convergence of our algorithm and consider several possible improvements.
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2 Using SMILES to produce random

molecules

SMILES is an acronym for Simplified Molecular Input Line Entry Specifi-

cation. It uses a short ASCII string without spaces to describe a molecule’s

structure. The original version of SMILES was developed by Arthur

Weininger and David Weininger in the late 1980s [34]. Since then, Weinin-

ger and others have modified SMILES to describe a number of additional

features, such as chirality, reactions and disconnected structures [35,36].

Four simple rules define a valid SMILES string:

* Atoms are described by their standard atomic symbol. Each symbol is

normally enclosed in square brackets, such as [Au] for gold, however, many

of the atoms found in organic molecules (such as B, C, N, O, P, S and F) are

written without brackets. Most SMILES strings omit all hydrogen atoms.

The implicit number of hydrogen atoms attached to other atoms is the

difference between the atom’s valence and the number of bonds assigned

to the atom.

* Single, double and triple bonds are represented by the symbols ’-’, ’=’

and ’#’ respectively. The atoms connected by these bonds are indicated

by their adjacency. In most versions of SMILES, single bonds are omitted

from the string, but for convenience, we explicitly show all bonds.

* Branching is specified by placing the symbols for the atoms and bonds

in this subchain between parentheses. These parentheses are placed di-

rectly after the symbol for the atom on the main sequence to which it is

connected.

* Rings are represented by breaking a single bond in each ring and then

designating the two atoms connected by this bond with a digit immediately

following the symbol for the atoms.

Part of the power of SMILES is that each molecule has a unique

SMILES string. Although this string contains the same information as

might be found in an extended connection table, a SMILES string can also

be thought of as a language - albeit one with a simple vocabulary (atom

and bond symbols) and a few grammar rules. If we want to transform an

initial molecule into one that has a specific property, seven operators are
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needed to convert one SMILES string into a new SMILES string:

* Pick a random bond and change it into a different type of bond (e.g.

C=C-N-O → C-C-N-O)

* Add a random atom with a random bond to a random location in the

SMILES string (e.g. C=C-N-O → C=C-O-N-O)

* Add a random atom with a random bond as a new branch to a random

location in the SMILES string (e.g. C=C-N-O → C=C-N(-O)-O)

* Delete a random atom and its connecting bond (e.g.

C=C-N-O → C=C-O)

* Pick a random atom in the SMILES string and change it into a different

type of atom (e.g. C=C-N-O → C=C-N-C)

* Pick two random atoms in the SMILES string and connect them with a

ring (e.g. C=C-N-O → C1=C-N-O1)

* Delete a ring (e.g. C1=C-N-O1 → C=C-N-C)

3 Generating molecules with a specific boil-

ing point and melting point

Several numerical methods can search for the global minimum of a compli-

cated multidimensional function. Such functions often have several local

minima, making it difficult to determine if a particular solution is in a local

or a global minimum. One well-known optimization technique, simulated

annealing, has been successfully applied to problems with both discrete

and continuous variables [4, 9, 17, 32]. This method attempts to avoid the

problem of getting stuck in a local minimum by occasionally accepting

steps that yield worse solutions. Starting from some initial point, xinitial,

and its value at that point, f(xinitial), simulated annealing generates a

new point in the multidimensional space, xnew, and calculates its value

at that point, f(xnew). If f(xinitial) > f(xnew) this step is accepted and

xnew becomes the starting point for the next step. If f(xinitial) < f(xnew),

an acceptance function determines whether xnew is accepted or rejected.

Although other acceptance functions have been described in the litera-
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ture [29,31], the most popular choice is the Metropolis function [28]

A = min(R, exp([f(xnew)− f(xinitial)]/T )) (1)

Here T is a parameter known as the temperature and R is a random

number between 0.0 and 1.0.

In most simulated annealing calculations, the temperature starts at a

high value. This allows a sequence of steps to efficiently sample the whole

parameter space since most steps are accepted. After a certain number of

steps, the temperature is decreased. Several cooling schedules have been

examined in the literature [13, 27, 30] but a common choice is the simple

geometric relation

Tk+1 = CTk (2)

where C is a constant between zero and one. As the temperature is re-

duced, some steps may collect in a local minimum. If the temperature

decreases slowly, these steps can escape from the local minimum and even-

tually reach the global minimum. Most descriptions of this method claim

that the rate at which the temperature decreases depends on the complex-

ity of the fitness function and on the number of steps it takes the system

to reach an equilibrium at each temperature.

To illustrate how simulated annealing can find molecules with a specific

boiling point (BP) and melting point (MP), we set our fitness function to

f(xi) =
√

(MPi −MP0)2 + (BPi −BP0)2 (3)

Here MPi and BPi are the computed values for a given molecule and

MP0 and BP0 are the desired values. In the literature, several methods

use group contributions to estimate boiling and melting points [7, 16, 18,

26]. The group contribution approach defines a small number of simple

functional groups and assigns a numerical value to each group for each

property. To calculate a particular molecule’s boiling point or melting

point, we need to break that molecule into its different functional groups

and then sums the values of each group. Because of its simplicity, we will

use the version proposed by Joback and Reid [16]. Since some of Joback
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Table 1. Molecules generated with MP0 = 147.67◦C, BP0 = 336.51◦C,
an initial temperature of 10, ten temperature reductions and
1000 steps at each temperature.

Initial Molecule f(xinitial) Final Molecule f(xfinal)
C(=C)-C(-N)(-C)-O 173.033 C(-C)(=C=C)(-C(-C)) 0.00000225

C(=C-N)-C-C 71.9217 C(=C(-C(-C))-C)=C 0.00000225
C-C=C-N-O 114.510 C(-C)(=C=C)(-C(-C)) 0.00000225

C(-C)-C(-N)-O 141.752 C(-C)(=C=C)(-C(-C))) 0.00000225
C(-N-C=C-C)-C 55.4246 C(-C(-C-C)(=C=C)) 0.00000225

C1-N-C(=C1)-O-C 152.712 C(-C)(=C=C)(-C(-C)) 0.00000225
C(=C1)-C-N-C(=C1)-O 238.900 C(=C=C(-C(-C))(-C)) 0.00000225
C1-C2-C-C(=O)-C2-C1 139.558 C(-C(=C(=C))(-C-C)) 0.00000225
C1-N=C-O-C(-O)-N1 326.376 N(=C=O)-C-C 1.835
C1-C-C2=C-C-C12 66.5166 C(-C)-C(-C)(=C(=C)) 0.00000225

and Reid’s contributions distinguish between an atom in a ring and one

that is not, we also need a method to identify how many rings a molecule

has and which atoms are in a ring. Several numerical techniques can

provide this information from the molecule’s adjacency matrix [11, 15, 25,

37]. Because of its simplicity, we use the algorithm described by Lau [24].

We begin our calculations with an initial temperature of T=10 and

perform ten temperature reductions using a value of C = 0.75 in Eqn.

2. At each temperature, we execute a fixed number of steps. At the

beginning of each step, we use each of the mutation operators described

in the previous section to modify the current string. Of course, not all

operators will produce a valid SMILES string (a change in the bond type

could cause the number of bonds attached to an atom to exceed that

atom’s valence). If an operator creates an invalid string, we discard that

string. The string with the best fitness function is then used in Eqn. 1 to

determine whether the original string or this new string will become the

basis for the next step. Rather than performing this simulated annealing

algorithm on only one molecule, we examine ten randomly generated initial

molecules simultaneously. The results from these different molecules will

allow us to explore the system’s convergence. In an ideal run, all the

molecules should find the global minimum.

The first example we examined has a target melting point of 147.67◦C

and a boiling point of 336.51◦C. We chose this combination because there
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Table 2. Molecules generated with MP0 = 270.57◦C, BP0 = 362.65◦C,
an initial temperature of 10, ten temperature reductions and
1000 steps at each temperature.

Initial Molecule f(xinitial) Final Molecule f(xfinal)
C(=C)-C(-N)(-C)-O 86.847 C(=C1)-O(-N-C1) 0.00000279

C(=C-N)-C-C 58.261 C(=C-N-C1)-O1 0.00000279
C-C=C-N-O 64.980 C(=O)=C-N-N 0.771

C(-C)-C(-N)-O 72.054 C(=C1)-C(-N-O1) 0.00000279
C(-N-C=C-C)-C 77.573 C(-N-C-O1)=C1 0.00000279

C1-N-C(=C1)-O-C 29.848 O1-N-C(=C(-C)1) 0.00000279
C(=C1)-C-N-C(=C1)-O 136.694 C#C-C(-C(-O-C)(-C(#C))) 1.522
C1-C2-C-C(=O)-C2-C1 56.154 N(-O(-C1))-C=C1 0.00000279
C1-N=C-O-C(-O)-N1 211.380 N(-O(-C(=C)1))(-C1) 0.00000279
C1-C-C2=C-C-C12 60.402 C1-N-C=C-O1 0.00000279

is an acyclic molecule with these values using Joback and Reid’s model.

As Table 1 shows, nine of the ten initial molecules quickly reproduced

this target molecule using only 1000 steps at each temperature. Although

the outlier in this calculation significantly improved its fitness function, it

has become locked in a local minimum that can’t delete the nitrogen and

oxygen atoms.

The second example we examined has a target melting point of

270.57◦C and a boiling point of 362.65◦C. We chose this combination be-

cause there is a cyclic molecule with these values using Joback and Reid’s

model. As Table 2 shows, eight of the ten initial molecules quickly re-

produced this target molecule using only 1000 steps at each temperature.

In both cases, the outliers in this calculation failed to produce a molecule

with a ring.

Our last example has a target melting point of 200.0◦C and boil-

ing point of 400.0◦C. We chose this combination because we knew of no

molecule that satisfied both requirements in Joback and Reid’s model. As

a result, our optimization algorithm has to balance these two demands

as best as possible. Using 1000 steps we see in Table 3 that the fitness

function of our 10 initial molecules undergoes a substantial improvement,

but they have not converged to a final molecule. Instead, these final values

exhibit a large range (0.443-1.243) and a relatively large variation of σ =

0.336. The most likely reason for this behavior is that the number of steps



84

Table 3. Molecules generated with MP0 = 200.0◦C, BP0 = 400.0◦C,
ten temperature reductions and 1000 steps at each tempera-
ture.

Initial Molecule f(xinitial) Final Molecule f(xfinal)
C(=C)-C(-N)(-C)-O 93.072 C=C(-N-O(-C))-N(=O) 0.907

C(=C-N)-C-C 34.725 C(-C(-C-C(=C=O)(-C(-C))))-C(-C) 1.070
C-C=C-N-O 34.670 C(=C(-C-N=C-C(#C))) 0.477

C(-C)-C(-N)-O 61.347 C(=C=C-C)=C(=C=C(-C)) 0.496
C(-N-C=C-C)-C 32.589 O(-O(-C(=C)(-C(=C)))) 1.243

C1-N-C(=C1)-O-C 95.311 O(-C(=C)(-O(-C(=C)))) 1.243
C(=C1)-C-N-C(=C1)-O 159.793 O(-C(-C)(-C(=C=O)(-C))) 0.443
C1-C2-C-C(=O)-C2-C1 63.575 C(=C)(-C(=C)-O-O) 1.243
C1-N=C-O-C(-O)-N1 250.433 O(-C(=C)-O(-C=C)) 1.243
C1-C-C2=C-C-C12 42.298 O(-O(-C(=C)-C=C)) 1.243

at each temperature is too small to sample the essential regions of the

parameter space. Table 4 examines what happens when we increase the

number of steps at each temperature from 1000 to 5000. Of the 10 initial

molecules, eight have a final fitness value of 0.477, one has a higher value

of 0.907 and one has a value of 0.123 (which is lower than any of the values

in Table 3). This combination has a smaller range of values (0.123-0.907)

and a smaller variation of σ = 0.185 than our earlier calculation. The

arrangement of the final molecules into three groups suggests that the fit-

ness landscape for this combination of melting point and boiling point has

several shallow minima. The fact that we had to use 5000 steps at each

temperature to get this level of convergence supports this idea. Increasing

the number of steps at each temperature step to 10,000 didn’t improve our

results.

4 Computational efficiency

In the previous section, we computed the first two examples using an

initial temperature of 10, ten temperature decreases and 1000 steps at each

temperature. We generated seven new strings at each step, one from each

mutation operator. Thus, a complete run for a single molecule required us

to compute the fitness function 7*10*1000 = 70,000 times. Fortunately,

our program can evaluate Joback and Reid’s model quickly; a complete

calculation with ten initial molecules took about a minute on a desktop
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Table 4. Molecules generated with MP0 = 200.0◦C, BP0 = 400.0◦C,
an initial temperature of 10, ten temperature reductions and
5000 steps at each temperature.

Initial Molecule f(xinitial) Final Molecule f(xfinal)
C(=C)-C(-N)(-C)-O 93.072 C(#C-C-C(=C(-N(=C)))) 0.477

C(=C-N)-C-C 34.725 C(#C-C-C(=C(-N(=C)))) 0.477
C-C=C-N-O 34.670 N(-C-C#C)(=C-C(=C)) 0.477

C(-C)-C(-N)-O 61.347 C(=C)(-C(-C=N-C#C)) 0.477
C(-N-C=C-C)-C 32.589 C(=N-C#C)(-C(-C(=C))) 0.477

C1-N-C(=C1)-O-C 95.311 C(#C(-C(-C=C(-N(=C))))) 0.477
C(=C1)-C-N-C(=C1)-O 159.793 C(-C=C)(-C(=N(-C(#C)))) 0.477
C1-C2-C-C(=O)-C2-C1 63.575 N(=C-C-C#C)(-C=C) 0.477
C1-N=C-O-C(-O)-N1 250.433 N(=O)(-C(=C)(-O(-N-C))) 0.907
C1-C-C2=C-C-C12 42.298 C(=C-C(=C(-N(-C)-C=C(-C)))) 0.123

computer. Although almost all of our initial molecules eventually found

the global minimum in these two examples, the fact that a few did not

suggests that there are opportunities for further improvement.

As a starting point for studying the behavior of our algorithm, we

selected initial molecule #1 in Table 1. If we plot the fitness functions

of the current molecule and the best molecule during the first 200 steps,

Figure 1 shows that the fitness function of the current molecule decreases

rapidly during the first few steps. This drop occurs because the mutation

operators are producing changes that move the current molecule towards

the target molecule with the desired properties; many of these changes

become new best molecules. After this brief initial stage, however, it takes

longer for the mutation operators to produce a new best molecule. This is

because after Eqn. 1 chooses a molecule with a worse fitness function, the

fitness function often returns to the current low after a few steps.

Another way we can study the convergence of our simulated annealing

algorithm after this initial phase is to fix the temperature at T=10 and

accumulate three data points over groups of 200 steps: the number of new

lows found, the number of worse molecules selected by Eqn. 1 and the

number of invalid molecules generated by the mutation operators. This

information is presented in Table 5. As expected, the first group has the

most new lows. The number of worse molecules selected by Eqn. 1 is also

highest (about 22%) in the first two groups. In later groups, the conver-

gence slows because the mutation operators are generating many invalid
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Figure 1. Convergence of initial molecule #1 with MP0 = 147.67◦C,
BP0 = 336.51◦C and T=10.

Table 5. Convergence of initial molecule #1 with MP0 = 147.67◦C,
BP0 = 336.51◦C and groups of 200 steps at T=10.

Group Number 1 2 3 4 5 6 7 8 9 10
New lows found 6 0 1 0 0 1 0 0 0 0

Worse molecules selected 42 45 28 26 29 33 27 18 17 26
Invalid molecules generated 731 736 916 946 958 840 964 943 1001 926

molecules. The percentage of these invalid molecules ranges from 52% in

the first group to 71% in the ninth group. Because the target in this exam-

ple is an acyclic system, these numbers are artificially high since neither

of the ring mutation operators (#6 and #7) contribute to the final solu-

tion. The fact that there are fewer invalid choices at the beginning of this

run than at the end suggests that randomly selecting atoms and bonds in

the mutation operators becomes less efficient as the current molecule ap-

proaches a minimum. Surprisingly, the calculation used to produce Table

5 located the global minimum during the sixth group without performing

any reductions in temperature. In a 1990 paper, Connolly proposed that
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Table 6. Molecules generated with MP0 = 147.67◦C, BP0 = 336.51◦C
and a different number of steps at T=10.

Initial Molecule f(xinitial) f(xfinal) f(xfinal)
1000 steps 2000 steps

C(=C)-C(-N)(-C)-O 173.033 1.088 0.00000225
C(=C-N)-C-C 71.9217 1.835 0.00000225
C-C=C-N-O 114.510 1.088 0.00000225

C(-C)-C(-N)-O 141.752 1.088 0.00000225
C(-N-C=C-C)-C 55.4246 0.00000225 0.00000225

C1-N-C(=C1)-O-C 152.712 1.088 0.00000225
C(=C1)-C-N-C(=C1)-O 238.900 1.088 0.00000225
C1-C2-C-C(=O)-C2-C1 139.558 1.835 0.00000225
C1-N=C-O-C(-O)-N1 326.376 1.835 0.00000225
C1-C-C2=C-C-C12 66.5166 2.389 0.00000225

Table 7. Molecules generated with MP0 = 270.57◦C, BP0 = 362.65◦C
and a different number of steps at two fixed temperatures.

T=10 T=10 T=20 T=20
Initial Molecule f(xinitial) f(xfinal) f(xfinal) f(xfinal) f(xfinal)

1000 steps 2000 steps 1000 steps 2000 steps
C(=C)-C(-N)(-C)-O 86.847 0.00000279 0.00000279 0.00000279 0.00000279

C(=C-N)-C-C 58.261 0.00000279 0.00000279 0.00000279 0.00000279
C-C=C-N-O 64.980 0.771 0.771 0.747 0.00000279

C(-C)-C(-N)-O 72.054 0.00000279 0.00000279 0.00000279 0.00000279
C(-N-C=C-C)-C 77.573 0.00000279 0.00000279 0.00000279 0.00000279

C1-N-C(=C1)-O-C 29.848 0.00000279 0.00000279 0.00000279 0.00000279
C(=C1)-C-N-C(=C1)-O 136.694 4.243 4.243 0.00000279 0.00000279
C1-C2-C-C(=O)-C2-C1 56.154 0.771 0.771 0.771 0.00000279
C1-N=C-O-C(-O)-N1 211.380 5.409 0.747 0.00000279 0.00000279
C1-C-C2=C-C-C12 60.402 0.00000279 0.00000279 0.00000279 0.00000279

running an annealing algorithm at a constant temperature could be helpful

in some types of optimization problems [5]. The values in Table 4 support

the usefulness of this idea, so we decided to run this type of calculation for

all of the initial molecules in Table 1. As Table 5 shows, all of our initial

molecules found the global minimum. Not only is this an improvement

in the quality of our earlier results but this new calculation is also more

computationally efficient. Each molecule only requires 7*1*2000=14,000

function evaluations, which is a substantial reduction from our earlier value

of 70,000.

If we apply this modification to the second example, Table 6 shows that



88

Table 8. Molecules generated with MP0 = 200.0◦C, BP0 = 400.0◦C,
using three groups of 5000 steps and three temperatures
(T=5, 10 and 20) in each group.

Initial Molecule f(xinitial) Final Molecule f(xfinal)
C(=C)-C(-N)(-C)-O 93.072 C(-C=C)(=C(-N(-C)(-C(=C-C)))) 0.123

C(=C-N)-C-C 34.725 C(=C(-C(=C)))(-C=C(-N(-C)(-C))) 0.123
C-C=C-N-O 34.670 C(=C-C)(-N(-C)-C(=C-C=C)) 0.123

C(-C)-C(-N)-O 61.347 C(=C(-C))(-N(-C)-C(=C(-C=C))) 0.123
C(-N-C=C-C)-C 32.589 C(-C(-C)(-C(=C(=O))(-O))) 0.443

C1-N-C(=C1)-O-C 95.311 O(-C(-C(-C)(-C))=C(=O)) 0.443
C(=C1)-C-N-C(=C1)-O 159.793 C(-C)(=C=O)(-C(-C)-O) 0.443
C1-C2-C-C(=O)-C2-C1 63.575 C(-C(-C)(-C(=C(=O))(-O))) 0.443
C1-N=C-O-C(-O)-N1 250.433 C(-C(-O)(-C(-C)(=C=O))) 0.443
C1-C-C2=C-C-C12 42.298 C(-C(-C)(-C(=C(=O))(-O))) 0.443

four out of ten molecules were not able to reach the global minimum when

we kept the temperature at T=10. Raising the temperature to T=20,

however, allows our new annealing algorithm to explore the solution space

more easily, enabling all the initial molecules to find the global solution in

only 2000 steps.

In contrast to the first two examples, performing a simulated annealing

calculation at a constant temperature did not improve our results for the

third example. Neither a run of 5000 steps at T=10 or T=20 produced bet-

ter values nor did increasing the number of steps to 10,000. Several studies

have shown that the optimum temperature in a simulated annealing cal-

culation depends on the type of optimization problem [1, 22]. It should

be high enough to allow easy movement but not so low that the system

is frozen. A novel alternative to searching for this optimum temperature

was first explored by Delamarre and Virot in 1998 [8]. They performed a

short run on the same initial point at multiple temperatures. The best so-

lution from this run became the starting point of the next iteration. Using

this idea, Graffigne obtained good convergence for several difficult prob-

lems [12]. We explored this idea by performing a simultaneous annealing

run of 5000 steps at three temperatures (T=5, 10 and 20). After this cal-

culation finished, we picked the molecule with the lowest fitness value and

then repeated this process two more times. As Table 7 illustrates, each

initial molecule shows significant improvement compared to the results in

Table 3. Four of the ten initial molecules were able to locate what we be-
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lieve is the global minimum, 0.123. The rest have settled into a new local

minimum of 0.443, which is better than the others in Table 3. One notice-

able difference between the two minima in Table 7 is the number of atoms.

The global minimum is described by a molecule with eight carbon atoms

and one nitrogen atom. In contrast, the higher minimum is described by

a molecule with five carbon atoms and two oxygen atoms. This differ-

ence suggests that these two minima are widely separated in the solution

space of this problem and could mean that our simultaneous annealing

program still has trouble sampling all of the solution space. Despite this

problem, this modified algorithm is much more computationally efficient

than our original program. The calculations described in Table 3 took

7*10*5000=350,000 function evaluations, but this simultaneous annealing

calculation took only 7*3*5000=105,000.

5 Conclusions

Two recent studies have combined SMILES strings and multidimensional

optimization routines to search for molecules with specific properties. La-

meijer’s Ph.D. thesis [23] employed an evolutionary algorithm to generate

molecules with ”good” chemical parameters (such as molecular weight, the

number of rotatable bonds or the number of aromatic substituents). He

found that his program quickly produced many molecules that were worthy

of further investigation. In contrast, Kwan and Lee examined an evolu-

tionary algorithm that optimized targets with a modified drug-likeness

score [21]. Their algorithm included both mutation operators (although

curiously only those that modify atoms but not bonds) and crossover oper-

ators. The fact that both these studies could generate molecules of interest

using SMILES strings and optimization routines gives us confidence that

our approach to the inverse problem is promising.

In this paper, we have shown that a simple simulated annealing algo-

rithm can find cyclic and acyclic molecules with specific boiling and melt-

ing points as described by the method described by Joback and Reid [16].

When we run this program using multiple initial molecules, the results of

these calculations provide useful information about calculation’s conver-
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gence and the solution space’s structure. Although our tests considered

only molecules with carbon, oxygen, nitrogen, and hydrogen atoms, we

can easily extend our algorithm to SMILES strings containing any atom

and or ring size.

One advantage of Joback and Reid’s model is that it requires very little

time to compute the fitness function. If we had used a semiempirical,

Ab Initio, density functional theory or molecular mechanics program to

evaluate the fitness function, each iteration would have required much more

time. The computational cost of such a calculation will be a significant

challenge if we want to apply our algorithm to more realistic problems.

Since Metropolis et al. first described this algorithm [28], researchers have

developed several variants that solve specific problems more efficiently.

This paper examined some of these modifications to see whether they

could help find molecules with specific properties. While our results show

that some improvement is easily obtainable, the problems with the third

example (not all the initial molecules ended up in the global minimum

and the large number of steps required to reach this result) suggest that

further modifications to our algorithm are still needed.
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