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Abstract

Let G be a graph with vertex set V and edge set E. A topological
index has the form

TI = TI(G) =
∑
uv∈E

f(dG(u), dG(v)),

where f = f(x, y) is a pertinently chosen function which must be
symmetric and real-valued for all x, y pertaining to vertex degrees of
the graph G. Particularly interesting are the Sombor index and the
elliptic Sombor index, defined by the functions f(x, y) =

√
x2 + y2

and f(x, y) = (x + y)
√

x2 + y2, respectively. Let q = 2f(2, 3) −
f(2, 2)− f(3, 3). In this paper, we characterize the extremal graphs
that achieve the upper bounds of the topological index TI for ben-
zenoid systems, where TI satisfies the conditions 0 < q < f(2,2)

2
or

− f(2,2)
4

< q < 0, respectively. In addition, we provide a lower bound
for the Sombor index on benzenoid systems.

1 Introduction

Let G = (V,E) be a graph with vertex set V = V (G) and edge set E =

E(G). As usual, we denote n = n(G) = |V (G)| and m = m(G) = |E(G)|.
For each vertex u ∈ V (G), we use dG(u) to denote the degree of u in G.
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A topological index has the form

TI = TI(G) =
∑
uv∈E

f(dG(u), dG(v)), (1)

where f = f(x, y) is a pertinently chosen function which must be sym-

metric and real-valued for all x, y pertaining to vertex degrees of the

graph G. Particularly interesting are the recently created elliptic Sombor

index and Sombor index, which are defined by the functions f(x, y) =

(x+ y)
√

x2 + y2 and f(x, y) =
√
x2 + y2, respectively. For recent results

on the Sombor index, we refer the reader to [3, 5, 8, 11,16,19]. Both topo-

logical indices were conceived based on geometric considerations and have

demonstrated good predictive potential [6, 9, 18].

Benzenoid systems are finite, 2-connected plane graphs in which all

interior regions are mutually congruent hexagons. They provide a natural

graphical representation of benzenoid hydrocarbons, which are of great

importance in chemistry. For notation and basic concepts on benzenoid

systems, we refer the reader to [7].

Let HSh be the set of benzenoid systems with h ≥ 2 hexagons. For an

edge of H ∈ HSh, connecting a vertex of degree i and a vertex of degree

j, is called an (i, j)-edge. The number of such edges will be denoted by

mi,j(H). An edge shared by two hexagons is called an internal edge,

while an edge belonging to only one hexagon is called an external edge.

We use mi(H) and me(H) to denote the number of internal edges and

external edges of H, respectively. The external edges form a cycle, which

is referred to as the perimeter of the benzenoid system. The vertices of a

benzenoid system lying on its perimeter are called external vertices, while

the remaining vertices are referred to as internal vertices. We use ni(H)

and ne(H) to denote the number of internal vertices and external vertices

of H, respectively. Clearly, me(H) = ne(H).

In [10], Harary and Harborth proved that

0 ≤ ni(H) ≤ 2h+ 1− ⌈
√
12h− 3⌉. (2)

The benzenoid system that attain the lower bound of (2) are called cat-



265

acondensed benzenoid system, a class that has been studied in [17]. The

benzenoid system that attain the upper bound of (2) are called anacon-

densed benzenoid system. For results on anacondensed benzenoid system,

we refer the reader to [4]. In particular, if ni > 0, the benzenoid system is

classified as pericondensed.

Fig. 1. The twelve possible types of hexagons in benzenoid system and some structural

features on the perimeter.

The hexagons in a benzenoid system are classified as L1, L2, L3, L4,

L5, L6, A2, A3, A4, P2, P3 and P4, depending on the number and position

of the hexagons adjacent to it. Their definition is clear from Fig. 1, where

an example is also provided.

Fig. 1 also illustrates the structural features on the perimeter of the

benzenoid system: fissures, bays, coves, and fjords. The numbers of these

features in H are denoted by f(H), B(H), C(H), and F (H), respectively.

The number of inlets of H is

r(H) = f(H) +B(H) + C(H) + F (H).

In 2016, Cruz et al. [2] proved that r(H) ≥ ⌈
√
3(h− 1)⌉ for eachH ∈ HSh.

The bay regions of H, denoted by b(H), and defined as

b(H) = B(H) + 2C(H) + 3F (H), (3)

which counts the number of edges on the perimeter, connecting two vertices

of degree 3. If b(H) = 0, then we say that H is a convex benzenoid system.
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The results on the convex benzenoid system are referred to in [1].

In [17], Rada et al. presented lower and upper bounds for the Sombor

index and the elliptic Sombor index of catacondensed benzenoid systems.

In this paper, we focus on analyzing the Sombor index and the elliptic

Sombor index for benzenoid systems, including both catacondensed and

pericondensed structures. First, we characterize the extremal graphs that

achieve the upper bounds of the topological index TI for benzenoid sys-

tems, where TI satisfies the condition 0 < q < f(2,2)
2 or − f(2,2)

4 < q < 0,

respectively. This result contains the upper bound of the Sombor index

identified by Cruz et al. [3]. In addition, Cruz et al. [3] also proposed the

following problem:

Problem 1. Among all hexagonal systems with h hexagons, which hexag-

onal systems have minimal value of SO?

In the fourth section of this paper, we provide a lower bound for the

Sombor index on benzenoid systems and analyze the benzenoid systems

that attain the minimal value of the Sombor index.

2 Preliminary results

A hexagon of H, containing some external edge of H, is said to be on the

boundary of H. In this section, we obtain two useful lemmas.

Lemma 1. Let H ∈ HSh and let h0 be a hexagon on the boundary of

H such that H \ h0 is connected. If H ′ is the benzenoid system obtained

from H by moving h0 to an inlet of H such that ni(H
′) > ni(H), then

r(H)− 4 ≤ r(H ′) ≤ r(H) + 2.

Proof. Since H \h0 is connected and h0 is on the boundary of H, h0 must

be a hexagon of type L1, L3, L5, P2, or P4. However, if h0 is a hexagon of

type L5, then there does not exist an inlet r0 in H such that, by moving h0

to r0, a new benzenoid system H ′ is obtained, satisfying ni(H
′) > ni(H).

Thus, we need to consider the cases when h0 is a hexagon of type L1, L3,

P2, or P4.

Case 1: h0 is a hexagon of type L1.
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Obviously, moving h0 to any inlet of H results in a benzenoid system

H ′ such that ni(H
′) > ni(H). We classify three types of hexagons in

mode L1 as L0
1, L

−1
1 , and L−2

1 (see Fig. 2), such that, when a hexagon of

type L0
1, L

−1
1 , or L−2

1 is removed, the number of inlets remains unchanged,

decreases by one, or decreases by two, respectively.

Fig. 2 also shows the three possible forms of each inlet inH: a1, a2, and

a3 for fissures; b1, b2, and b3 for bays; and c1, c2, and c3 for coves. These

forms depend on whether the number of inlets increases by one, remains

unchanged, or decreases by one when adding a hexagon to a fissure, bay,

or cove, respectively. Specially, the three possible forms of fjords in H

are f1, f2, and f3, determined by whether the number of inlets remains

unchanged, decreases by one, or decreases by two when adding a hexagon

to a fjord, respectively. These notations will also be used in later proofs.

Fig. 2. The three types of hexagons in mode L1, and the three possible forms of

fissure, bay, cove and fjord on the perimeter of H.

Subcase 1.1: h0 is the type of L−2
1 .

If H ′ is obtained from H by moving L−2
1 to a1, b1 or c1, then r(H ′) =

r(H) − 1. If H ′ is obtained from H by moving L−2
1 to a2, b2, c2 or f1,

then r(H ′) = r(H) − 2. If H ′ is obtained from H by moving L−2
1 to a3,

b3, c3 or f2, then r(H ′) = r(H)− 3. If H ′ is obtained from H by moving

h0 to f3, then r(H ′) = r(H)− 4.

Subcase 1.2: h0 is the type of L−1
1 .
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If H ′ is obtained from H by moving L−1
1 to a1, b1 or c1, then r(H ′) =

r(H). If H ′ is obtained from H by moving L−1
1 to a2, b2, c2 or f1, then

r(H ′) = r(H) − 1. If H ′ is obtained from H by moving L−1
1 to a3, b3, c3

or f2, then r(H ′) = r(H)− 2. If H ′ is obtained from H by moving L−1
1 to

f3, then r(H ′) = r(H)− 3.

Subcase 1.3: h0 is the type of L0
1.

If H ′ is obtained from H by moving L0
1 to a1, b1 or c1, then r(H ′) =

r(H) + 1. If H ′ is obtained from H by moving L0
1 to a2, b2, c2 or f1, then

r(H ′) = r(H). If H ′ is obtained from H by moving L0
1 to a3, b3, c3 or

f2, then r(H ′) = r(H)− 1. If H ′ is obtained from H by moving L0
1 to f3,

then r(H ′) = r(H)− 2.

Case 2: h0 is a hexagon of type P2.

Clearly, placing h0 in a bay, cove or fjord of H will result in a benzenoid

system H ′ with ni(H
′) > ni(H). The hexagons in mode P2 also have three

types: P+1
2 , P 0

2 , and P−1
2 (see Fig. 3). When a hexagon of type P+1

2 , P 0
2 , or

P−1
2 is removed, the number of inlets increases by one, remains unchanged,

or decreases by one, respectively.

Subcase 2.1: h0 is the type of P−1
2 .

IfH ′ is obtained fromH by moving P−1
2 to b1 or c1, then r(H ′) = r(H).

If H ′ is obtained from H by moving h0 to b2, c2 or f1, then r(H ′) =

r(H) − 1. If H ′ is obtained from H by moving P−1
2 to b3, c3 or f2, then

r(H ′) = r(H) − 2. If H ′ is obtained from H by moving P−1
2 to f3, then

r(H ′) = r(H)− 3.

Subcase 2.2: h0 is the type of P 0
2 .

If H ′ is obtained from H by moving P 0
2 to b1 or c1, then r(H ′) =

r(H) + 1. If H ′ is obtained from H by moving P 0
2 to b2, c2 or f1, then

r(H ′) = r(H). If H ′ is obtained from H by moving P 0
2 to b3, c3 or f2,

then r(H ′) = r(H) − 1. If H ′ is obtained from H by moving P 0
2 to f3,

then r(H ′) = r(H)− 2.
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Fig. 3. The three types of hexagons in mode P2, and the three possible forms of bay,

cove and fjord on the perimeter of H.

Subcase 2.3: h0 is the type of P+1
2 .

If H ′ is obtained from H by moving P+1
2 to b1 or c1, then r(H ′) =

r(H) + 2. If H ′ is obtained from H by moving P+1
2 to b2, c2 or f1, then

r(H ′) = r(H) + 1. If H ′ is obtained from H by moving P+1
2 to b3, c3 or

f2, then r(H ′) = r(H). If H ′ is obtained from H by moving P+1
2 to f3,

then r(H ′) = r(H)− 1.

Case 3: h0 is a hexagon of type L3.

Obviously, moving h0 to a cove or fjord of H will result in a benzenoid

system H ′ such that ni(H
′) > ni(H). The three types of hexagons in

mode L3 are L+1
3 , L0

3, and L−1
3 (see Fig. 4).

Subcase 3.1: h0 is the type of L−1
3 .

If H ′ is obtained from H by moving L−1
3 to c1, then r(H ′) = r(H). If

H ′ is obtained from H by moving L−1
3 to c2 or f1, then r(H ′) = r(H)− 1.

IfH ′ is obtained fromH by moving L−1
3 to c3 or f2, then r(H ′) = r(H)−2.

If H ′ is obtained from H by moving L−1
3 to f3, then r(H ′) = r(H)− 3.

Subcase 3.2: h0 is the type of L0
3.
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If H ′ is obtained from H by moving L0
3 to c1, then r(H ′) = r(H) + 1.

If H ′ is obtained from H by moving L0
3 to c2 or f1, then r(H ′) = r(H). If

H ′ is obtained from H by moving L0
3 to c3 or f2, then r(H ′) = r(H)− 1.

If H ′ is obtained from H by moving L0
3 to f3, then r(H ′) = r(H)− 2.

Fig. 4. The three types of hexagons in mode L3, and the three possible forms of cove

and fjord on the perimeter of H.

Subcase 3.3: h0 is the type of L+1
3 .

If H ′ is obtained from H by moving L+1
3 to c1, then r(H ′) = r(H)+2.

IfH ′ is obtained fromH by moving L+1
3 to c2 or f1, then r(H ′) = r(H)+1.

If H ′ is obtained from H by moving L+1
3 to c3 or f2, then r(H ′) = r(H).

If H ′ is obtained from H by moving L+1
3 to f3, then r(H ′) = r(H)− 1.

Case 4: h0 is a hexagon of type P4.

It is evident that placing P4 into a fjord of H produces a benzenoid

system H ′ with ni(H
′) > ni(H). Fig. 5 shows the three possible forms

P+1
4 , P 0

4 , and P−1
4 of a hexagon of type P4 in H, as well as the three

distinct forms of fjord in H: f1, f2 and f3.

Subcase 3.1: h0 is the type of P−1
4 .

If H ′ is obtained from H by moving P−1
4 to f1, then r(H ′) = r(H)−1.

If H ′ is obtained from H by moving P−1
4 to f2, then r(H ′) = r(H)− 2. If

H ′ is obtained from H by moving P−1
4 to f3, then r(H ′) = r(H)− 3.
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Subcase 3.2: h0 is the type of P 0
4 .

If H ′ is obtained from H by moving P 0
4 to f1, then r(H ′) = r(H). If

H ′ is obtained from H by moving P 0
4 to f2, then r(H ′) = r(H)− 1. If H ′

is obtained from H by moving P 0
4 to f3, then r(H ′) = r(H)− 2.

Subcase 3.3: h0 is the type of P+1
4 .

If H ′ is obtained from H by moving P+1
4 to f1, then r(H ′) = r(H)+1.

If H ′ is obtained from H by moving P+1
4 to f2, then r(H ′) = r(H). If H ′

is obtained from H by moving P+1
4 to f3, then r(H ′) = r(H)− 1.

Fig. 5. The three types of hexagons in mode P4, and the three possible forms of fjord

on the perimeter of H.

It is well known that the number of (2, 2)-edges in a benzenoid system

is at least six. Similar to Lemma 1, we obtain the following lemma.

Lemma 2. Let H be a pericondensed benzenoid system with h hexagons,

and let h0 be a hexagon on the boundary of H that contains internal vertices

of H, such that H \h0 is connected. If H ′′ is the benzenoid system obtained

from H by moving h0 to a (2, 2)-edge in H, then r(H) − 2 ≤ r(H ′′) ≤
r(H) + 4.

Proof. Let h0 be a hexagon on the boundary of H that contains internal

vertices of H. Since H \ h0 is connected, h0 must be of type L1, L3, L5,

P2 or P4. From the proof of Lemma 1, it follows that the number of inlets

in H decreases by at most 2 or increases by at most 2 after removing h0.

However, after attaching a hexagon to the (2, 2)-edge of H, the inlets of
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H may remain unchanged, increase by 1, or increase by 2. Let H ′′ be the

benzenoid system obtained from H by moving h0 to a (2, 2)-edge in H.

Then r(H)− 2 ≤ r(H ′′) ≤ r(H) + 4.

3 The upper bound of Sombor index and

elliptic Sombor index of benzenoid systems

Let H ∈ HSh. The benzenoid system possess only vertices of degree 2 and

3. Consequently, all their edges are of type (2, 2), (2, 3) and (3, 3), and so

for H,

TI(H) = f(2, 2)m2,2 + f(2, 3)m2,3 + f(3, 3)m3,3, (4)

where TI is a topological index of the form (1). For convenience, let

φ2,2 = f(2, 2), φ2,3 = f(2, 3) and φ3,3 = f(3, 3). We can obtain an

expression for the topological index of H in terms r(H) and ni(H) as

shown below.

Theorem 2. Let H ∈ HSh. Then

TI(H) = (2φ2,2 + 3φ3,3)h+ (2φ2,3 − φ2,2 − φ3,3)r(H)− φ2,2ni(H)

+(4φ2,2 − 3φ3,3).

Proof. The result follows from (4) and the previously known relations given

in [12]: 
m2,2(H) = n(H)− 2h− r(H) + 2,

m2,3(H) = 2r(H),

m3,3(H) = 3h− r(H)− 3,

and [7]

n(H) = 4h+ 2− ni(H). (5)

Let K =
φ2,2

2φ2,3−φ2,2−φ3,3
. The following theorem can be established.
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Theorem 3. Let H be a pericondensed benzenoid system with h hexagons,

and let h0 be a hexagon on the boundary of H that contains internal vertices

of H, such that H \h0 is connected. If H ′′ is the benzenoid system obtained

from H by moving h0 to a (2, 2)-edge in H, then

TI(H ′′) > TI(H),

where TI is a topological index of the form (4) such that K < −4 or K > 2.

Proof. By Theorem 2, we have

TI(H ′′)− TI(H) = (2φ2,3 − φ2,2 − φ3,3)(r(H
′′)− r(H))

− φ2,2(ni(H
′′)− ni(H)).

To establish TI(H ′′) > TI(H), it suffices to show that TI(H ′′)−TI(H) >

0, i.e.

(2φ2,3 − φ2,2 − φ3,3)(r(H
′′)− r(H)) > φ2,2(ni(H

′′)− ni(H)). (6)

If K =
φ2,2

2φ2,3−φ2,2−φ3,3
< −4, then 2φ2,3 − φ2,2 − φ3,3 < 0. Therefore,

(6) is equivalent to

r(H ′′)− r(H) <
φ2,2(ni(H

′′)− ni(H))

2φ2,3 − φ2,2 − φ3,3
.

Suppose that ni(H
′′) = ni(H)− a, where 1 ≤ a ≤ 4. We have

r(H ′′) < r(H) +
−φ2,2a

2φ2,3 − φ2,2 − φ3,3
. (7)

Since
φ2,2

2φ2,3−φ2,2−φ3,3
< −4, we obtain

−φ2,2a
2φ2,3−φ2,2−φ3,3

> 4. By Lemma 2,

r(H ′′) ≤ r(H) + 4. Thus the inequality (7) holds for any pericondensed

benzenoid system H. Thus, (6) holds.

If K =
φ2,2

2φ2,3−φ2,2−φ3,3
> 2, then 2φ2,3 − φ2,2 − φ3,3 > 0. Hence, (6)
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reduces to the following inequality

r(H ′′)− r(H) >
φ2,2(ni(H

′′)− ni(H))

2φ2,3 − φ2,2 − φ3,3
.

Since ni(H
′′) = ni(H)− a, we have

r(H ′′) > r(H) +
−φ2,2a

2φ2,3 − φ2,2 − φ3,3
. (8)

Since
φ2,2

2φ2,3−φ2,2−φ3,3
> 2 and 1 ≤ a ≤ 4, we obtain

−φ2,2a
2φ2,3−φ2,2−φ3,3

< −2.

By Lemma 2, r(H ′′) ≥ r(H) − 2. So, the inequality (8) holds for any

pericondensed benzenoid system H. Thus, (6) holds as well. The proof is

complete.

Recall that a catacondensed benzenoid system H is a benzenoid system

with ni(H) = 0. We can immediately obtain the following corollary from

the above Theorem.

Corollary 1. Let TI be a topological index of the form (4), subject to

the condition that K < −4 or K > 2. If H1 ∈ HSh is a pericondensed

benzenoid system, then there exists an H2 ∈ HSh that is a catacondensed

benzenoid system such that TI(H1) < TI(H2).

Fig. 6. The linear benzenoid chain Lh, and the catacondensed benzenoid system Eh

correspond to the cases where h is odd and even, respectively.



275

Two special catacondensed benzenoid systems are Lh and Eh, shown

in Fig. 6. It was shown in [13] that if H is a catacondensed benzenoid

system with h hexagons then,

r(Eh) = ⌈h
2
+ 1⌉ ≤ r(H) ≤ 2(h− 1) = r(Lh). (9)

Let q = 2φ2,3−φ2,2−φ3,3. For a catacondensed benzenoid system, we

immediately obtain the following theorem.

Theorem 4. Let H be a catacondensed benzenoid system with h hexagons,

and let TI be a topological index of the form (4). Then

(1) if q > 0, then TI(H) < TI(Lh);

(2) if q < 0, then TI(H) < TI(Eh).

Proof. According to the definition of catacondensed benzenoid system and

Theorem 2, the topological index TI(H) can be expressed as:

TI(H) = (2φ2,2 + 3φ3,3)h+ (2φ2,3 − φ2,2 − φ3,3)r(H)

+ (4φ2,2 − 3φ3,3).

The result is obtained by applying inequality (9) to this expression.

By combining Corollary 1 with Theorem 4, we obtain one of our main

results.

Corollary 2. Let H ∈ HSh, and let TI be a topological index of the form

(4). Then

(1) if 0 < q <
φ2,2

2 , then TI(H) < TI(Lh);

(2) if −φ2,2

4 < q < 0, then TI(H) < TI(Eh).

Example 1. Recall that the Sombor index of a benzenoid system H, is

defined as

SO(H) =
∑
uv∈E

√
d2u + d2v.

Note that in this case

q = 2φ2,3 − φ2,2 − φ3,3 = 2
√
13− 2

√
2− 3

√
2 ≈ 0.14. (10)
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Since 0 < q <
φ2,2

2 =
√
2. We have SO(H) ≤ SO(Lh).

This result is consistent with the result in [3], which are shown below.

Theorem 5. [3] Let H be a benzenoid system with h hexagons. Then

SO(H) ≤ SO(Lh).

Example 2. Consider now the elliptic Sombor index of a benzenoid sys-

tem H, is defined as

ESO(H) =
∑
uv∈E

(du + dv)
√
d2u + d2v.

Thus,

q = 2φ2,3 − φ2,2 − φ3,3 = 10
√
13− 8

√
2− 18

√
2 ≈ −0.714.

Clearly, −2
√
2 = −φ2,2

4 < q < 0. We have SO(H) ≤ SO(Eh).

4 The lower bound of Sombor index and elliptic Som-

bor index of benzenoid systems

4.1. Lower bound of elliptic Sombor index of benzenoid systems

In [14], Rada et al. proved the following theorem.

Theorem 6. ( [14]) Let H ∈ HSh, and let TI be a topological index of

the form (4). If −f(2, 2) ≤ q ≤ 0, then

TI(H) ≥ TI(W ),

where W is the convex benzenoid system with h hexagons and 2h + 1 −
⌈
√
12h− 3⌉ internal vertices.

In particularly, for elliptic Sombor index, −f(2, 2) ≤ q ≤ 0. Thus, we

have the following theorem.
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Theorem 7. If H ∈ HSh, then

ESO(H) ≥ 54
√
2h+ (10

√
13− 18

√
2)⌈

√
12h− 3⌉ − 30

√
13 + 48

√
2,

with equality if and only if H is a convex benzenoid system with 2h+ 1−
⌈
√
12h− 3⌉ internal vertices.

Proof. Let H0 be a convex benzenoid system with h hexagons and 2h +

1− ⌈
√
12h− 3⌉ internal vertices. By Theorem 6, it follows that

ESO(H) ≥ ESO(H0).

From the relations in [15],

m2,2(H0) = 6 + b(H0). (11)

Since b(H0) = 0, we have r(H0) = f(H0). Therefore,

me(H0) = m2,2(H0) + 2f(H0) = 6 + 2r(H0).

Furthermore,

n(H0) = ni(H0) + ne(H0) = ni(H0) +me(H0) = ni(H0) + 6 + 2r(H0). (12)

Using equations (5) and (12), we derive

r(H0) = 2h− ni(H0)− 2. (13)

By substituting ni(H0) = 2h + 1 − ⌈
√
12h− 3⌉ into (13) and applying

Theorem 2, we obtain

ESO(H0) = 54
√
2h+ (10

√
13− 18

√
2)⌈

√
12h− 3⌉ − 30

√
13 + 48

√
2.

4.2. Lower bound of Sombor index of benzenoid systems

Unfortunately, for the Sombor index, we have q > 0. Therefore, we now
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focus on determining the lower bound of the Sombor index of benzenoid

systems.

Lemma 3. If H ∈ HSh, then

2⌈
√
12h− 3⌉ ≤ me(H) ≤ 4h− 2,

with left equality if and only if ni(H) = 2h + 1 − ⌈
√
12h− 3⌉, and with

right equality if and only if ni(H) = 0.

Proof. Combing n(H) = ni(H) + ne(H) with (5), we get

ne(H) = 4h+ 2− 2ni(H). (14)

Since me(H) = ne(H), by inequality (2), it follows that

2⌈
√
12h− 3⌉ ≤ me(H) ≤ 4h− 2.

Theorem 8. Let H ∈ HSh and let h0 be a hexagon on the boundary of

H such that H \ h0 is connected. If H ′ is the benzenoid system obtained

from H by moving h0 to an inlet of H such that ni(H
′) > ni(H), then

TI(H ′) < TI(H),

where TI be a topological index of the form (4) such that K > 2.

Proof. By Theorem 2, we have

TI(H ′)− TI(H) = (2φ2,3 − φ2,2 − φ3,3)(r(H
′)− r(H))

− φ2,2(ni(H
′)− ni(H)).

To establish TI(H ′) < TI(H), it suffices to show that TI(H ′)−TI(H) < 0,

which is

(2φ2,3 − φ2,2 − φ3,3)(r(H
′)− r(H)) < φ2,2(ni(H

′)− ni(H)). (15)
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Since K =
φ2,2

2φ2,3−φ2,2−φ3,3
> 2, it follows that 2φ2,3 − φ2,2 − φ3,3 > 0,

Therefore, the inequality (15) is equivalent to

r(H ′)− r(H) <
φ2,2(ni(H

′)− ni(H))

2φ2,3 − φ2,2 − φ3,3
.

Suppose that ni(H
′) = ni(H) + a, where 1 ≤ a ≤ 4. We have

r(H ′) < r(H) +
φ2,2a

2φ2,3 − φ2,2 − φ3,3
. (16)

Since
φ2,2

2φ2,3−φ2,2−φ3,3
> 2, we have

φ2,2a
2φ2,3−φ2,2−φ3,3

> 2. By Lemma 1,

r(H ′) < r(H) + 2. Thus, the inequality (16) holds for any benzenoid

system H. Thus, inequality (15) is satisfied, completing the proof.

Based on the proof of Lemma 1, we derive the following conclusions:

(1) moving a hexagon of type L1 into any inlet of H results in a benzenoid

system H ′ such that ni(H
′) > ni(H); (2) for any cove or fjord of H, there

exists a hexagon h0 such that moving h0 to a cove or fjord of H produces

a benzenoid system H ′ with ni(H
′) > ni(H). Therefore, we have the

following corollary.

Corollary 3. Let TI be a topological index of the form (4) with K > 2.

If H1 ∈ HSh contains a cove, a fjord, or a hexagon of type L1, then

there exists an H2 ∈ HSh that lacks these features and satisfies TI(H1) >

TI(H2).

Example 3. For the Sombor index of a benzenoid system,

K =
φ2,2

2φ2,3 − φ2,2 − φ3,3
=

2
√
2

2
√
13− 2

√
2− 3

√
2
≈ 20.198 > 2.

Thus, the benzenoid system that minimizes the Sombor index does not

contain coves and fjords. Below, we provide an expression for the Sombor

index on a benzenoid system without cove and fjord.

Theorem 9. If H ∈ HSh with C(H) = F (H) = 0, then

SO(H) = 9
√
2h+ (2

√
13− 3

√
2)f(H) + (2

√
13−

√
2)B(H) + 3

√
2.
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Proof. By equations (3) and (11), we have m2,2(H) = 6+B(H). Further-

more,

ne(H) = me(H) = m2,2(H) + 2f(H) + 3B(H) = 2f(H) + 4B(H) + 6. (17)

Combing n(H) = ni(H) + ne(H) with (5) and (17), we get

ni(H) = 2h− f(H)− 2B(H)− 2. (18)

Since r(H) = f(H) +B(H), By Theorem 2, it follows that

SO(H) = 9
√
2h+ (2

√
13− 3

√
2)f(H) + (2

√
13−

√
2)B(H) + 3

√
2.

Next, we give a lower bound for the Sombor index on benzenoid systems

without cove and fjord.

Theorem 10. If H ∈ HSh with C(H) = F (H) = 0, then

SO(H) > 9
√
2h+ (

√
13−

√
2

2
)⌈
√
12h− 3⌉ − 3

√
13 +

9
√
2

2
.

Proof. By equation (17), we have f(H)+ 2B(H) = me−6
2 . By Theorem 9,

we have

SO(H) = 9
√
2h+ (2

√
13− 3

√
2)f(H) + (2

√
13−

√
2)B(H) + 3

√
2

> 9
√
2h+ (

√
13−

√
2

2
)f(H) + (2

√
13−

√
2)B(H) + 3

√
2

= 9
√
2h+ (

√
13−

√
2

2
)(f(H) + 2B(H)) + 3

√
2

= 9
√
2h+ (

√
13−

√
2

2
)
me − 6

2
+ 3

√
2

By Lemma 3, me(H) ≥ 2⌈
√
12h− 3⌉, we have SO(H) > 9

√
2h+(

√
13−

√
2
2 )(⌈

√
12h− 3⌉ − 3) + 3

√
2. Thus, the result holds.

By combining Corollary 3 with Theorem 10, we obtain a lower bound

for the Sombor index on benzenoid systems as follows.
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Corollary 4. If H ∈ HSh, then

SO(H) > 9
√
2h+ (

√
13−

√
2

2
)⌈
√
12h− 3⌉ − 3

√
13 +

9
√
2

2
.

4.3. The benzenoid systems have minimal value of Sombor index

As is known, for an H1 ∈ HSh with ni(H1) < 2h + 1 − ⌈
√
12h− 3⌉,

then there exists an H2 ∈ HSh with ni(H2) > ni(H1). Suppose that

ni(H2)− ni(H1) > a where a > 0. As shown in Example 3, and the proof

of Theorem 8, it is sufficient to show that r(H2) < r(H1) + 20a in order

to establish SO(H2) < SO(H1). This statement is generally true, but we

have not yet found an appropriate way to prove it. Thus, we propose the

following conjecture.

Conjecture 1. If H1 ∈ HSh with ni(H1) < 2h + 1 − ⌈
√
12h− 3⌉, then

there exists an H2 ∈ HSh with ni(H2) > ni(H1) such that SO(H2) <

SO(H1).

The correctness of the above conjecture means that the benzenoid sys-

tem attains the minimum of Sombor index is the anacondensed benzenoid

system.

Here, we address and rectify an error found in Theorem 5.3 in [3].

According to [3], the expression for TI(H) is given by:

TI(H) = (4φ2,3 + φ3,3)h+ (φ2,2 − 2φ2,3 + φ3,3)b(H)

+(φ3,3 − 2φ2,3)ni(H) + (6φ2,2 − 4φ2,3 − φ3,3).

Since H is a catacondensed benzenoid system, we analyze the term q =

2φ2,3 − φ2,2 − φ3,3 and find that:

• if q > 0, then φ2,2 − 2φ2,3 + φ3,3 < 0, and TI is minimized when

b(H) is maximized.

• Similarly, if q < 0, then φ2,2 − 2φ2,3 + φ3,3 > 0, and TI attains its

minimum when b(H) is minimized.

Therefore, the corrected statement of Theorem 5.3 in [3] is as follows.
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Theorem 11. Let TI be a topological index of the form (4). Let q =

2φ2,3 − φ2,2 − φ3,3. Then

(1) if q = 0, then TI is constant over anacondensed benzenoid system;

(2) if q > 0, then Vh(resp.Uh) attains the maximal (resp. minimal)

value of TI over anacondensed benzenoid system;

(3) if q < 0, then Uh(resp.Vh) attains the maximal (resp. minimal)

value of TI over anacondensed benzenoid system.

By combining (10) with Theorem 11, we guess that Uh, as defined in [3],

attains the minimum Sombor index.

In particular, in [3], Cruz et al. proved that there is a unique anacon-

densed benzenoid system with h = 3k(k− 1)+ 1, as depicted in the figure

below.

Fig. 7. The anacondensed benzenoid system with h = 3k(k − 1) + 1 when k = 3.

We use A0 to denote the anacondensed benzenoid system with h =

3k(k − 1) + 1. Since ni(A0) = 2h+ 1− ⌈
√
2h− 3⌉, by (13) and Theorem

2, we get

SO(A0) = 9
√
2h+ (2

√
13− 3

√
2)⌈

√
12h− 3⌉ − 6

√
13 + 12

√
2.

Let SOn−min(H) = 9
√
2h+(

√
13−

√
2
2 )⌈

√
12h− 3⌉−3

√
13+ 9

√
2

2 , which

represents the lower bound of the Sombor index of benzenoid systems, as

derived in Corollary 4. Let f(h) = SOn−min(H) and s(h) = SO(A0). We

can see f(h) and s(h) nearly overlap from the Fig. 8 (a). Let g(h) =

SO(A0) − SOn−min(H). From the Fig. 8 (b), we can see that g(h) is

growing slowly.



283

(a) (b)

Fig. 8. (a) show the function of f(h) and s(H), and (b) show the function of g(h).

To further demonstrate that SOn−min(H) is very close to the tight

lower bound of the Sombor index on the benzenoid system, let

t(h) =
SO(A0)− SOn−min(H)

SO(A0)

=
(
√
13− 5

√
2

2 )⌈
√
12h− 3⌉ − 3

√
13 + 15

√
2

2

9
√
2h+ (2

√
13− 3

√
2)⌈

√
12h− 3⌉ − 6

√
13 + 12

√
2
.

Since

lim
h→∞

(
√
13− 5

√
2

2 )⌈
√
12h− 3⌉ − 3

√
13 + 15

√
2

2

9
√
2h+ (2

√
13− 3

√
2)⌈

√
12h− 3⌉ − 6

√
13 + 12

√
2
= 0,

the difference between SO(A0) and SOn−min(H), when compared to

SO(A0), is almost negligible.

To sum up, we find that although the lower bound of the Sombor index

for the benzenoid systems obtained in Corollary 4 is not sharp, it appears

to differ very little from the true lower bound.
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