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Abstract

For a connected graph G, the Wiener index W and the Harary
index H are defined as W =

∑
u,v d(u, v) and H =

∑
u,v 1/d(u, v),

respectively. In this paper, the product W · H is first extended to
hypergraphs. We determine the unique k-uniform hypergraphs with
maximum, minimum and second minimumW ·H-value, respectively.

1 Introduction

Let G be a k-uniform hypergraph with V (G) and E(G), where every edge

contains exactly k vertices for an integer k ≥ 2. When k = 2, G is an

ordinary graph. The degree d(v) of v is the number of edges of G that

contain v. A vertex of degree one is called a pendent vertex. An edge is

called a pendent edge if it contains exactly k − 1 vertices of degree one.
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A path P from u to v is a vertex-edge alternative sequence:u = u1, e1,

u2, e2, ..., us, es, us+1 = v such that (a) u1, u2, ..., us+1 are distinct vertices;

(b)e1, e2, ..., es are distinct edges; (c) ui, ui+1 ∈ ei for i = 1, 2, ..., s. The

integer s is the length of the path. The path P is called a pendant path

at u1, if d(u1) ≥ 2, d(ui) = 2 for i = 2, ..., s, d(w) = 1 for w ∈ ei\{ui, ui+1}
with 1 ≤ i ≤ s, and d(us+1) = 1. The distance d(u, v) between two vertices

u and v in G is the minimum length of a path which connects u and v.

In particular, d(u, u) = 0. The diameter of G is the maximum distance

between all vertex pairs of G. The Wiener index W (G) and the Harary

index H(G) of a graph G are defined as

W (G) =
∑

{u,v}⊆v(G)

d(u, v), H(G) =
∑

{u,v}⊆v(G)

1

d(u, v)
.

respectively. The product of Wiener and Harary index is denoted by W ·
H(G).

The Wiener index has a long history since 1947 when Wiener intro-

duced this parameter as the path number [12]. There are rich results for

ordinary graphs and hypergraphs on this index [2,3,6,7,10]. For analogous

data on Harary index see [4, 8, 9, 11, 13]. Recently, Gutman et al. [5] have

obtained a lower bound for general connected graphs. Azjargal et al. [1]

characterized the respective species with minimum W ·H for all graphs of

order n and size m. However, almost no results on the product W ·H of

hypergraphs have been obtained. This paper is a new attempt to study

on this topic and it is likely to attract more and more attention in the

nearest future. In this paper, we attempt to determine the maximum and

the minimum W ·H-value for k-uniform hypergraphs.

2 Preliminaries

In this section, we introduce some definitions and lemmas, which will be

used to prove our main results.

For X ⊆ V (G), let G − X be the sub-hypergraph of G obtained by

deleting all vertices in X and all edges containing at least one vertex in

X. Removing v ∈ e from the e is called v-shrinking on e.
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For X ⊆ V (H) with X ̸= ∅, let G[X] be the sub-hypergraph induced

by X, that is, G[X] has vertex set X and edge set {e ⊆ X : e ∈ E(G)}.
For positive integers p, q, and a k-uniform hypergraph G, let Gu(p, q)

be the k-uniform hypergraph obtained from G by attaching two pendant

paths of length p and q at u, respectively, and Gu(p, 0) be the k-uniform

hypergraph obtained from G by attaching a pendant path of length p at

u.

We define a function of n− 1 variables as following:

f (x1, x2, ..., xn−1) =

(
n−1∑
i=1

ixi

)(
n−1∑
i=1

xi

i

)

where x1, x2, ..., xn−1 are nonnegative integers.

Lemma 2.1 [1] Let n and d be given integers such that 2 ≤ d ≤ n− 1.

Then

f(x1, ..., xd−1, xd︸ ︷︷ ︸
d

, 0, ..., 0) > f(x1, ..., xd−1 + xd︸ ︷︷ ︸
d−1

, 0, ..., 0),

Let d be the diameter of G. Suppose that d > 2. Denote by pi the number

of distinct pairs of vertices whose distance in G is exactly i. Then the

Wiener index W and the Harary index H are represented as W (G) =∑d
i=1 ipi, H(G) =

∑d
i=1

pi

i , respectively. In addition, we have

W ·H = f(p1, ..., pd−1, pd︸ ︷︷ ︸
d

, 0, ..., 0),

Lemma 2.2 [1] Let pk be positive integer such that 1 ≤ k ≤ d. Then

f(p1, ..., pd−1, pd︸ ︷︷ ︸
d

, 0, ..., 0) > f(p1, ..., pd−1 + pd︸ ︷︷ ︸
d−1

, 0, ..., 0),

> ... > f(p1,

d∑
i=2

pi, 0, ..., 0).

For a k-uniform hypergraph G and positive integers s and t, let Gu(s, t)

be the k-uniform hypergraph obtained from G by attaching two pendant
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paths S of length s and T of length t at u. Let G∗
u(s+t) be the hypergraph

obtained from G by attaching s+ t pendant edges.

Lemma 2.3 Let G be a connected k-uniform hypergraph with

|E(G)| ≥ 1, u ∈ V (G). For integers s ≥ t ≥ 1, W · H(Gu(s, t)) >

W ·H(G∗
u(s+ t).

Proof. Let P = (u, e1, u1, ..., us−1, es, us) and Q = (u, e′1, v1, ..., vt−1, e
′
t, vt)

be the two pendant paths of Gu(s, t) at u of lengths s and t, respectively.

Let G∗
u(s+t) be the hypergraph obtained from G by attaching s+t pendant

edges at u.

Let A = G[V (S)∪ V (T )∪ {u}] be the sub-hypergraph of Gu(s, t), and

A∗ = G∗[V (S) ∪ V (T ) ∪ {u}] be the sub-hypergraph of G∗
u(s + t). Note

that

W ·HGu(s,t)(G) = W ·HG∗
u(s+t)(G)

Denote by pi the number of distinct pairs of vertices whose distance in A is

exactly i. We deduce that p1 = (k−1)(s+ t), p2 = (k−1)2(s+ t−1), p3 =

(k − 1)2(s+ t− 2), ..., pd−1 = 2(k − 1)2, pd = (k − 1)2.

d∑
i=2

pi = (k − 1)2(s+ t− 1) + (k − 1)2(s+ t− 2) + ...+ 2(k − 1)2

+ (k − 1)2

= (k − 1)2[s+ t− 1 + (s+ t− 2) + ...+ 2 + 1]

= (k − 1)2
(
s+ t

2

)
By Lemma 2.2, we have

f((k − 1)(s+ t), (k − 1)2(s+ t− 1), ..., 2(k − 1)2, (k − 1)2︸ ︷︷ ︸
d

, 0, ..., 0) >

f((k − 1)(s+ t), (k − 1)2
(
s+t
2

)
, 0, ..., 0).

Note that

W ·HGu(s,t)(A) > W ·HG∗
u(s+t)(A

∗)

Let d be the diameter of G and v be a vertex in G. Suppose that there
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is a path between v and u. Let mi be the number of paths between u and

v with distance i, for 1 ≤ i ≤ d.

Denote by pmi+j the number of distinct pairs of vertices whose distance

between v and w ∈ V (A)\{u} is exactly mi+j. For Gu(s, t), suppose that

s ≥ t, we deduce that pmi = mi(k − 1)2, pmi+1 = 2mi(k − 1)2, pmi+2 =

2mi(k − 1)2, ..., pmi+t = 2mi(k − 1)2, pmi+t+1 = mi(k − 1)2, pmi+t+2 =

mi(k − 1)2, ..., pmi+s = mi(k − 1)2.

Denote by p′j the number of distinct pairs of vertices whose distance

between v and w ∈ V (A∗) is exactly j. We deduce that p′mi
= mi(k −

1)2, p′mi+1 = (s+ t)mi(k − 1)2.

s∑
j=1

pmi+j = 2mi(k − 1)2 + ...+ 2mi(k − 1)2︸ ︷︷ ︸
t

+ mi(k − 1)2 + ...+mi(k − 1)2︸ ︷︷ ︸
s

= (2t+ s)mi(k − 1)2

> (t+ s)mi(k − 1)2

By Lemma 2.2, for v ∈ V (G), we have

∑
u∈V (A)

d(u, v)
∑

u∈V (A)

1

d(u, v)
>

∑
u∈V (A∗)

d(u, v)
∑

u∈V (A∗)

1

d(u, v)

Further, we have the following conclusion

B1 =
∑

v∈V (G)\{u},u∈V (A)

d(u, v)
∑

v∈V (G)\{u},u∈V (A)

1

d(u, v)

>
∑

v∈V (G)\{u},u∈V (A∗)

d(u, v)
∑

v∈V (G)\{u},u∈V (A∗)

1

d(u, v)
= B2

Since

W ·H(Gu(s, t)) = W ·HGu(s,t)(G) +W ·HGu(s,t)(A) +B1

W ·H(G∗
u(s+ t)) = W ·HG∗

u(s+t)(G) +W ·HG∗
u(s+t)(A

∗) +B2
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Thus we have W ·H(Gu(s, t)) > W ·H(G∗
u(s+ t)).

For a k-uniform hypertree G of order n with m edges, if there is a

disjoint partition of the vertex set V (G) = {u} ∪ V1 ∪ ... ∪ Vm such that

|V1| = ... = |Vm| = k− 1, and E(G) = {{u}∪Vi : 1 ≤ i ≤ m}, then we call

G is a k-uniform hyperstar (with center u), denoted by Sm,k.

For a k-uniform hypergraph G with u, v ∈ e ∈ E(G). For positive

integers s and t, let Gu,v(s, t) be the k-uniform hypergraph obtained from

G by attaching a pendant path S of length s at u and a pendant path T

of length t at v. Let G∗
u(s + t) be the hypergraph obtained from G by

attaching a hyperstar Ss+t,k at u.

Lemma 2.4 LetG be a connected k-uniform hypergraph with |E(G)| ≥
2, u, v ∈ e ∈ E(G). For integers s ≥ t ≥ 1, W · H(Gu,v(s, t)) >

W ·H(G∗
u(s+ t)).

Proof. For a k-uniform hypergraph G with u, v ∈ e ∈ E(G), let G∗
u,v(s, t)

be the k-uniform hypergraph obtained from G by attaching a hyper-

star Ss,k at u and a hyperstar St,k at v. By Lemma 2.3, we have W ·
H(Gu,v(s, t)) > W ·H(G∗

u,v(s, t)).

Let A = G∗[V (Ss,k)∪V (St,k)∪{e}] be the sub-hypergraph of G∗
u,v(s, t),

and A∗ = G∗[V (Ss+t,k) ∪ {e}] be the sub-hypergraph of G∗
u(s + t). Note

that

W ·HG∗
u,v(s,t)

(G) = W ·HG∗
u(s+t)(G)

Denote by pi the number of distinct pairs of vertices whose distance in A

is exactly i. For the sub-hypergraph A of G∗
u,v(s, t), suppose that s ≥ t,

we deduce that p1 = (k− 1)(s+ t+1), p2 = (k− 1)2[
(
s
2

)
+
(
t
2

)
+ s+ t], p3 =

(k − 1)2(st).

Denote by p′i the number of distinct pairs of vertices whose distance

in A∗ is exactly i. We deduce that p′1 = (k − 1)(s + t + 1), p′2 = (k −
1)2[

(
s+t
2

)
+ s+ t].

d∑
i=2

pi = (k − 1)2
[(

s

2

)
+

(
t

2

)
+ s+ t

]
+ (k − 1)2(st)
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= (k − 1)2
[(

s

2

)
+

(
t

2

)
+ s+ t+ st

]
> (k − 1)2

[(
s+ t

2

)
+ s+ t

]
By Lemma 2.2, we have

f

(
(k − 1)(s+ t+ 1), (k − 1)2

[(
s

2

)
+

(
t

2

)
+ s+ t

]
, (k − 1)2(st), 0, ..., 0

)

> f

(
(k − 1)(s+ t+ 1), (k − 1)2

[(
s+ t

2

)
+ s+ t

]
, 0, ..., 0

)
.

Note that

W ·HG∗
u(s,t)

(A) > W ·HG∗
u(s+t)(A

∗)

Let d be the diameter of G and w be a vertex in G. Suppose that there is

a path between w and u. Let mi be the number of paths between w and

u with distance i, for 1 ≤ i ≤ d. Suppose that there is a path between w

and v. Let nj be the number of paths between w and v with distance j,

for 1 ≤ j ≤ d.

Denote by pk the number of distinct pairs of vertices whose distance

between w and w′ ∈ V (A) \ {u, v} is exactly k. We deduce that pmi+1 =

mi(s+1)(k− 1)2, pmi+2 = mit(k− 1)2, pnj+1 = nj(t+1)(k− 1)2, pnj+2 =

njs(k − 1)2.

Denote by p′k the number of distinct pairs of vertices whose distance

between w and w′ ∈ A∗ \ {u, v} is exactly k. We deduce that p′mi+1 =

mi(s+ t+ 1)(k − 1)2, p′nj+1 = nj(k − 1)2, p′nj+2 = nj(s+ t)(k − 1)2.

d∑
i=2

pi = mi(s+ 1)(k − 1)2 +mit(k − 1)2 + nj(t+ 1)(k − 1)2

+ njs(k − 1)2

= (k − 1)2[(mi + nj)s+ (mi + nj)t+mi + nj)]

= (k − 1)2[mi(s+ t+ 1) + nj + nj(s+ t)]
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By Lemma 2.2, for w ∈ V (G), we have

∑
w′∈V (A)

d(w,w′)
∑

w′∈V (A)

1

d(w,w′)
=

∑
w′∈V (A∗)

d(w,w′)
∑

w′∈V (A∗)

1

d(w,w′)

Further, we have the following conclusion

C1 =
∑

w∈V (G)\V (e),w′∈V (A)

d(w,w′)
∑

w∈V (G)\V (e),w′∈V (A)

1

d(w,w′)

=
∑

w∈V (G)\V (e),w′∈V (A∗)

d(w,w′)
∑

w∈V (G)\V (e),w′∈V (A∗)

1

d(w,w′)
= C2

Since

W ·H(G∗
u(s, t)) = W ·HG∗

u(s,t)
(G) +W ·HG∗

u(s,t)
(A) + C1

W ·H(G∗
u(s+ t)) = W ·HG∗

u(s+t)(G) +W ·HG∗
u(s+t)(A

∗) + C2

Then we have W ·H(G∗
u(s, t)) > W ·H(G∗

u(s+ t)).

Thus W ·H(Gu,v(s, t)) > W ·H(G∗
u(s+ t)).

3 Hypertrees with small W · H-value

In this section, we will obtain the unique k-uniform hypertrees with mini-

mum, second minimum W ·H, respectively.

Theorem 3.1 Form ≥ 1, let T be a k-uniform hypertree withm edges.

Then W ·H(T ) ≥ W ·H(Sm,k) with equality if and only if T ∼= Sm,k.

Proof. It is trivial if m ≤ 2. Suppose that m ≥ 3. Let T be a k-uniform

hypertree with minimum W ·H-value.

Let d be the diameter of T . Obviously, d ≥ 2. Suppose that d ≥ 3.

Let P = (v0, e1, v1, ..., vd−1, ed, vd) be a diametral path of T and ed−1 =

{vd−2, w1, ..., wk−2, wk−1}, where wk−1 = vd−1. The edges associated with

wi are only pendant edges if exit, and there may be many pendant edges

at wi, forming a star with centre wi for 1 ≤ i ≤ k − 1.

Let Si be the star with centre wi for 1 ≤ i ≤ k − 1. Denote by mi the

number of edges in Si for 1 ≤ i ≤ k − 1. Let G = T [V (T ) \ V (S1 ∪ S2) ∪
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{w1} ∪ {w2}], then Gw1,w2(m1,m2) ∼= T . By moving edges in S2 from w2

to w1, we get a k-uniform graph Gw1(m1 +m2). By Lemma 2.4, we have

Gw1,w2(m1,m2) > Gw1(m1 +m2).

Repeat the process above, we get a k-uniform graph G′
w1

(
k−1∑
i=1

mi

)
with G′ = T [V (T ) \ V (Si) ∪ {wi}] for 1 ≤ i ≤ k − 1. By the prove of

Lemma 2.4, we have Gw1(m1 +m2) > G′
w1

(
k−1∑
i=1

mi

)
.

Let E = E(S1 ∪ S2... ∪ Sk−1) for 1 ≤ i ≤ k − 1. By moving each edge

in E from w1 to vd−2, we get a k-uniform hypertree T ′. By Lemma 2.4,

then W ·H
(
G′

w1

(
k−1∑
i=1

mi

))
> W ·H(T ′) ,thus W ·H(T ) > W ·H(T ′),

a contradiction.

Thus d = 2, implying that T ∼= Sm,k.

When k = 2, the conclusion of Theorem 3.1 is exactly the result of [5].

Corollary 3.1 [5] For a 2-uniform hypertree T with m edges. Then

W ·H(T ) ≥ W ·H(Sm,2) with equality if and only if T ∼= Sm,2.

For m ≥ 3 and 1 ≤ a ≤ m− 1, let Dm,k,a be the k-uniform hyper-

tree obtained from vertex-disjoint Sa,k with center u and Sm−a,k with

center v by adding k − 2 new vertices w1, ..., wk−2 and an edge e =

{u, v, w1, ..., wk−2}.
Theorem 3.2 For m ≥ 3, let T be a k-uniform hypertree with m

edges. Suppose that T ̸∼= Sm,k. Then W · H(T ) > W · H(Dm,k,2) with

equality if and only if T ∼= Dm,k,2.

Proof. It is trivial if m ≤ 3. Suppose that m ≥ 4. Let T be a k-uniform

hypergraph with m edges nonisomorphic to Sm,k with minimum W · H-

value.

Let d be the diameter of T . Since T ̸∼= Sm,k,we have d ≥ 3. By

similar argument as in the proof of Theorem 3.1, we have d = 3. Then

W ·H(T ) > W ·H(Dm,k,a).

For the k-uniform hypergraph Dm,k,a, suppose that a ≥ 3 and a −
1 ≥ m − a. Denote by pi the number of distinct pairs of vertices whose

distance in Dm,k,a is exactly i. We deduce that p1 = m(k − 1), p2 =[(
a
2

)
+
(
m−a+1

2

)]
(k − 1)2, p3 = (a− 1)m−a(k − 1)2.
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Denote by p′i the number of distinct pairs of vertices whose distance in

Dm,k,2 is exactly i. We deduce that p1 = m(k − 1), p2 =
[(

m−2
2

)
+ 1
]
(k −

1)2, p3 = (m− 2)(k − 1)2.

3∑
i=2

pi =

[(
a

2

)
+

(
m− a+ 1

2

)]
(k − 1)2 + (a− 1)m−a(k − 1)2

= (k − 1)2
[(

a

2

)
+

(
m− a+ 1

2

)
+ (a− 1)m−a

]
> (k − 1)2

[(
m− 2

2

)
+ 1 + (m− 2)

]
By Lemma 2.2, we have

f

(
(k − 1)m, (k − 1)2

[(
a

2

)
+

(
m− a+ 1

2

)]
, (k − 1)2(a− 1)m−a, 0, ..., 0

)

> f

(
(k − 1)m, (k − 1)2

[(
m− 2

2

)
+ 1

]
, (k − 1)2(m− 2), 0, ..., 0

)
.

Note that

W ·H(Dm,k,a) > W ·H(Dm,k,2)

Since W · H(T )>W · H(Dm,k,a) and T ̸∼= Sm,k, we have W · H(T )>W ·
H(Dm,k,2).

4 Hypertrees with large W · H-value

In this section, we shall present the unique k − uniform hypertrees with

maximum W ·H-value.

For a k-uniform hypertree G with V (G) = {v1, ..., vk, ..., v(m−1)(k−1)+k},
if E(G) = {e1, ..., em}, where ei = {v(i−1)(k−1)+1, ..., v(i−1)(k−1)+k} for

i = 1, ...,m, then we call G a k-uniform loose path, denoted by Pm,k.

For positive integers△,m ,with 1 ≤ △ ≤ m. Let B△
m,k be the k-uniform

hypertree obtained from vertex-disjoint hyperstar S△,k with center u and

loose path Pm−△,k with an end vertex v by identifying u and v. In par-

ticular, B△
m,k

∼= Pm,k if △ = 1, 2.
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Lemma 4.1 Let T be a k-uniform hypertree with m edges and maxi-

mum degree △, where 1 ≤ △ ≤ m. Then W ·H(T ) ≤ W ·H(B△
m,k) with

equality if and if T ∼= B△
m,k.

Proof. It is trivial if △ = 1. Suppose that △ ≥ 2. Let T be a k-uniform

hypertree with m edges and maximum degree △ having maximum W ·H-

value.

Let u be a vertex of T with degree △.

Case1. △ ≥ 3.

Suppose that there are at least two vertices of degree at least 3 in T .

Choose a vertex v of degree at least 3 such that d(u, v) is as large as pos-

sible. Let T ′
1, T

′
2, ..., T

′
d(v) be the components by applying the v-shrinking

on E(v) and Ti = T [V (T ′
i ) ∪ {v}] for 1 ≤ i ≤ d(v). So T1, T2, ..., Td(v)

are the sub-hypergraphs of T . Suppose without loss of generality that

u ∈ V (T1). Suppose that Ti is not a pendant path at v for 2 ≤ i ≤ d(v).

Then there is at least one edge in Ti with at least three vertices of de-

gree 2. We choose such an edge e = {w1, w2, ..., wk} by requiring that

d(v, w1) is as large as possible, where d(v, w1) = d(v, wj)−1 for 2 ≤ j ≤ k.

Then there are two pendant paths at different vertices of e, say P at

wp and Q at wq, where 2 ≤ p < q ≤ k. Let p and q with p, q ≥ 1

be the length of P and Q,respectively. Then T ∼= Gwp,wq (p, q) with

G = T [V (T ) \ V (P ∪ Q) ∪ {wp, wq}]. Note that d(wp) = d(wq) = 1 in

Gwp,wq (p, q). Suppose without loss of generality that p ≥ q. Obviously,

T ′ = Gwp,wq (p + q, 0) is a k-uniform hypertree with maximum degree △.

By the prove of Lemma 2.4, we haveW ·H(T ) < W ·H(T ′), a contradiction.

Thus Ti is a pendant path at v for 2 ≤ i ≤ d(v). Let li be the lengths

of the pendant path Ti at v, where 2 ≤ i ≤ d(v) and li ≥ 1. Suppose

without loss of generality that l2 ≥ l3. Then T ∼= G′
v(l2, l3), where G′ =

T [V (T ) \ V (T2 ∪ T3) ∪ {v}]. Note that T ′′ = G′
v(l2 + l3, 0) is a k-uniform

hypertree with maximum degree △. By the prove of Lemma 2.3, W ·
H(T ′) < W · H(T ′′), a contradiction. Thus u is the unique vertex of

degree at least 3 in T .

Let G′
1, G

′
2, ..., G

′
△ be the components by applying the u-shrinking on

E(u) and Gi = T [V (G′
i) ∪ {u}] for 1 ≤ i ≤ △. So G1, G2, ..., G△ are the

sub-hypergraphs of T .
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By similar argument as above, Gi is a pendant path at u for 1 ≤ i ≤ △.

Suppose that there are at least two pendant paths of length at least 2 at

u, say Gi and Gj are such two paths with lengths s and t respectively,

where 1 ≤ i < j ≤ △. Then T ∼= Gu(s, t) with G = T [V (T ) \ V (Gi ∪Gj)].

Suppose without loss of generality that s ≥ t. Then T ∗ = Gu(s+1, t−1) is

a k-uniform hypertree with maximum degree △. By the prove of Lemma

2.3, we have W · H(T ) < W · H(T ∗), a contradiction. Thus there is at

most one pendant path of length at least 1, implying that T ∼= B△
m,k.

Case2. △ = 2. Suppose that T ̸∼= B2
m,k.Then there is an edge in

T with at least three vertices of degree 2. We choose such an edge e =

{w1, ..., wk} in T by requiring that d(u,w1) is as large as possible, where

d(u,w1) = d(u,wj)−1 for 2 ≤ j ≤ k. Then there are two pendent paths at

different vertices of e, say P at wp and Q at wq, where 2 ≤ q < p ≤ k. Let

p and q with p, q ≥ 1 be the lengths of P and Q, respectively.Then T ∼=
Gwp,wq

(p, q) with G = T [V (T ) \ V (P ∪Q)∪ {wp, wq}]. Note that d(wp) =

d(wq) = 1. Suppose without loss of generality that p ≥ q. Obviously,

T ′ = Gwp,wq
(p + q, 0) is a k-uniform hypertree with maximum degree 2.

By the prove of Lemma 2.3 ,we haveW ·H(T ) < W ·H(T ′), a contradiction.

Thus there are at most two vertices of degree 2 in each edge, implying that

T ∼= B2
m,k. Combining Cases 1 and 2, we complete the proof.

Theorem 4.2 For m ≥ 1, let T be a k-uniform hypertree with m edges

and n vertices. Then W ·H(T ) ≤ W ·H(Pm,k) with equality if and only

if T ∼= Pm,k.

Proof. It is trivial if m = 1, 2. Suppose that m ≥ 3. Let T be a k-

uniform hypertree with m edges with maximum W · H-value. Let △ be

the maximum degree of T . Then by Theorem 4.1, T ∼= B△
m,k. Suppose

that △ ≥ 3, then by Lemma 2.3, we have W ·H
(
B△

m,k

)
< W ·H

(
B△−1

m,k

)
,

a contradiction. Then △ = 2, and thus T ∼= B2
m,k

∼= Pm,k.

When k = 2, the conclusion of Theorem 4.2 is exactly the result of [5].

Corollary 4.1 [5] For a 2-uniform hypertree T with m edges. Then

W ·H(T ) ≤ W ·H(Pm,2) with equality if and only if T ∼= Pm,2.
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years latter, Croat. Chem. Acta 75 (2002) 847–868.
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