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Abstract

Let G be a simple graph. The Euler Sombor index of G is defined
as

EU(G) =
∑

xy∈E(G)

√
d2G(x) + d2G(y) + (dG(x)dG(y)),

where dG(x) denotes the degree of the vertex x, and the sum runs
over the set of edges of G. In this paper we determine the extremal
values of Euler Sombor index of tricyclic graphs.

1 Introduction

This paper considers only finite,connected and undirected graphs. Let G

be a graph with set of vertices V (G) and set of edges E(G). The degree

of the vertex x ∈ V is defined as the number of vertices adjacent to x,

and it is denoted by dG(x). The set of all neighbors of vertex x is NG(x).

If dG(x) = 1, then x is called a pendent vertex of G. If there is an edge

from vertex x to vertex y, we indicate this by writing xy (or yx). For

xy ∈ E(G), denote by G − xy the subgraph of G obtained from G by

deleting the edge xy. For two nonadjacent vertices x and y of G, denoted

by G+ xy the graph obtained from G by adding the edge xy. For graph-

theoretical notions and terminology used in the present paper, we refer the

reader to [2].

https://doi.org/10.46793/match.94-1.247K
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Topological indices characterize the molecular structure of a graph and

are called numerical parameters used to estimate physicochemical infor-

mation . The Euler Sombor index is introduced in [6,16], where the Euler

Sombor index is defined

EU(G) =
∑

xy∈E(G)

√
d2G(x) + d2G(y) + (dG(x)dG(y)). (1)

For other studies in the literature related to Euler Sombor index and other

Sombor related indices, see [1,4,7–11,13,15,17]. Especially in recent years,

a lot of work has been done on the extreme value problem of Sombor

index [3, 5, 14]. A connected graph of order n and size n + 2 is known

as a connected tricyclic graph [12]. Recently, Zhang and Zhao [18] are

characterized the minimum and maximum values of graphs of the Sombor

index among all tricyclic connected graphs of a given order. Inspired by

the studies, we are interested in the Euler Sombor index of tricyclic graphs.

In this paper, we aim to characterize connected tricyclic graphs with

minimum and maximum Euler Sombor index. For simplicity, let Gn,3 be

the set of all tricyclic graphs with n vertices.

2 Tricyclic graphs with minimum Euler

Sombor index

In this section, we study the tricyclic graphs with the minimum Euler

Sombor index.

Lemma 1. Let G be a connected graph and z ∈ V (G) such that dG(z) ≥
3. The two paths of G are zx1x2...xr−1xr and zy1y2...ys−1ys such that

dG(xr) = dG(ys) = 1 and dG(xi) = dG(yj) = 2 whenever 0 < i < r,

0 < j < s. Let G
′
= G− zy1 + xry1 . Then, EU(G

′
) < EU(G).

Proof. Let G1∗ = G − {x1,x2,...,xr, y1, y2,..., ys} and k = dG(z) ≥ 3. For

the proof of this inequality we consider three cases.
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Figure 1. G and G
′
in Lemma 1.

Case 1. If r > 1, s > 1,we have

EU(G)− EU(G
′
) =

∑
y∈NG1∗ (z)

(√
d2G(y) + k2 + dG(y)k

)

−
∑

y∈NG1∗ (z)

(√
d2G(y) + (k − 1)2 + (dG(y)(k − 1))

)
+

(√
k2 + 22 + 2k −

√
(k − 1)2 + 22 + 2(k − 1)

)
+

(√
22 + 12 + 2−

√
22 + 22 + 4

)
+

(√
k2 + 22 + 2k −

√
22 + 22 + 4

)
>

√
k2 + 22 + 2k +

√
22 + 12 + 2− 2

√
22 + 22 + 4

≥
√
19 +

√
7− 4

√
3 ≈ 0.0764 > 0

Case 2. If r = 1, s = 1,we get

EU(G)− EU(G
′
) =

∑
y∈NG1∗ (z)

(√
d2G(y) + k2 + dG(y)k

)

−
∑

y∈NG1∗ (z)

(√
d2G(y) + (k − 1)2 + (dG(y)(k − 1))

)
+

(√
k2 + 1 + k −

√
(k − 1)2 + 22 + 2(k − 1)

)
+

(√
k2 + 12 + k −

√
22 + 12 + 2

)
>

√
k2 + 12 + k −

√
(k − 1)2 + 22 + 2(k − 1).

Since
(
k2 + 12 + k

)
−
(
(k − 1)2 + 22 + 2(k − 1)

)
= k− 2 ≥ 1 for k ≥ 3,
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we have that
√
k2 + 12 + k −

√
(k − 1)2 + 22 + 2(k − 1) > 0.

Case 3. If r = 1, s > 1,we have

EU(G)− EU(G
′
) =

∑
y∈NG1∗ (z)

(√
d2G(y) + k2 + dG(y)k

)

−
∑

y∈NG1∗ (z)

(√
d2G(y) + (k − 1)2 + (dG(y)(k − 1))

)
+

(√
k2 + 1 + k −

√
(k − 1)2 + 22 + 2(k − 1)

)
+

(√
k2 + 22 + 2k −

√
22 + 22 + 4

)
>

√
k2 + 12 + k − 2

√
3 ≥

√
13− 2

√
3 ≈ 0.1414 > 0

Hence we get desired result.

Lemma 2. Let G be a connected graph and yz ∈ E(G) such that dG(y) ≥ 2

and dG(z) ≥ 3. For 0 < i < r, the path of G is zx1x2...xr−1xr such that

dG(xr) = 1 and dG(xi) = 2. Let G
′
= G − zy + yxr. Then, EU(G

′
) <

EU(G).

y

z
z xrx2x1

G

y

z
z xrx2x1

G
′

Figure 2. G and G
′
in Lemma 2.

Proof. Let G2∗ = G− {y, x1,x2,...,xr} and h = dG(y) ≥ 2, k = dG(z) ≥ 3.

We investigate the following two cases.

Case 1. If r > 1,we have

EU(G)− EU(G
′
) =

∑
y0∈NG2∗ (z)

(√
dG(y0)2 + k2 + dG(y0)k

)
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−
∑

y0∈NG2∗ (z)

(√
d2G(y0) + (k − 1)2 + (dG(y0)(k − 1))

)
+

(√
k2 + 22 + 2k −

√
(k − 1)2 + 22 + 2(k − 1)

)
+

(√
k2 + h2 + kh−

√
22 + h2 + 2h

)
+

(√
22 + 12 + 2−

√
22 + 22 + 4

)
>

(√
k2 + 22 + 2k −

√
(k − 1)2 + 22 + 2(k − 1)

)
+

√
7− 2

√
3

≥
√
19− 4

√
3 +

√
7 ≈ 0.0764 > 0

Case 2. If r = 1,we get

EU(G)− EU(G
′
) =

∑
y0∈NG2∗ (z)

(√
dGy20 + k2 + dG(y0)k

)

−
∑

y0∈NG2∗ (z)

(√
d2G(y0) + (k − 1)2 + (dG(y0)(k − 1))

)
+

(√
k2 + 1 + k −

√
(k − 1)2 + 22 + 2(k − 1)

)
+

(√
k2 + h2 + kh−

√
22 + h2 + 2h

)
>

√
k2 + 12 + k −

√
(k − 1)2 + 22 + 2(k − 1) > 0

Hence we complete the proof.

According to the lemmas, the minimum Euler Sombor index in Gn,3

must be a tricyclic graph with no pendent vertices. This is obtained by

finding the minimum Euler Sombor index in the base tricyclic graphs with

n vertices.

We know that there are precisely fifteen types of base tricyclic graphs

in the set of Gn,3, which are denoted by τi (i = 1, 2, ..., 15), respectively.

Definition 1. [18] Here lq ≥ 1 (q = 1,···, 5) is the length of the path con-

necting the cycles or the common path formed by the cycles and τni is the

set of n-vertex graphs in τi (i = 1, 5). τni (l1) is the set of n-vertex graphs in

τi(i = 2, 7, 8, 14). τni (l1, l2) is the set of n-vertex graphs in τi(i = 4, 6, 11).

τni (l1, l2, l3) is the set of n-vertex graphs in τi (i = 3, 9, 12). τni (l1, l2, l3, l4)
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is the set of n-vertex graphs in τi(i = 10, 13) and τn15 (l1, l2, l3, l4, l5) is the

set of n-vertex graphs in τ15.

When the values of the Euler Sombor indices of the graphs in these

subclasses are examined, it is seen that the minimum Euler Sombor index

is obtained in τn15 (1, 1, 1, 1, 1) over the set of base tricyclic graphs with n

vertices. (see Figure 3.)

1

n− 1

2

n

n− 2
3

Figure 3. τn15 (1, 1, 1, 1, 1).

Theorem 1. Let G ∈ Gn,3.Then, if Ω is the graph in τn15 (1, 1, 1, 1, 1), we

have

EU (G) ≥ 2
√
3n+ 5

√
3 + 2

√
19 = EU (Ω) .

Proof. From Lemma 1 and Lemma 2, we know that the minimum Eu-

ler Sombor index is obtained in τn15 (1, 1, 1, 1, 1). When τn15 (1, 1, 1, 1, 1) is

examined, it is seen that there are 5 neighboring vertices with degrees 3

and 3, 2 neighboring vertices with degrees 3 and 3, and n− 5 neighboring

vertices with degrees 2. Thus, we get

EU (Ω) = 5
√
27 + 2

√
19 + (n− 5)

√
12

= 2
√
3n+ 5

√
3 + 2

√
19.
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3 Tricyclic graphs with maximum

Euler Sombor index

In this section, we study the tricyclic graphs with the maximum Euler

Sombor index. The concept of contraction arises when we delete the edge

e = uv of a graph G and then define its ends. The resulting graph G/uv

has one less edge than G.

Lemma 3. Let G be a connected graph and xy ∈ E(G) such that dG(x) ≥ 2

and dG(y) ≥ 2. Note that NG(x) \ {y} ∩ NG(y) \ {x} = ∅. Let G
′
be a

graph obtained by contracting the edge xy to a vertex z, further adding a

pendent vertex adjacent to the vertex z. Then EU(G
′
) > EU(G).

Proof. Let c = dG(x) ≥ 2 and h = dG(y) ≥ 2. If EU(G) − EU(G
′
) is

represented by ∆1

∆1 =
∑

y0∈NG(x)\{y}

(√
d2G(y0) + c2 + (dG(y0)c)

)

−
∑

y0∈NG(x)\{y}

(√
d2G(y0) + (c+ h− 1)2 + (dG(y0)(c+ h− 1))

)

+
∑

y1∈NG(y)\{x}

(√
d2G(y1) + h2 + (dG(y1)h)

)

−
∑

y1∈NG(y)\{x}

(√
d2G(y1) + (c+ h− 1)2 + (dG(y1)(c+ h− 1))

)
+

(√
c2 + h2 + ch−

√
(c+ h− 1)2 + 12 + (c+ h− 1)

)
<

√
c2 + h2 + ch−

√
(c+ h− 1)2 + 12 + (c+ h− 1)

Since c = dG(x) ≥ 2 and h = dG(y) ≥ 2, we obtain EU(G
′
) > EU(G).
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Figure 4. G and G
′
in Lemma 3.

Lemma 4. Let ψ(x, y) =
√
x2 + y2 + xy −

√
(x+ 1)2 + y2 + (x+ 1)y,

where x ≥ 1 and y ≥ 1. Then for any value of y ≥ 1, ψ is decreasing as

a function of x and for any value of x ≥ 1, ψ is increasing as a function

of y.

Proof. The partial derivative of the function ψ about x is

∂ψ(x, y)

∂x
=

(2x+ y)
√
(x+ 1)2 + y2 + (x+ 1)y√

x2 + y2 + xy
√
(x+ 1)2 + y2 + (x+ 1)y

− (2x+ y + 2)
√
x2 + y2 + xy√

x2 + y2 + xy
√
(x+ 1)2 + y2 + (x+ 1)y

Since (2x+y)2
(
(x+ 1)2 + y2 + (x+ 1)y

)
−(2x+y+2)2

(
x2 + y2 + xy

)
= −3y2(2x+ y + 1) < 0 for x ≥ 1 and y ≥ 1, we get

(2x+ y)
√
(x+ 1)2 + y2 + (x+ 1)y − (2x+ y + 2)

√
x2 + y2 + xy < 0.

Hence we obtain ∂ψ(x,y)
∂x < 0 for x ≥ 1 and y ≥ 1.

The partial derivative of the function ψ about y is

∂ψ(x, y)

∂y
=

(2y + x)
√
(x+ 1)2 + y2 + (x+ 1)y√

x2 + y2 + xy
√
(x+ 1)2 + y2 + (x+ 1)y
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− (2y + x+ 1)
√
x2 + y2 + xy√

x2 + y2 + xy
√
(x+ 1)2 + y2 + (x+ 1)y

.

Since (2y+x)2
(
(x+ 1)2 + y2 + (x+ 1)y

)
−(2y+x+1)2

(
x2 + y2 + xy

)
= 3

(
2xy2 + y2 + x2y + xy

)
is greater than zero for x ≥ 1 and y ≥ 1, we

obtain ∂ψ(x,y)
∂y > 0.

Lemma 5. Let dG(x1) ≥ 2, dG(x2) ≥ 2, x1 ≥ x2 > s > 0 and c > 0.

Then,√
(x1 + s)2 + (x1 + s)c+ c2 +

√
(x2 − s)2 + (x2 − s)c+ c2

>
√
x12 + x1c+ c2

+
√
(x22 + x2c+ c2.

Proof. To prove the Lemma, it is sufficient to compare the increase in x1

with the increase in x2 in the inequality. In other words, since

∣∣s2 + 2sx1 + sc
∣∣ > ∣∣s2 − 2sx2 − sc

∣∣ ,
the desired result is obtained.

Corollary. Let dG(x) ≥ 2, dG(y) ≥ 2, and z > 0. Then,√
(x+ y − 1)2 + (x+ y − 1)z + z2 +

√
1 + z + z2 >

√
x2 + xz + z2

+
√
(y2 + yz + z2.

Proof. In Lemma 5., let x1 = x, x2 = y, s = y−1 and c = z, we get desired

result.

It is possible to identify non-adjacent vertices u and v of a graph G by

replacing these vertices with a single vertex w that is incident to all edges

in G that are incident to u or v.

Lemma 6. Let G be a connected graph and x, y, t ∈ V (G) such that xy/∈
E(G) such that dG(x) ≥ 2 and dG(y) ≥ 2. Note that NG(x)∩NG(y) = {t}.
Let G

′
be a graph obtained by identifying the vertices x, y and deleting one
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Figure 5. G and G
′
in Lemma 6.

edge of tx and ty, further adding a pendent vertex adjacent to the vertex

t. Then EU(G
′
) > EU(G).

Proof. Let c = dG(x) ≥ 2, h = dG(y) ≥ 2 and l = dG(t)

EU(G) − EU(G
′
) =

∑
y0∈NG(x)\{t}

(√
d2G(y0) + c2 + (dG(y0)c)

)

−
∑

y0∈NG(x)\{t}

(√
d2G(y0) + (c+ h− 1)2 + (dG(y0)(c+ h− 1))

)

+
∑

y1∈NG(y)\{t}

(√
d2G(y1) + h2 + (dG(y1)h)

)

−
∑

y1∈NG(y)\{t}

(√
d2G(y1) + (c+ h− 1)2 + (dG(y1)(c+ h− 1))

)
+

(√
c2 + l2 + cl +

√
h2 + l2 + hl

)
−

(√
(c+ h− 1)2 + l2 + (c+ h− 1)l +

√
12 + l2 + l

)
<

(√
c2 + l2 + cl +

√
h2 + l2 + hl

)
−

(√
(c+ h− 1)2 + l2 + (c+ h− 1)l +

√
12 + l2 + l

)
.

Bu using Corollary, we have EU(G)− EU(G
′
) < 0.

Remark. By Lemma 3 and Lemma 6, it is seen that a graph with maxi-

mum Sombor index in Gn,3 is of the form T14(n, p1, p2, q1, q2, q3) or

T15(n, q1, q2, q3, q4) (shown in [18]) where p1, p2, q1, q2, q3, q4 ≥ 0 are pen-

dent vertices such that p1+p2+q1+q2+q3 = n−5 and q1+q2+q3+q4 = n−4

respectively.
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Lets consider that ψ(x, y) = g(x, y) − g(x + 1, y),where g(x, y) =√
x2 + y2 + xy and x, y ≥ 1.

Lemma 7. Let n ≥ 5. For any values of p1, p2, q1, q2, q3 ≥ 0 and p1 +

p2 + q1 + q2 + q3 = n − 5. We obtain EU(T14(n, p1, p2, q1, q2, q3)) <

EU (T14(n, n− 5, 0, 0, 0, 0)) .

Proof. We distinguish the following four cases.

Case 1. Let p1 ≥ p2 ≥ 1. If

EU(T14(n, p1, p2, q1, q2, q3))− EU(T14(n, p1 + 1, p2 − 1, q1, q2, q3))

represented by δ1,

δ1 = p1[g(p1 + 4, 1)− g(p1 + 5, 1)]− p2[g(p2 + 3, 1)− g(p2 + 4, 1)]

+ [g(p2 + 3, 1)− g(p1 + 5, 1)] + [g(p1 + 4, p2 + 4)− g(p1 + 5, p2 + 3)]

+ [g(p1 + 4, q1 + 2)− g(p1 + 5, q1 + 2)]

− [g(p2 + 3, q1 + 2)− g(p2 + 4, q1 + 2)]

+ [g(p1 + 4, q2 + 2)− g(p1 + 5, q2 + 2)]

− [g(p2 + 3, q2 + 2)− g(p2 + 4, q2 + 2)]

+ [g(p1 + 4, q3 + 2)− g(p1 + 5, q3 + 2)]

− [g(p2 + 3, q3 + 2)− g(p2 + 4, q3 + 2)]

= [p1ψ(p1 + 4, 1)− p2ψ(p2 + 3, 1)]

+ [ψ(p1 + 4, q1 + 2)− ψ(p2 + 3, q1 + 2)]

+ [ψ(p1 + 4, q2 + 2)− ψ(p2 + 3, q2 + 2)]

+ [ψ(p1 + 4, q3 + 2)− ψ(p2 + 3, q3 + 2)]

+ [g(p2 + 3, 1)− g(p1 + 5, 1)] + [g(p1 + 4, p2 + 4)− g(p1 + 5, p2 + 3)]

< [g(p1 + 4, p2 + 4)− g(p1 + 5, p2 + 3)]

By using Lemma 4, we get [g(p1+4, p2+4)−g(p1+5, p2+3)] < 0. Hence

we get EU(T14(n, p1, p2, q1, q2, q3)) < EU(T14(n, p1 + 1, p2 − 1, q1, q2, q3)).

Case 2. Let q1 ≥ q2 ≥ 1.

If EU(T14(n, p1, 0, q1, q2, q3))−EU(T14(n, p1, 0, q1 + 1, q2 − 1, q3)) rep-
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resented by δ2,

δ2 = g(p1 + 4, q1 + 2))− g(p1 + 4, q1 + 3) + g(p1 + 4, q2 + 2))

− [g(p1 + 4, q2 + 1) + g(4, q1 + 2)− g(4, q1 + 3)

+ g(4, q2 + 2)− g(4, q2 + 1)

By using Lemma 4, we get

EU(T14(EU(T14(n, p1, 0, q1, q2, q3)) < EU(T14(n, p1, 0, q1 + 1, q2 − 1, q3)).

Case 3. Let p1 ≥ q1 ≥ 1. If EU(T14(n, p1, 0, q1, 0, 0))−EU(T14(n, p1 +

1, 0, q1 − 1, 0, 0)) represented by δ3,

δ3 = p1[g(p1 + 4, 1)− g(p1 + 5, 1)] + q1[g(q1 + 2, 1)− g(q1 + 1, 1)]

+ g(p1 + 4, q1 + 2)− g(p1 + 5, q1 + 1) + g(q1 + 1, 1)− g(p1 + 5, 1)

+ 2[g(p1 + 4, 2)− g(p1 + 5, 2)] + g(p1 + 4, 4)− g(p1 + 5, 4)

+ g(4, q1 + 2)− g(4, q1 + 1)

< g(p1 + 4, q1 + 2)− g(p1 + 5, q1 + 1)

By using Lemma 4, we obtain

EU(T14(n, p1, 0, q1, 0, 0)) < EU(T14(n, p1 + 1, 0, q1 − 1, 0, 0)).

Case 4. Let q1 ≥ p1 + 1. If EU(T14(n, p1, 0, q1, 0, 0))− EU(T14(n, p1 −
1, 0, q1 − 1, 0, 0)) represented by δ4,

δ4 = q1[g(q1 + 2, 1)− g(q1 + 3, 1)]− p1[g(p1 + 3, 1)− g(p1 + 4, 1)]

+ [g(p1 + 3, 1)− g(q1 + 3, 1)] + 2[g(p1 + 4, 2)− g(p1 + 3, 2)]

+ [g(q1 + 2, 4)− g(p1 + 3, 4)]− [g(p1 + 3, 4)− g(p1 + 4, 4)]

+ [g(p1 + 4, q1 + 2)− g(p1 + 3, q1 + 3)]

= [q1ψ(q1 + 2, 1)− p1ψ(p1 + 3, 1)] + [ψ(q1 + 2, 4)− ψ(p1 + 3, 4)]

+ [g(p1 + 3, 1)− g(q1 + 3, 1)] + 2[g(p1 + 4, 2)− g(p1 + 3, 2)]

+ [g(p1 + 4, q1 + 2)− g(p1 + 3, q1 + 3)]
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< [g(p1 + 4, p2 + 4)− g(p1 + 5, p2 + 3)]

By using Lemma 4 and q1 ≥ p1 + 1,we have

q1ψ(q1 + 2, 1)− p1ψ(p1 + 3, 1) ≤ (p1 + 1)ψ(p1 + 3, 1)− p1ψ(p1 + 3, 1)

= ψ(p1 + 3, 1)

= g(p1 + 3, 1)− g(p1 + 4, 1),

ψ(q1 + 2, 4)− ψ(p1 + 3, 4) ≤ 0,

and

2[g(p1 + 4, 2)− g(p1 + 3, 2)] < 2[g(p1 + 4, 1)− g(p1 + 3, 1)].

Hence we get

δ4 < [g(p1 + 3, 1)− g(p1 + 4, 1)] + 2[g(p1 + 4, 1)− g(p1 + 3, 1)]

+ [g(p1 + 4, q1 + 2)− g(p1 + 3, q1 + 3)]

< [g(p1 + 4, q1 + 2)− g(p1 + 3, q1 + 3)] < 0.

Thus, we see that the graph of the form T14(n, p1, p2, q1, q2, q3) with

maximum value of the Euler Sombor index is T14(n, n− 5, 0, 0, 0, 0) or

T14(n, 0, 0, n− 5, 0, 0).(see Figure 6)

Using the graph structures, we can see that

EU(T14(n, n− 5, 0, 0, 0, 0)) = (n− 5)
√

(n− 1)2 + 12 + n− 1

+ 3
√
(n− 1)2 + 22 + 2(n− 1)

+
√
(n− 1)2 + 42 + 4(n− 1) + 6

√
7,

EU(T14(n, 0, 0, n− 5, 0, 0)) = (n− 5)
√

(n− 3)2 + 12 + n− 3

+ 2
√
(n− 3)2 + 42 + 4(n− 3)

+
√
42 + 42 + 16 + 8

√
7



260

and

EU(T14(n, 0, 0, n− 5, 0, 0)) < EU(T14(n, n− 5, 0, 0, 0, 0)).

Figure 6. T14(n, n− 5, 0, 0, 0, 0) and T14(n, 0, 0, n− 5, 0, 0).

Similarly, it is seen that EU(T15(n, q1, q2, q3, q4)) < EU(T15(n, n −
4, 0, 0, 0, 0)) is valid for n ≥ 4, q1, q2, q3, q4 ≥ 0 and q1+q2+q3+q4 = n−4.

Lemma 8. Let n ≥ 5. Then, we have

EU (T15(n, n− 4, 0, 0, 0)) < EU(T14(n, n− 5, 0, 0, 0, 0).

Proof. If EU(T14(n, n − 5, 0, 0, 0, 0)) − EU (T15(n, n− 4, 0, 0, 0)) repres-

ented by ∆, we get

∆ = 3
√

(n− 1)2 + 22 + 2(n− 1)

+
√
(n− 1)2 + 42 + 4(n− 1) + 6

√
7

− 3
√
(n− 1)2 + 32 + 3(n− 1)

−
√
(n− 1)2 + 12 + (n− 1)− 9

√
3

If g(n) = 3
(√

(n− 1)2 + 22 + 2(n− 1)−
√
(n− 1)2 + 32 + 3(n− 1)

)
,

g(n) is increasing for n ≥ 5 by Lemma 4. Thus we have

g(n) ≥ g(5) = 6
√
7− 3

√
37.
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Then,

∆ > 12
√
7− 3

√
37− 5

√
3−

√
21 > 0.

Hence we get the desired result.

Theorem 2. Let G ∈ Gn,3 and n ≥ 5. Then we have

EU(G) ≤ (n− 5)
√
(n− 1)2 + 12 + n− 1

+ 3
√
(n− 1)2 + 22 + 2(n− 1)

+
√
(n− 1)2 + 42 + 4(n− 1) + 6

√
7.

The equality holds if and only if G is isomorphic to the graph EU(T14(n, n−
5, 0, 0, 0, 0)).

Proof. By using Lemma 3,6,7 and 8, it is easy to see the proof.
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