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Abstract

The Sombor index for graphs is given by Gutman in 2021. Since
Hypergraphs can more accurately describe certain chemical sce-
narios. Then it has been proposed to generalize the Sombor in-
dex from graphs to hypergraphs. Recently, Shetty and Bhat de-
fined the Sombor index SO(H) of a hypergraph H as SO(H) =∑
ei∈E(H)

√ ∑
u∈ei

dH(u)2, where dH(u) is the degree of the vertex u of

H. In this paper, we study the Sombor indices of uniform hyper-
graphs by hypergraph operations. The extremal hypergraph with
minimum Sombor index is obtained among uniform hypertrees with
maximum degree ∆ ≥ 3, and the corresponding value of mini-
mum Sombor index is also obtained. Furthermore, we consider the
Sombor index for uniform unicyclic hypergraphs. The extremal hy-
pergraph with maximum(minimum) Sombor index for uniform uni-
cyclic hypergraphs is given, and the corresponding values for maxi-
mum(minimum) Sombor index are also given.
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https://doi.org/10.46793/match.94-1.229L


230

1 Introduction

Let H=(V,E) be a connected hypergraph with vertex set V = {v1,
v2, · · · , vn} and hyperedge set E = {e1, e2, · · · , em}. A walk in a hy-

pergraph is a sequence of vertices and hyperedges, (v1, e1, v2, e2, v3, · · · ,
et−1, vt) with vi−1, vi ∈ ei and vi−1 ̸= vi. A walk w in a hypergraph H is

called a path in H if all ei’s and all vi’s are distinct in w, and its length is

t−1. A walk w in a hypergraph H is called a cycle in H if all ei’s and vi’s

are distinct except v1 = vt, and its length is t. The length of the shortest

cycle in H is called the girth. Two vertices in a hypergraph are adja-

cent if there is a hyperedge which contains both vertices. A hypergraph is

connected if for any pair of vertices, there is a path which connects these

vertices. A hypergraph is k-uniform if it has k vertices in every hyperedge.

If k = 2, the hypergraph is a graph. A hypergraph is linear if its any two

hyperedges have at most one vertex in common. The degree of a vertex

u in H is the number of hyperedges that contain u, denoted by dH(u).

The largest of degrees of all vertices in H is called the maximum degree,

denoted by ∆. In a k-uniform hypergraph, denote by H − e a subgraph

of H obtained from H by deleting the hyperedge e ∈ E. For two nonad-

jacent vertices u and v of H, denote by H + e the hypergraph obtained

from H by adding the hyperedge e containing u and v and adding another

k − 2 vertices to e. For a hyperedge e containing vertex u, denote by e\u
the remaining vertices removing u from e. For the hyperedges containing

u, denote by {ei|u ∈ ei}\e1 the remaining hyperedges removing e1 from

{ei|i = 1, 2, · · · , d(u), u ∈ ei}.
Hu, Qi and Shao [6] defined the power hypergraph as Definition 1.

Definition 1. [6] Let G = (V,E) be a 2-uniform graph. For any k ≥ 3,

the kth power of G, Gk = (V k, Ek) is defined as the power hypergraph

with the set of edges Ek = {e⋃{ie,1, · · · , ie,k−2} | e ∈ E}, and the set of

vertices V k = V ∪ {ie,1, · · · , ie,k−2, e ∈ E}.
From Definition 1. we can obtain the definition of hypertrees as fol-

lowing.

Definition 2. Let G = (V,E) be a 2-uniform tree. For any k ≥ 3, the

kth power of G, Gk = (V k, Ek) is defined as the hypertree with the set
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of edges Ek = {e⋃{ie,1, · · · , ie,k−2} | e ∈ E}, and the set of vertices

V k = V ∪ {ie,1, · · · , ie,k−2, e ∈ E}.
A hypertree is said to be star-like if it has exactly one vertex of degree

greater than two. A hyperedge e is said to be a pendent hyperedge if it

has a vertex of degree greater than or equal two and degree of every other

vertex in e is one. A vertex x is said to be the neighbor of a vertex u in H

if u and x are in the same hyperedge in H. A hyperedge e in H becomes

a vertex of e, called contraction of e in H.

Based on an alternative interpretation of vertex-degree-based topolog-

ical indices, and consider their chemical applications. Gutman [4] defined

a new vertex-degree-based graph invariant, named ”Sombor index” of a

graph G, denoted by SO(G), i.e.

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

Since then, Sombor index of graphs have been widely studied. Horold-

abva and Xu [5] gave the sharp lower and upper bounds on SO(G) of

connected graphs, and characterized the corresponding extremal graph.

Das and Gutman [3] obtained bounds on SO(G) of trees in terms of order,

independence number, and number of pendent vertices, and characterized

the corresponding extremal graph. Alidadi, Parsian and Arianpoor [1]

obtained the minimum Sombor index for unicyclic graphs with fixed di-

ameter. Li, Wang and Zhang [7] characterized the extremal graph with

respect to Sombor index among all the n-vertex trees with given diame-

ter. Chen, Li and Wang [2] obtained the extremal values of the Sombor

index of trees with some given parameters, including matching number,

pendant vertices, bipartition, diameter, segment number and branching

number. Sepehr and Rad [8] obtained r-degree connected graphs with

integer Sombor index for r ∈ {5, 6, 7}.
Since hypergraphs offer a more accurate depiction of certain chemical

scenarios, such as transition states in reactions, which involve multiple

atoms simultaneously changing their bonding conffgurations. Recently,

Shetty and Bhat [9] consider to generalize the idea of vertex degree-based

topological indices from graphs to hypergraphs, and defined the Sombor
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index SO of a hypergraph H as

SO(H) =
∑
ei∈E

√∑
u∈ei

dH(u)2,

where dH(u) is the degree of the vertex u of H. They gave the bounds for

the Sombor index of hypergraphs and bipartite hypergraphs and obtained

the extremal hypergraphs among the class of uniform, linear and general

hypertrees. In addition, Wang [10] et al. also generalized the definition of

Sombor index of hypergraphs and obtained several upper and lower bounds

of the Sombor index of uniform hypergraphs, including those of hypertrees.

They also presented a Nordhaus-Gaddum type result for the Sombor index

of uniform hypergraphs. Along this direction, we continue to focus on the

Sombor index(defined by Shetty and Bhat) for uniform hypergraphs, and

will compare some similar results with the Sombor index defined by Wang

et al.

Unless otherwise specified, the hypergraphs studied here are all lin-

ear. This paper is organized as follows. In the Section 1, some necessary

notations and concepts are presented. Then in the Section 2, we obtain

the extremal hypergraph with the minimum Sombor index of k-uniform

hypertrees of order n with maximum degree ∆ ≥ 3, and give the corre-

sponding value of minimum Sombor index. Finally, in the Section 3, we

obtain the extremal hypergraph with maximum (minimum) Sombor index

for uniform unicyclic hypergraphs, and give the corresponding value of

maximum (minimum) Sombor index.

2 Minimum Sombor index for uniform hy-

pergraphs

In this section, we obtain the extremal hypergraph with minimum Som-

bor index of uniform hypertrees of order n with maximum degree ∆ ≥ 3,

and give the corresponding value of minimum Sombor index.

Let P = ue1u1e2 · · · etut be a path of length t inH such that dH(u) ≥ 3,

dH(ut) = 1 and dH(ui) = 2 for i = 1, 2, · · · , t − 1. Then it is called a
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pendent path in H, u and t are called the origin and the length of P . A

vertex with degree one is called a core vertex and a vertex with degree

larger than one is called an intersection vertex. We first give a hypergraph

operation I that can decrease the Sombor index as follows.

Lemma 1. Let H is a connected k-uniform linear hypergraph of order

n. Let P and Q be two pendent hyperpaths with origins u and v in H,

respectively. Let x be the intersection vertex in neighbor vertices of u

in P and y be a core vertex of the pendent hyperedge e in Q. Denote

H
′
= H − e1 + e2, where e1 is the hyperedge containing u and x and e2 is

the hyperedge containing x and y as depicted in Fig. 1. Then SO(H) >

SO(H
′
).

u

v

x

y

e1
· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · ·

· · ·
H1

z

P

Q

e

u

v

x
· · · ·

· · · · · · ·

· · ·

· · ·
H1

P

Q

e2 · · ·

H H
′

Figure 1. Hypergraph operation I

Proof. Let z be the intersection vertex of the pendent hyperedge in Q.

Suppose first that u ̸= v. Then

SO(H)− SO(H
′
)

=
∑

ei∈{ej |u∈ej}\e1

√
dH(u)2 +

∑
w∈ei\u

dH(w)2

+
√
dH(u)2 + (k − 2) + dH(x)2

+
√
(k − 1) + dH(z)2 −

∑
ei∈{ej |u∈ej}\e1

√
(dH(u)− 1)2 +

∑
w∈ei\u

dH(w)2

−
√
dH(x)2 + (k − 2) + 22 −

√
(k − 2) + 22 + dH(z)2 ,

(1)



234

which implies that

SO(H)− SO(H
′
) >

√
dH(u)2 + (k − 2) + dH(x)2 +

√
dH(z)2 + k − 1

−
√
(k − 2) + 22 + dH(x)2

−
√
dH(z)2 + (k − 2) + 22 .

(2)

Also by the fact dH(u) ≥ 3, it follows that

SO(H)− SO(H
′
) >

√
(k + 7) + dH(x)2 − (

√
dH(z)2 + (k − 2) + 4

−
√
dH(z)2 + (k − 2) + 1)−

√
(k − 2) + dH(x)2 + 22 .

Let us consider a function f(t) =
√
t2 + 4 + a −

√
t2 + 1 + a, where a is

any real number, and one can easily see that f(t) is decreasing on [0,+∞).

Since dH(z) ≥ 2 and f(t) is decreasing, we have

SO(H)− SO(H
′
) >

√
k + 7 + dH(x)2 −

√
k + 6 +

√
k + 3

−
√

k + 2 + dH(x)2 .

It’s easy to observe that dH(x) ≤ 2. If dH(x) = 1, then we have SO(H)−
SO(H

′
) >

√
k + 8 −

√
k + 6 +

√
k + 3 −

√
k + 3 > 0. Hence SO(H) >

SO(H
′
). If dH(x) = 2, then we have SO(H) − SO(H

′
) >

√
k + 11 −√

k + 6+
√
k + 3−

√
k + 6 . Next we need to prove that

√
k + 11−

√
k + 6+√

k + 3−
√
k + 6 > 0. Since k > −2 , we have k2 +14k+33 > k2 +10k+

25 ⇒
√
(k + 3)(k + 11) > k + 5 ⇒ 2

√
(k + 3)(k + 11) > 2k + 10 ⇒

2k + 14 + 2
√

(k + 3)(k + 11) > 4k + 24 ⇒
√
k + 11 +

√
k + 3 > 2

√
k + 6,

so
√
k + 11−

√
k + 6 +

√
k + 3−

√
k + 6 > 0. Hence SO(H) > SO(H

′
).

u(v) x
· · · · · · · · ·· · ·H1

P

···

yQ

e3 · ·
·

e2

Figure 2. H
′

Following assume that u = v. If the length of Q is one, let e3 (Fig. 2) be
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the hyperedge containing v and y, then u = z and

SO(H)− SO(H
′
)

=
∑

ei∈{ej |u∈ej}\{e1,e3}

√
dH(u)2 +

∑
w∈ei\u

dH(w)2

+
√
dH(u)2 + (k − 1) +

√
dH(u)2 + (k − 2) + dH(x)2

−
∑

ei∈{ej |u∈ej}\{e1,e3}

√
(dH(u)− 1)2 +

∑
w∈ei\u

dH(w)2

−
√

(dH(u)− 1)2 + (k − 2) + 22 −
√
(k − 2) + 22 + dH(x)2 .

(3)

Next we need to prove that SO(H)− SO(H
′
) > 0. We get√

dH(u)2 + (k − 2) + dH(x)2 >
√
(k − 2) + 22 + dH(x)2,

since dH(u) > 2. We also easily know that

∑
ei∈{ej |u∈ej}\{e1,e3}

√
dH(u)2 +

∑
v∈ei\u

dH(v)2

>
∑

ei∈{ej |u∈ej}\{e1,e3}

√
(dH(u)− 1)2 +

∑
v∈ei\u

dH(v)2 .

Now we just need to prove that√
dH(u)2 + (k − 1) >

√
(dH(u)− 1)2 + (k − 2) + 22.

Since dH(u) > 2, we have dH(u)2 + k − 1 > dH(u)2 − 2dH(u) + k + 3,

so
√
dH(u)2 + (k − 1) >

√
(dH(u)− 1)2 + (k − 2) + 22. Thus we have

SO(H)− SO(H
′
) > 0.
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u(v) x
· · · · · · · · ·· · ·H1

P

···

x
′

Q

e4

···

···

···

···z

y

···

e2

Figure 3. H
′

If the length of Q is greater than one, let x
′
be the intersection vertex

in neighbor vertices of v in Q. Let e4 (Fig. 3) be the hyperedge containing

v and x
′
. Hence

SO(H)− SO(H
′
)

=
∑

ei∈{ej |u∈ej}\{e1,e4}

√
dH(u)2 +

∑
w∈ei\u

dH(w)2

+
√
dH(u)2 + (k − 2) + dH(x)2

+
√

dH(u)2 + (k − 2) + dH(x′)2 +
√
dH(z)2 + k − 1

−
∑

ei∈{ej |u∈ej}\{e1,e4}

√
(dH(u)− 1)2 +

∑
w∈ei\u

dH(w)2

−
√

(dH(u)− 1)2 + (k − 2) + dH(x′)2

−
√
(k − 2) + 22 + dH(x)2 −

√
dH(z)2 + (k − 2) + 22 .

(4)

(4) can be scaled in the same way as (1) to obtain (2), i.e.

SO(H)− SO(H
′
) >

√
dH(u)2 + (k − 2) + dH(x)2 +

√
dH(z)2 + k − 1

−
√
(k − 2) + 22 + dH(x)2

−
√
dH(z)2 + (k − 2) + 22 .

Based on the above discussion of (2), we can get SO(H) > SO(H
′
).
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Theorem 3. Let H be a k-uniform linear hypertree of order n with max-

imum degree ∆ ≥ 3.

(i) If 2∆ ≤ n−1
k−1 , then

SO(H) ≥ ∆(
√
∆2 + (k + 2) +

√
k + 3 )

+ (
n− 1

k − 1
− 2∆)

√
k + 6

(5)

with equality if and only if H is isomorphic to a k-uniform linear star-

like hypertree of order n with maximum degree ∆, where the intersection

vertices in neighbor vertices of the maximum degree vertex have degree 2.

(ii) If 2∆ > n−1
k−1 , then

SO(H) ≥ (2∆− n− 1

k − 1
)
√
∆2 + (k − 1)

+ (
n− 1

k − 1
−∆)(

√
∆2 + k + 2 +

√
k + 3 )

(6)

with equality if and only if H is isomorphic to a k-uniform linear star-like

hypertree of order n with maximum degree ∆ in which the maximum degree

vertex has exactly 2∆− n−1
k−1 pendent hyperedges.

Proof. Let SO(H) be minimum in the class of k-uniform linear hypertrees

of order n with maximum degree ∆ and w be a maximum degree vertex

of H. Now we prove that H is isomorphic to a k-uniform linear star-like

hypertree of order n with maximum degree ∆. If not there is a pendent

hyperpath ue1u1e2 · · · esus such that u ̸= w. Clearly there is a pendent

vertex z( ̸= us) in H. Then SO(H) > SO(H−e1+e2) by Lemma 1, where

e1 is the hyperedge containing u and u1 and e2 is the hyperedge containing

u1 and z, and it contradicts the fact that SO(H) is minimum. Hence H

is a k-uniform linear star-like hypertree of order n with maximum degree

∆. Let t be the number of pendent hyperedges of w.

If t = ∆, then SO(H) = ∆
√
∆2 + (k − 1) .

If t < ∆, then SO(H) = t
√
∆2 + (k − 1)+(∆−t)

√
∆2 + 22 + (k − 2)+

(∆ − t)
√
22 + (k − 1) . When a = k − 2 in f(t), then SO(H) = t(f(2) −

f(∆)) + ∆(
√
∆2 + k + 2 +

√
k + 3)− t

√
k + 6.

If t = 0, then SO(H) = ∆(
√
∆2 + k + 2+

√
k + 3 )+(n−1

k−1−2∆)
√
k + 6 .
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Since t = 2∆− n−1
k−1 , then we have

SO(H) = t(f(2)− f(∆)) + ∆(
√
∆2 + (k + 2) +

√
k + 3 )

+ (
n− 1

k − 1
− 2∆)

√
k + 6.

(7)

Since f is a decreasing function and ∆ ≥ 3, we have f(2) > f(∆). However,
n−1
k−1 represents the number of hyperedges in H, and the magnitude of 2∆

cannot be determined. Therefore we distinguish the following two cases.

(i) If 2∆ ≤ n−1
k−1 , then t = 0. Hence from (7), we easily get the inequal-

ity (5) and with equality if and only if H is isomorphic to a k-uniform

linear star-like hypertree of order n with maximum degree ∆, where the

intersection vertices in neighbor vertices of the maximum degree vertex

have degree 2.

(ii) If 2∆ > n−1
k−1 , then we easily get the inequality (6) from (7) and

with equality if and only if H is isomorphic to a k-uniform linear star-

like hypertree of order n with maximum degree ∆ in which the maximum

degree vertex has exactly 2∆− n−1
k−1 pendent hyperedges.

From the above Theorem 3, we easily obtain the following result in [5].

Corollary. [5] Let G be a connected graph of order n with maximum degree

∆ ≥ 3.

(i) If 2∆ ≤ n− 1 then

SO(G) ≥ ∆(
√

∆2 + 4 +
√
5 ) + 2(n− 2∆− 1)

√
2

with equality if and only if G is isomorphic to a star-like tree of order n

with maximum degree ∆ in which all neighbors of the maximum degree

vertex have degree two.

(ii) If 2∆ > n− 1 then

SO(G) ≥ (n− 1−∆)(
√
∆2 + 4 +

√
5 ) + (2∆− n+ 1)

√
∆2 + 1

with equality if and only if G is isomorphic to a star-like tree of order n

with maximum degree ∆ in which the maximum degree vertex has exactly

2∆− n+ 1 pendent neighbors.
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Let Cn be a k-uniform linear cycle of order n. Denote by Cn,1 the hy-

pergraph obtained by attaching one pendent hyperedge to an intersection

vertex of Cn−(k−1).

Theorem 4. Let SO(H) be minimum in the class of connected k-uniform

linear unicyclic hypergraphs of order n, where the length of the cycle is g. If

H is different from Cn, then H is isomorphic to the unicyclic hypergraph,

where the length of the cycle is g, that has exactly one pendent path.

Proof. If g = n
k−1 −1, then H is isomorphic to Cn,1 and hence the theorem

holds. Let g ≤ n
k−1−2 andH is not isomorphic to the unicyclic hypergraph

that has exactly one pendent path of length at least two. Then repeatedly

using the operation in Lemma 1, we get the required result.

The following result easily follows from Theorem 4.

Theorem 5. Let H be a connected k-uniform linear unicyclic hypergraph

of order n which is different form Cn. Then SO(Cn) < SO(H).

Proof. Let g be the length of the cycle in H. Suppose that SO(H) is

minimum in the class of linear k-uniform unicyclic hypergraphs of length

g order n. Since H is different form Cn, H is isomorphic to the k-uniform

linear unicyclic of length g order n that has exactly one pendent path by

Theorem 4. If g = n
k−1 − 1, then H is isomorphic to Cn,1 and it follows

that

SO(Cn,1) = (g − 2)
√
22 + 22 + k − 2 + 2

√
22 + 32 + k − 2

+
√
22 + k − 1

= (
n

k − 1
− 3)

√
k + 6 + 2

√
k + 11 +

√
k + 3.

Next we need to prove that SO(Cn,1) > SO(Cn), where

SO(Cn) =
n

k−1

√
22 + 22 + (k − 2) = n

k−1

√
k + 6 .

We can easily know that
√
k + 11 >

√
k + 6. Since k > −2, we have√

k + 11 +
√
k + 3 > 2

√
k + 6. So we have SO(Cn,1) > SO(Cn).

If g ≤ n
k−1 − 2, then H is isomorphic to the k-uniform linear unicyclic

of length g order n that has exactly one pendent path of length at least
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two and it follows that

SO(H) = (
n

k − 1
− 4)

√
22 + 22 + k − 2 + 3

√
22 + 32 + k − 2

+
√

22 + k − 1 = (
n

k − 1
− 4)

√
k + 6 + 3

√
k + 11 +

√
k + 3 .

Next we need to prove that SO(H) > SO(Cn) =
n

k−1

√
k + 6 . Now we just

need to prove that 3
√
k + 11+

√
k + 3− 4

√
k + 6 > 0 . Since k > −2 , we

have 3
√
k + 11+

√
k + 3 > 4

√
k + 6 , so −4

√
k + 6+3

√
k + 11+

√
k + 3 > 0

. So we have SO(Cn) < SO(H) .

3 Maximum Sombor index for uniform

hypergraphs

In this section, we obtain the extremal hypergraph with maximum

Sombor index for k-uniform unicyclic hypergraphs of order n, and give the

corresponding value of maximum Sombor index.

We first give a hypergraph operation II that can increase the Sombor

index as follows.

Lemma 2. Let H be a connected k-uniform linear hypergraph of order n.

Let e be a non-pendent hyperedge that is not on any cycles in H, where e

contains vertices u and v in H. Denote by H
′
the hypergraph obtained by

the contraction of e onto its endpoint u ∈ e and adding a pendent hyperedge

e
′
to u and adding another k − 1 vertices to e

′
. Then SO(H) < SO(H

′
).

Proof. Let M = {ei|u ∈ ei}\{e} = {e1, e2, · · · , es}, where {u, ui} ⊆ {ei},
i = 1, 2, · · · , s. LetN = {ei|v ∈ ei}\{e} = {e′

1, e
′

2, · · · , e
′

t}, where {v, vi} ⊆
{e′

i}, i = 1, 2, · · · , t. Then dH(u) = s + 1 and dH(v) = t + 1. Since e is

a non-pendent hyperedge that is not on any cycles in H, we have st > 0.

Then
SO(H

′
)− SO(H)

=

s∑
i=1

√
(s+ t+ 1)2 + (k − 2) + dH(ui)2
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+

t∑
j=1

√
(s+ t+ 1)2 + (k − 2) + dH(vj)2

+
√
(s+ t+ 1)2 + (k − 1)−

s∑
i=1

√
(s+ 1)2 + (k − 2) + dH(ui)2

−
t∑

j=1

√
(t+ 1)2 + (k − 2) + dH(vj)2 −

√
(s+ 1)2 + (k − 2) + (t+ 1)2

>
√
(s+ t+ 1)2 + (k − 1)−

√
(s+ 1)2 + (k − 2) + (t+ 1)2 .

So we have SO(H) < SO(H
′
).

Lemma 3. Let H be a connected k-uniform linear hypergraph of order n

with m hyperedges that are not on any cycles in H. If SO(H) is maximum

in the class of connected k-uniform linear hypergraphs of order n with m

hyperedges that are not on any cycles in H, then all m hyperedges that are

not on any cycles in H are pendent.

Proof. Suppose, on the contrary, thatH contains a non-pendent hyperedge

e that is not on any cycles in H. Let H
′
be the hypergraph obtained by the

contraction of e (u ∈ e) onto the vertex u and adding a pendent hyperedge

e
′
to u and adding another k − 1 vertices to e

′
. Then SO(H) < SO(H

′
)

by Lemma 2. Therefore, we have a contradiction to the assumption that

SO(H) is maximum in the class of k-uniform linear connected hypergraphs

of order n with m hyperedges that are not on any cycles in H.

Particularly, if the hypergraph is a k-uniform hypertree, by Lemma 2

we can get the following result of [9].

Corollary. [9] Let T be a k-uniform hypertree with m hyperedges. Then

SO(T ) ≤ m
√
m2 + k − 1

with equality if and only if T is k-uniform hyperstar.

Remark. Compare to the generalized definition of Sombor index for hy-

pergraphs [10], we see that the extremal hypergraph of a k-uniform hyper-

tree is consistent with the one under this definition.
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Lemma 4. Let H be a connected k-uniform linear unicyclic hypergraph of

order n = g(k−1)+m(k−1), k ≥ 1 vertices with m ≥ 3 pendent hyperedges,

where the length of the cycle is g. H
′
is the hypergraph obtained from H

by attaching one pendent hyperedge on vertex ui to vertex uj, 1 ≤ i, j ≤ g.

Then SO(H
′
) > SO(H).

· · ·

··· · · ·

··
·

· ·
·

v1

v2

v3

vg

· · ·

··
·

···

···

···

· · ·

Figure 4. H
′

Proof. We assume, without loss of generality, that ui = u1, uj = u2 as

depicted in Fig. 4. Denote by u1, u2, · · · , ug the intersection vertices of

the cycle in H. For simplicity’s sake we denote dH(ui) = di, i = 1, 2, · · · , g.
Let d1 ≤ d2 ≤ · · · ≤ dg. Then

SO(H)− SO(H
′
)

=
√

d21 + d22 + k − 2 + · · ·+
√
d2g + d21 + k − 2

+ (d1 − 2)
√
d21 + k − 1 + · · ·+ (dg − 2)

√
d2g + k − 1

−
√

(d1 − 1)2 + (d2 + 1)2 + k − 2−
√
(d2 + 1)2 + d23 + k − 2

− · · · −
√
d2g + (d1 − 1)2 + k − 2

− (d1 − 3)
√
(d1 − 1)2 + k − 1− (d2 − 1)

√
(d2 + 1)2 + k − 1− · · ·

=
√
d21 + d22 + k − 2 +

√
d22 + d23 + k − 2 +

√
d2g + d21 + k − 2

−
√
(d1 − 1)2 + (d2 + 1)2 + k − 2−

√
(d2 + 1)2 + d23 + k − 2

−
√
d2g + (d1 − 1)2 + k − 2 + (d1 − 2)

√
d21 + k − 1

+ (d2 − 2)
√
d22 + k − 1− (d1 − 3)

√
(d1 − 1)2 + k − 1
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− (d2 − 1)
√

(d2 + 1)2 + k − 1. (8)

We will show that SO(H)− SO(H
′
) < 0 by showing that√

d21 + d22 + k − 2 <
√
(d1 − 1)2 + (d2 + 1)2 + k − 2 , (9)

√
d22 + d23 + k − 2 +

√
d2g + d21 + k − 2

<
√
(d2 + 1)2 + d23 + k − 2 +

√
d2g + (d1 − 1)2 + k − 2 ,

(10)

(d1 − 2)
√
d21 + k − 1 + (d2 − 2)

√
d22 + k − 1

(d1 − 3)
√

(d1 − 1)2 + k − 1 + (d2 − 1)
√
(d2 + 1)2 + k − 1 ,

(11)

as follows.

First we prove (9), that is, prove d21+d22+k−2 < d21+d22−2d1+2d2+k.

The inequality d21 + d22 + k − 2 < d21 + d22 − 2d1 + 2d2 + k is equivalent to

d1 − d2 < 1. Since d1 ≤ d2, we have d1 − d2 < 1. So (9) holds.

Next we prove (10). Let d1 = x, d2 = y, d3 = z, dg = w, k − 2 = m.

The inequality (10) is equivalent to√
y2 + z2 +m+

√
w2 + x2 +m <

√
w2 + (x− 1)2 +m

+
√
(y + 1)2 + z2 +m,

which is √
y2 + z2 +m−

√
(y + 1)2 + z2 +m

− (
√
w2 + (x− 1)2 +m−

√
w2 + x2 +m ) < 0.

(12)

Set binary function P (a, b) =
√
a2 + b2 +m −

√
(a+ 1)2 + b2 +m ,

where m is any real number. So the inequality (12) is equivalent to

P (y, z)− P (x− 1, w) < 0. (13)

It’s easy to verify that P
′

a < 0 and P
′

b > 0 , where P
′

a and P
′

b stand for

partial derivative. Since x − 1 ≤ y ≤ z ≤ w, we have (13) holds. So (10)

holds.
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Finally, we prove (11). Let d1 = x, d2 = y, k − 1 = t. The inequality

(11) is equivalent to

(x− 2)
√

x2 + t− (x− 3)
√
(x− 1)2 + t

− [ (y − 1)
√
(y + 1)2 + t− (y − 2)

√
y2 + t ] < 0.

(14)

Set the function Q(a) = (a− 2)
√
a2 + t− (a− 3)

√
(a− 1)2 + t , where

t is any real number, and one can easily see that Q(a) is increasing on [0,

+∞). Then the inequality (14) is equivalent to

Q(x)−Q(y + 1) < 0. (15)

Since x ≤ y + 1, so (15) holds. So (11) holds.

Theorem 6. Let H be a connected k-uniform linear unicyclic hypergraph

on n = g(k− 1)+m(k− 1) vertices with m ≥ 3 hyperedges that are not on

the cycle in H and the girth is g. Then

SO(H) ≤ 2
√
(m+ 2)2 + k + 2 + (g − 2)

√
k + 6 +m

√
(m+ 2)2 + k − 1

(16)

with equality if and only if H is isomorphic to the hypergraph obtained by

attaching m pendent hyperedges to an intersection vertex of the cycle in

H.

Proof. Let Cg be the cycle in H. Denote by Un,m the hypergraph obtained

by attaching m pendent hyperedges to an intersection vertex of Cg. If H

is isomorphic to Un,m, then the equality holds in (16). Suppose that H

is not isomorphic to Un,m and SO(H) is maximum among all k-uniform

linear unicyclic hypergraphs on n = g(k − 1) + m(k − 1), k ≥ 1 vertices

with m ≥ 3 hyperedges that are not on Cg, where the length of Cg is

g. Then by Lemma 3, H is isomorphic to a hypergraph such that each

pendent hyperedge is attached to the unique cycle.

Denote by u1, u2, · · · , ug the intersection vertices of Cg. For simplicity’s

sake we denote dH(ui) = di, i = 1, 2, · · · , g. Let d1 ≤ d2 ≤ · · · ≤ dg. Let m

be the number of pendent hyperedges inH. Then, we have 2 ≤ di ≤ m+2 ,

d1 + d2 + · · ·+ dg = 2g +m.
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Now let H
′
be the hypergraph obtained from H by attaching one pen-

dent hyperedge on vertex ui to vertex uj , 1 ≤ i, j ≤ g. We assume, without

loss of generality, that ui = u1, uj = u2. We have SO(H) < SO(H
′
) by

Lemma 4.

In a similar way, we attach one pendent hyperedge on vertex ui to

vertex uj , 1 ≤ i, j ≤ g, where di ≤ dj . Continuing with the operation, we

obtain that H is isomorphic to Un,m.

We know that a connected graph is obtained from a k-uniform con-

nected hypergraph where k = 2. From the above Theorem, we easily

obtain the following result in [5].

Corollary. [5] Let G be a unicyclic graph of order n with girth g. Then

SO(G) ≤ 2
√
(n− g + 2)2 + 4 + (n− g)

√
(n− g + 2)2 + 1 + 2

√
2(g − 2)

with equality if and only if G is isomorphic to the graph obtained by at-

taching n− g pendent edges to a vertex of Cg.

4 Conclusion

By the definition of the Sombor index given by Shetty and Bhat [9], we

mainly consider the Sombor indices of uniform hypergraphs by hypergraph

operations. Among all uniform hypertrees with maximum degree ∆ ≥ 3,

the extremal hypergraph with minimum Sombor index is obtained, and

the corresponding value of minimum Sombor index is also obtained. In

addition, for uniform unicyclic hypergraphs the extremal hypergraph with

maximum(minimum) Sombor index is given, and the corresponding values

for maximum(minimum) Sombor index are also given. We note that for

uniform hypertree with given hyperedges the extremal hypergraph with

maximum Sombor index is consistent with the one under the definition of

the Sombor index for hypergraphs given by Wang et al. [10].
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