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Abstract

We present an algorithm for automatic computation of general-
ized Zhang-Zhang (GZZ) polynomials of benzenoids. The Fortran
95 implementation of the presented algorithm has been used for the
determination of GZZ polynomials for several basic classes of ben-
zenoids. Correctness of the derived formulas has been demonstrated
using standard decomposition recurrence relations.

1 Introduction

Determination of physical and chemical properties of benzenoids is nowa-

days usually performed with the help of quantum chemical calculations

[16, 18, 24, 26, 29, 30, 36, 44]. However, for larger benzenoid systems, for

which quantum calculations are not permissible or require prohibitive com-

puter resources, traditional qualitative concepts—such as Kekulé struc-

tures [15] and Clar aromatic sextets [2,14,20]—can be used to understand

the stability and reactivity of the analyzed graphene flakes [23, 27, 28, 38].
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These concepts are also useful for studying whole families of benzenoids

B(n), n = 1, 2, 3, . . . with identical structure [1, 4, 8, 9, 11–13, 19, 21, 25,

33,34,39–41,43,45,47]. Topological invariants associated with the Kekulé

structures and Clar covers of B(n) often permit us to understand their lim-

iting properties as n → ∞ [42]. Various topological and graph-theoretical

tools have been developed for this purpose. One of the most important

concept here is the Clar covering polynomial ZZ(B, x) (known also as the

Zhang-Zhang polynomial or simply ZZ polynomial) [22,46–49], which con-

tains information about the most essential topological invariants of B:

the total number of Kekulé structures K ≡ K(B) = ZZ(B, 0), the to-

tal number of Clar covers C ≡ C(B) = ZZ(B, 1), and the Clar number

Cl ≡ Cl(B) = deg(ZZ(B, x)), just to name a few. From a formal perspec-

tive, the ZZ polynomial of B, ZZ(B, x), is simply the generating function

for the sequence [c0 ≡ K, c1, c2, . . .] of the numbers of Clar covers of B of

a given order (where ck is the number of Clar covers of order k; for more

details, see the next Section). The most inviting property of ZZ(B, x) is

the set of recursive properties allowing to determine ZZ(B, x) in a fast and

robust manner [7, 10, 22]. Surprisingly, determination of the ZZ polyno-

mial of B (i.e., the whole set of its topological invariants) turned out to be

a much simpler (or comparable) task than the determination of a single

invariant of B [7, 10,37].

The Clar aromatic sextet [14] is the the smallest—and historically the

only one—conjugated circuit that has been considered in the topological

analysis of benzenoids. From the point view of graph theory, a benzenoid

B is a finite connected subgraph of an infinite hexagonal lattice, a Kekulé

dublet K2 corresponds to any edge of B together with its endpoints, and

a Clar sextet corresponds to a cycle C6 embedded in B. In general, a

conjugated circuit Rn is a cycle C4n+2 embedded in B. As already men-

tioned, the smallest conjugated circuit is the Clar sextet, R1 ≡ C6. The

next smallest conjugated circuit is R2 ≡ C10. Stretching somewhat the

definition of a conjugated circuit, we can identify a Kekulé structure (i.e.,

a double bond) with a conjugated circuit of length n = 0, K2 ≡ R0. Then,

the concept of conjugated circuits allows us to introduce a uniform and

compact representation of various types of benzenoid coverings. We say
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that a Kekulé structure of B is a covering of B that involves only con-

jugated circuits R0. We also say that a Clar cover of B is a covering of

B that uses conjugated circuits R0 and R1. Similarly, we can say that a

generalized Clar cover of B of circuit order m is a covering of B that uses

the conjugated circuits R0, R1, . . ., Rm in the construction process.

The current work follows the work of Žigert Pleteršek [51] and focuses

on the simplest generalized Clar covers, which employ only the three small-

est conjugated circuits (i.e., R0 ≡ K2, R1 ≡ C6, and R2 ≡ C10) in the

construction process. For brevity, we simply refer to coverings constructed

in this way as generalized Clar covers. Similarly, the bivariate generating

function GZZ(B, x, y) =
∑

j,k cjkx
jyk corresponding to the 2D sequence

[cjk : j, k = 0, 1, 2, . . .] is called the generalized Zhang-Zhang polynomial

of B. Here, cjk denotes the number of generalized Clar covers of B with

exactly j cycles C6 and k cycles C10. Note that the information about

the number of the K2 components in a given covering is not included

in the GZZ polynomial, as it can be always readily determined from the

remaining data as (|V (B)| − 6j − 10k) /2 for any particular covering.

The generalized Zhang-Zhang polynomials GZZ(B, x, y) were intro-

duced in graph-theoretical analysis of benzenoids very recently by Žigert

Pleteršek [51], who first gave their definition and demonstrated their equiv-

alence to the generalized cube polynomial of the corresponding resonance

graph, extending the previous results known for standard ZZ and cube

polynomials [3,50]. Basic properties of the GZZ polynomials were studied

by Furtula et al. [17], who obtained recursive formulas for their explicit

calculations, extending the previously known results for the standard ZZ

polynomials [7, 22, 46], and proposed an algorithm for their determina-

tion for benzenoid chains. In addition, Furtula et al. employed the GZZ

polynomials determined in this way to cross-correlation investigation of π-

electron properties of benzenoid linear chains, such as the total π-electron

energy (E), the Dewar resonance energy (DRE), and the topological res-

onance energy (TRE). In particular, it was discovered that the values of

E, DRE, and TRE are determined not only by the Kekulé count K and

Clar count C, but also by the generalized Clar covers; the contributions

from the generalized Clar covers with cycles C10 were found to have several
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times smaller effect than that of the Clar covers using only cycles C6 [17].

The current work is supposed to serve a number of purposes. First

of all, we follow closely the approach presented by Furtula et al. [17] and

develop a general algorithm for the determination of GZZ polynomials of

arbitrary benzenoids following our earlier work on ZZ polynomials [7]. Sub-

sequently, we extend the existing computer program (ZZCalculator) [7,10]

to the GZZ polynomials. In this way, an arbitrary benzenoid can be con-

veniently drawn by choosing hexagons and edges of the underlying hexag-

onal lattice using ZZDecomposer [10] and the GZZ polynomial can be

automatically computed by GZZCalculator integrated into the previously

existing ZZDecomposer code [5, 6]. These results are presented in Sec-

tion 3. In the subsequent part of the manuscript, we show how to use the

developed software [35] to determine closed-form GZZ polynomial formu-

las for several families of benzenoids: polyacenes L(m), single armchair

chains N(m), hammers H(m), starphenes St(n,m, l), and parallelograms

M(m,n), extending the body of previously available ZZ polynomial re-

sults [7, 8, 10, 12, 19, 21, 32, 46] for those structures. We hope that these

results will motivate other groups to discover similar closed-form formulas

also for other families of benzenoids in the spirit presented before for the

regular ZZ polynomials.

2 Generalized Zhang-Zhang polynomial and

its properties

In this section, we review several properties that might be used in the

computation of GZZ polynomials.

Property 1. [Theorem 3.2 of [17]] Let e = ab be an edge not belonging

to any hexagon or 10-cycle of G. Then

GZZ(G) = GZZ(G− e) + GZZ(G− a− b)

This particular situation is illustrated symbolically on the graph below
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Property 2. [Theorem 3.3 of [17]] Let e = ab be an edge of a hexagon s

of G and let r ≤ 5 be the number of hexagons (h1, h2, . . . , hr) adjacent to

s. Then

GZZ(G) = GZZ(G− e) + GZZ(G− a− b) + x GZZ(G− s)

+ y

r∑
i=1

GZZ(G− s− hi)

This particular situation is illustrated graphically below for r = 5

Property 3. [An extension of Theorem 3.3 of [17]] Let e = ab be an edge

belonging simultaneously to two hexagons s and s′ of G. Let h1, h2, . . . , hr

be the hexagons adjacent to s (excluding s′) and let h′
1, h

′
2, . . . , h

′
r′ be the

hexagons adjacent to s′ (excluding s), where r, r′ ≤ 5. Then

GZZ(G) = GZZ(G− e) + GZZ(G− a− b) + x GZZ(G− s)

+ x GZZ(G− s′) + y GZZ(G− s− s′)

+ y

r∑
i=1

GZZ(G− s− hi) + y

r′∑
i=1

GZZ(G− s′ − h′
i)

This particular situation is illustrated graphically below for r, r′ = 5 and
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for {h′
1, h

′
2, . . . , h

′
5} = {h1, h8, h7, h6, h5}

Property 4. [Theorem 3.1 of [17]] Let G be a system consisting of m

disconnected components: G1, G2, . . . , Gm. Then, the GZZ polynomial of

G is equal to the product of the GZZ polynomials of the disconnected

components

GZZ(G) =

m∏
i=1

GZZ(Gi)

Property 5. [Theorem 3.4 of [17]] If e = ab is a terminal bond, then it is

obvious that e must be a double bond. Then, the GZZ polynomial of G is

equal to the GZZ polynomial of G′ with the atoms a and b removed.

Property 6. [Property 6 of [7]] The GZZ polynomial of a system G

consisting of an odd number of carbon atoms is zero.
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Property 7. [Property 7 of [7]] The GZZ polynomial of a system G

consisting of zero atoms is equal to 1.

Example. Consider the benzenoid G (β, β′-binaphthyl) shown below.

Consider further the recursive decomposition tree ofG induced by selecting

the bond e = ab.

By Property 1 we have

GZZ(G) = GZZ(G− e) + GZZ(G− a− b)

Because both the structures G − e and G − a − b consist of two discon-

nected components, by Property 4 we find that GZZ(G−e) = GZZ(G1) ·
GZZ(G2) and GZZ(G − a − b) = GZZ(G3) · GZZ(G4). Since further we

have that GZZ(G1) = GZZ(G2) = L1 = 3+2x+ y (by Eq. (3) below with

m = 1) and GZZ(G3) = GZZ(G4) = 0 (by Property 6), we find that

GZZ(G) = GZZ(G1) ·GZZ(G2) = (3 + 2x+ y)2

3 Computer program for automatic compu-

tation of GZZ polynomials

The properties described above (Properties 1–7) can serve as a basis for

an algorithm applicable for recursive computation of the GZZ polynomial
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for an arbitrary benzenoid. The heart of the algorithm is the recursive

procedure GZZ(G) whose flowchart is depicted in Fig. 1. This algorithm

is a direct extension of the analogous recursive procedure that has been

designed before (see Fig. 3 of [7]) for automatic computation of ZZ polyno-

mials. Interestingly, the presented recursive procedure GZZ(G) computes

Figure 1. Flow chart for the recursive procedure GZZ constituting the
most important ingredient of the GZZ polynomial calculator
(see the inset).

directly a numerical value only in two cases: when G has no atoms (then

GZZ(G) = 1 by Property 7) or when G has an odd number of atoms

(then GZZ(G) = 0 by Property 6). In all the remaining cases, Prop-

erties 1–5 are used to reduce the analyzed molecular graph into smaller
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molecular graphs, to each of which the recursive procedure GZZ(G) is ap-

plied separately. In these cases, GZZ(G) is computed as a sum or as a

product of GZZ polynomial of these smaller molecular graphs (subgraphs

of G). Before splitting the molecular graphs G into its subgraphs, repeated

application of Property 5 is used to eliminate all the terminal atoms in

G; this step substantially reduces the computational cost in the decompo-

sition steps that follow. The recursive procedure GZZ(G) is then wrapped

into a short Fortran 95 program (see the inset of Fig. 1), which reads the

molecular graph of G in XY Z format, translates it to the adjacency ma-

trix, calls GZZ(G), and prints out the result. Most of technical details of

this approach were described previously for the ZZCalculator program [7].

4 Applications

To demonstrate the capabilities of the GZZCalculator program described

in the previous Section, we have applied it for calculation of the GZZ

polynomials of various types of benzenoid systems. The results have close

connection to the analogous ZZ polynomial results of the same structures

announced earlier; one should remember that for an arbitrary benzenoid

G one has

GZZ(G, x, y)
∣∣∣
y=0

= ZZ(G, x) (1)

4.1 Polyacenes

We start our exposition by discussing the GZZ polynomials of polyacenes,

the simplest class of benzenoids graphically defined in Fig. 2. The GZZ

polynomials for the first several members of this class are given by

L0 = 1 L2 = 3 + 2x+ y L4 = 5 + 4x+ 3y

L1 = 2 + x L3 = 4 + 3x+ 2y L5 = 6 + 5x+ 4y (2)

Figure 2. Graphical definition of polyacenes L(m)
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where Lm is shorthand notation for GZZ(L(m), x, y). It is easy to see that

for a polyacene L(m) of an arbitrary length m ≥ 1, its GZZ polynomial

Lm is given by the following expression

Lm ≡ GZZ(L(m), x, y) = (m− 1) (1 + x+ y) + x+ 2 (3)

A formal derivation of Eq. (3) can proceed via the following recursive

decomposition step

originating from Property 2 with r = 1. Here, S assigns single character

to the selected blue edge, D assigns double character, A assigns aromatic

character, and B assigns biaromatic character to it. Consequently, the

following recursive formula for Lm follows

Lm = Lm−1 + 1 + x+ y (4)

which is valid for m ≥ 2. Telescoping expansion of Eq. (4) with the

boundary condition L1 = x+ 2 given by Eq. (2), furnishes a formal proof

of Eq. (3). This somewhat exaggerated formal proof of a simple obvious

fact (also given previously as Preposition 2.2 of [17]) is supposed to serve

here as a pedagogical introduction to the entire process, which is almost

always based on a sequence of simple premises: a heuristic discovery of

a general formula, a design of an appropriate recurrence relation, and a

telescoping expansion of such a recurrence demonstrating the correctness

of the previously discovered heuristic formula. Note that Eq. (3) correctly

reduces by Eq. (1) to the ZZ polynomial of polyacenes reported previously

in many various contexts (Example 1 of [46], Eq. (8) of [7], Eq. (26) with

Cl = 1 and a1 = a2 = 0 of [41], and entry L(n) in Table 1 of [31]).
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N(2m) N(2m+ 1)

Figure 3. Graphical definition of single armchair chains of even and
odd length. Note that N(0) ≡ L(0) corresponds to ethylene,
N(1) ≡ L(1), to benzene, and N(2) ≡ L(2), to naphthalene.

4.2 Single armchair chains

The next class of benzenoids studied by us in this paper is the family

of single armchair chains N(m), defined graphically in Fig. 3. The GZZ

polynomial for these structures can be computed as follows. The GZZ

polynomials for the shortest few structures are given by

N0 = 1 N3 = 5 + 5x+ x2 + 2y (5)

N1 = 2 + x N4 = 8 + 10x+ 3x2 + 5y + 2xy

N2 = 3 + 2x+ y N5 = 13 + 20x+ 9x2 + x3 + 10y + 6xy + y2

where we have adapted the shorthand notation Nm ≡ GZZ(N(m), x, y). It

is difficult to anticipate the general form of the GZZ polynomial of N(m)

from this sequence. Instead, let us proceed directly to the following formal

recursive decomposition of N(m)

which originates from Property 2 with r = 1 and is valid for m ≥ 3

with initial conditions N0 = 1, N1 = 2 + x, and N2 = 3 + 2x + y given
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by Eq. (5). This recursive decomposition can be rewritten as a 4-term

recursive formula for Nm

Nm = Nm−1 + (1 + x)Nm−2 + y Nm−3 (6)

To solve this recurrence, we resort to the generating function methodology,

defining the generating function for Nm

G =

∞∑
m=0

Nm tm (7)

Multiplying Eq. (6) by tm, summing overm ≥ 3, accounting for the bound-

ary conditions N0 = 1, N1 = 2 + x, and N2 = 3 + 2x+ y, and solving for

G gives

G =
1

t

(
1

1− t− (1 + x) t2 − yt3
− 1

)
(8)

Using the fact that

1
1−t−(1+x)t2−yt3

=

∞∑
m=0

m∑
n=0

n∑
j=0

(
m
n

)(
n
j

)
(1 + x)n−j yj tm+n+j (9)

=

∞∑
m=0

⌈m−2
3

⌉∑
n=0

⌈m−1−3n
2

⌉∑
j=0

(
m−2n−j

n+j

)(
n+j
n

)
(1 + x)j yn tm (10)

=

∞∑
m=0

⌊m
2
⌋∑

j=0

⌊m−2j
3

⌋∑
n=0

(
m−2n−j

n+j

)(
n+j
n

)
(1 + x)j yn tm (11)

where the first equality follows from three consecutive binomial expansions and

the two latter follow from standard triple sum rotations, we arrive at two equiv-

alent closed-form formulas for Nm ≡ GZZ(N(m), x, y)

GZZ(N(m), x, y) =

⌈m−1
3

⌉∑
n=0

⌈m−3n
2

⌉∑
j=0

(
m+1−2n−j

n+j

)(
n+j
n

)
(1 + x)j yn (12)

=

⌊m+1
2

⌋∑
j=0

⌊m+1−2j
3

⌋∑
n=0

(
m+1−2n−j

n+j

)(
n+j
n

)
(1 + x)j yn (13)

Note that both these formulas correctly reduce by Eq. (1) (one should retain

only terms with n = 0 in one of the sums and replace y0 by 1) to the ZZ
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polynomial of the single armchair chain N(m)

ZZ(N(m), x) =

⌈m
2
⌉∑

j=0

(
m+1−j

j

)
(1 + x)j =

⌊m+1
2

⌋∑
j=0

(
m+1−j

j

)
(1 + x)j (14)

reported originally as the third equation in Example 2 of [48] or as Eq. (9)

of [10]. (Note that the minor discrepancy in the upper summation index can

be safely ignored here owing to the properties of the binomial symbol.) Note

also that various other expressions were discovered for the ZZ polynomial of the

single armchair chain N(m) including

ZZ(N(m), x) = (2x+3)

⌊m−1
2

⌋∑
j=0

(
m−1−j

j

)
(1+x)j+(x+2)

⌊m−2
2

⌋∑
j=0

(
m−2−j

j

)
(1+x)j+1 (15)

= 1
2

(
1+ 2x+3√

4x+5

)(
1+

√
4x+5
2

)m
+ 1

2

(
1− 2x+3√

4x+5

)(
1−

√
4x+5
2

)m
(16)

=

⌈m
2
⌉∑

k=0

⌈m
2
⌉∑

j=0

(
m+1−j−k

k+j

)(
k+j
j

)
xk (17)

For the original source of these formulas, see Eq. (4.12) of [46], Eq. (11) of [7],

and Eq. (16) of [32], respectively. We believe that for each of these formulations,

there exists analogous expression for GZZ(N(m), x, y).

4.3 Hammers

The next class of benzenoids analyzed here is usually referred to as hammers and

denoted by a symbol H(m) (see p. 100 of [15]). Its symbolic graphical definition

is given in Fig. 4. A careful reader will recognize that a hammer H(m) is

equivalent to the benzenoid G1 · L(m) · G2 with G1 = G1 = N(3), whose GZZ

polynomial was reported previously by Furtula et al. in Corollary 3.8 of [17]

Figure 4. Hammers H(m)
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The GZZ polynomials of the first five of the H(m) structures are given by

H0 = N3

(
7 + 7x+ x2 + 6y

)
+ y

H1 = N3

(
12 + 17x+ 7x2 + x3 + 10y + 2xy

)
H2 = N3

(
17 + 27x+ 13x2 + 2x3 + 17y + 9xy + x2y + 2y2

)
H3 = N3

(
22 + 37x+ 19x2 + 3x3 + 24y + 16xy + 2x2y + 4y2

)
H4 = N3

(
27 + 47x+ 25x2 + 4x3 + 31y + 23xy + 3x2y + 6y2

)
(18)

where we have introduced the shorthand notation Hm ≡ GZZ(H(m), x, y) and

N3 ≡ GZZ(N(3), x, y) = 5 + 5x + x2 + 2y has been defined in Eq. (5). The

intrinsic meaning of the multiplier N3 becomes apparent later when we study

decomposition pathways of H(m). The coefficients of the observed progression

pattern in Eq. 18 can be immediately generalized to

Hm = N3

[
(5m+ 7) + (10m+ 7)x+ (6m+ 1)x2 +mx3

+ (7m+ 3) y + (7m− 5)xy + (m− 1)x2y + 2 (m− 1) y2] (19)

valid for any m ≥ 1. Much more information—and a formal proof of Eq. (19)—

can be obtained via the following decomposition pathways corresponding to the

application of Corollary 3.8 of [17] with G1 = G2 = N(3)
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Figure 5. Starphene St(n,m, l)

whose analysis effectively leads to the following formula for GZZ(H(m), x, y)

Hm = N2
3 · Lm + 2N3 (1 + x+ 3y) (20)

with N3 given by Eq. (5) and Lm ≡ GZZ(L(m), x, y) given by Eq. (3). Note

that the substitution of the explicit formulas for N3 and Lm into Eq. (20) and

expanding it reproduces Eq. (19). Note also that evaluation of Eq. (20) at y = 0

correctly reproduces the ZZ polynomial of H(m) given by Eq. (15) of [7].

4.4 Starphenes

Starphene St(n,m, l) with n,m, l ≥ 2, formally obtained by fusing three poly-

acenes with lengths n, m, and l, is graphically defined in Fig. 5. The following

decomposition pathway of starphene
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equivalent to Theorem 3.9 of [17] for St(n,m, l) = L(n−1) ·L(m−1) ·L(l−1),

produces a compact, closed-form formula for the GZZ polynomial of St(n,m, l)

Stn,m,l ≡ GZZ(St(n,m, l), x, y) = Ln−1 · Lm−1 · Ll−1 + 1 + x+ 3y (21)

with Lk ≡ GZZ(L(k), x, y) defined by Eq. (3).

It is instructive to consider yet another method of deriving Stn,m,l. (For more

details, see Sections 2c and 2d of [8].) Geometrical invariance of St(n,m, l) under

the operations of permutation of its indices ensures that six starphene structures:

St(n,m, l), St(n, l,m), St(m, l, n), St(l,m, n), St(m,n, l), and St(l, n,m) must

have identical GZZ polynomials, as the number of generalized Clar covers of

each type is not altered by these geometrical manipulations. Consequently, the

GZZ polynomial of the six distinct starphenes sharing the same set of indices,

{n,m, l}, must be a function of only symmetric polynomials of these indices: 1,

n+m+ l, n2 +m2 + l2, nm+ nl + lm, etc. Empirical analysis shows that

Stn,m,l =

3∑
j=0

3∑
k=0

fk,j (n,m, l)xkyj (22)

with the unknown coefficients fk,j (n,m, l) being linear combinations of symmet-

ric polynomials in {n,m, l}. The linear combination coefficients can be found by

solving a set of linear equations for a finite (and rather small) set of starphenes:

St(2, 2, 2), St(2, 3, 3), St(2, 3, 4), St(2, 3, 5), St(3, 3, 5), etc. We have discovered

that a particularly compact expression for Stn,m,l can be obtained in this way

by using slightly modified structural parameters N = n − 2, M = m − 2 and

L = l − 2, and by introducing the following shorthand notation z = 1 + x and

w = 1 + x+ y

Stn,m,l =



1

z

z2

z3

w

wz

wz2

w2

w2z

w3



T 

1 0 0 0

3 0 0 0

3 0 0 0

1 0 0 0

0 1 0 0

0 2 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1




1

L+M +N

LM + LN +MN

LMN

+ 3w − 2z (23)
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Figure 6. Parallelograms M(m,n)

which can be written in a more compact way as

Stn,m,l =


w0 (1 + z)3

w1 (1 + z)2

w2 (1 + z)1

w3 (1 + z)0


T 

1

L+M +N

LM + LN +MN

LMN

+ 3w − 2z (24)

= (1 + z + Lw)(1 + z +Mw)(1 + z +Nw) + 3w − 2z (25)

Note that the last equation reproduces Eq. (21) once we recognize 1+z+Kw as

LK+1 using Eq. (3) with K = L,M,N . Note also that evaluation of Eq. (25) at

y = 0 reproduces the ZZ polynomial of St(n,m, l) given originally by Eq. (4.17)

of [46] and Eq. (22) of [8].

4.5 Parallelograms

The most complicated structures considered in the current work are parallelo-

grams M(m,n) of height m and length n as defined schematically in Fig. 6. Let

us consider the following decomposition pathway of M(m,n)
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which leads to a 5-term recursive formula for Mm,n ≡ GZZ(M(m,n), x, y)

Mm,n = Mm,n−1 +Mm−1,n + xMm−1,n−1 + y (Mm−1,n−2 +Mm−2,n−1) (26)

Solving this two-dimensional recurrence can pose considerable problems. There-

fore, for purely pedagogical reasons, we resort here to an intermediate solution,

where we demonstrate how to guess the solution to the recurrence given by

Eq. (26). Formal check of correctness of a solution discovered in this way can be

performed by mathematical induction.

We start our considerations by listing the GZZ polynomials of parallelograms

M2,n with a constant width n = 2

M2,0 = 1

M2,1 = 3 + 2x+ y

M2,2 = 6 + 6x+ x2 + 4y

M2,3 = 10 + 12x+ 3x2 + 9y + 2xy

M2,4 = 15 + 20x+ 6x2 + 16y + 6xy + y2

M2,5 = 21 + 30x+ 10x2 + 25y + 12xy + 3y2

M2,6 = 28 + 42x+ 15x2 + 36y + 20xy + 6y2

M2,7 = 36 + 56x+ 21x2 + 49y + 30xy + 10y2

M2,8 = 45 + 72x+ 28x2 + 64y + 42xy + 15y2

(27)

It is obvious that the coefficients in front of each of the xjyk monomials are

simple, binomial-like functions of n. This leads to the following equation valid

for n ≥ 2

M2,n =
(
n+2
2

)
+ 2

(
n+1
2

)
x+

(
n
2

)
x2 + n2 y + (n− 1) (n− 2)xy +

(
n−2
2

)
y2 (28)

In the next step, we perform similar analysis for m = 3. We have



M3,0 = 1

M3,1 = 4 + 3x + 2y

M3,2 = 10 + 12x + 3x2 + 9y + 2xy

M3,3 = 20 + 30x + 12x2 + x3 + 24y + 12xy + 2y2

M3,4 = 35 + 60x + 30x2 + 4x3 + 50y + 36xy + 3x2y + 9y2

M3,5 = 56 + 105x + 60x2 + 10x3 + 90y + 80xy + 12x2y + 24y2 + 3xy2

M3,6 = 84 + 168x + 105x2 + 20x3 + 147y + 150xy + 30x2y + 50y2 + 12xy2 + y3

M3,7 = 120 + 252x + 168x2 + 35x3 + 224y + 252xy + 60x2y + 90y2 + 30xy2 + 4y3

M3,8 = 165 + 360x + 252x2 + 56x3 + 324y + 392xy + 105x2y +147y2+60xy2+10y3

(29)
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Identification of the coefficient sequences appearing here is more complicated, but

again, they turn out to be relatively simple functions of n. The identification

leads to the following equation valid for n ≥ 3

M3,n =
(3
0

)(n+3
3

)(n+3
0

)
+

(3
1

)(n+2
3

)(n+1
0

)
x +

(3
2

)(n+1
3

)(n−1
0

)
x2 +

(3
3

)(n
3

)(n−3
0

)
x3

+
(2
0

)(n+1
2

)(n+1
1

)
y +

(2
1

)( n
2

)(n−1
1

)
xy +

(2
2

)(n−1
2

)(n−3
1

)
x2y

+
(1
0

)(n−1
1

)(n−1
2

)
y2 +

(1
1

)(n−2
1

)(n−3
2

)
xy2

+
(0
0

)(n−3
0

)(n−3
3

)
y3 (30)

which can be further expressed in closed, binomial-like form as

M3,n =

min(3,n)∑
i=0

min(3,n)∑
j=0

(
3−i
j

)(
n+3−2i−j

3−i

)(
n+3−2i−2j

i

)
xjyi (31)

which suggests more compact way of expressing Eq. (28) derived earlier as

M2,n =

min(2,n)∑
i=0

min(2,n)∑
j=0

(
2−i
j

)(
n+2−2i−j

2−i

)(
n+2−2i−2j

i

)
xjyi (32)

Eqs. (32) and (31) reproduce the GZZ polynomials of M(2, n) and M(3, n) given

by Eqs. (27) and (29), respectively. They can also be readily generalized to an

arbitrary value of m; the resulting equation has the analogous familiar form

Mm,n =

min(m,n)∑
i=0

min(m,n)∑
j=0

(
m−i
j

)(
m+n−2i−j

m−i

)(
m+n−2i−2j

i

)
xjyi (33)

The main problem associated with Eq. (33) is the lack of the m ↔ n interchange

symmetry obvious from Fig. 6. Clearly Mm,n = Mn,m, because the collections of

generalized Clar covers of M(m,n) and M(n,m) are identical, differing only in

their geometrical orientations. To solve this shortcoming, we note that Eq. (33)

can be rearranged in various ways manifestly accentuating the m ↔ n inter-

change symmetry, e.g.

Mm,n =

min(m,n)∑
i=0

min(m,n)∑
j=0

(
min(m,n)−i

j

)(
m+n−2i−j
min(m,n)−i

)(
m+n−2i−2j

i

)
xjyi (34)

=

min(m,n)∑
i=0

i∑
j=0

(
max(m,n)−j
min(m,n)−i

)(
max(m,n)+i−2j

i−j

)
(35)

·
(
max(m,n)−min(m,n)+2(i−j)

j

)
xmin(m,n)−iyj

The last equation has an additional advantage: all the binomials coefficients con-
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tain only non-negative entries, so one can use the usual factorial expansion of the

binomial coefficients without the necessity of taking limits. Formal correctness

of Eqs. (34) and (35) can be demonstrated using mathematical induction, but

the proof is very lengthy and therefore it is omitted here.

Despite discovering an apparently correct formula for GZZ(M(m,n), x, y),

there remains certain resentment associated with the fact that the corresponding

ZZ polynomial formulas for the parallelogram M(m,n) show much higher degree

of symmetry

ZZ(M(m,n), x) =

min(m,n)∑
i=0

(m+n−i)!

(m−i)! (n−i)! i!
xi =

min(m,n)∑
i=0

(
m+n
m

)(
m
i

)(
n
i

)(
m+n

i

) xi (36)

=

min(m,n)∑
i=0

(
m
i

)(
n
i

)
(1 + x)i = 2F1

[
−m,−n

1
; 1 + x

]
(37)

(Eq. (3) of [12], Eq. (19) of [7], and Eqs. (4) and (5) of [12], respectively) than

the current formulation of GZZ polynomials for M(m,n) given by Eqs. (33),

(34) and (35). Note that the situation was similar for the ZZ polynomials in

the beginning: The first formula for ZZ(M(m,n), x) discovered by Gutman and

Borovićanin (Eq. (16) of [21])

ZZ(M(m,n), x) =

m∑
i=0

(
m
i

)(
n+m−i

m

)
xi (38)

despite of its correctness missed the obvious m ↔ n interchange symmetry too.

We signalize this problem here (perhaps in a somewhat too obnoxious manner)

to encourage others to discover such a symmetric formulation.

5 Conclusion

We have presented an algorithm designed for an automatic computation of the

generalized Zhang-Zhang (GZZ) polynomials of arbitrary benzenoids. The algo-

rithm has been implemented in Fortran 95 as GZZCalculator, freely available for

download [35]. The developed computer code has been used for finding closed-

form expressions of the GZZ polynomials for five families of benzenoids. Several

interesting features of the presented results have been discussed in detail, mainly

to stimulate other groups to participate in solving the remaining problems.
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