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Abstract

This article reports the spatio-temporal dynamics of a diffusive
enzyme-catalyzed system. When spatial diffusion is absent, we per-
form the stability analysis and explore the Hopf bifurcation of the
system. We also determine the stability of the periodic solution
resulting from the Hopf bifurcation. In what follows, for the dif-
fusive enzyme-catalyzed system, the precise occurrence conditions
of the Turing instability are given. Finally, some complex pattern
phenomena of the system are observed. The main contributions of
this paper are: (1) The types of positive equilibrium are classified
by adjusting the range of control parameter. (2) The strict Tur-
ing instability domain is outlined, theoretically. (3) Some complex
pattern phenomena of the enzyme-catalyzed reaction system are ob-
served by utilizing the numerical approach.

1 Introduction

Turing pattern formation is one of the important investigation fields in

the nonlinear reaction-diffusion systems owing to the pioneering work of

∗Corresponding author.
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Turing [1]. Chemical reaction systems are usually used to explore spa-

tiotemporal pattern formation so that we can figure out the complex non-

linear dynamic of the systems [2–5]. Recently, much attention has been

paid to exploring the complex spatiotemporal dynamic profiles of enzyme-

catalyzed reactions. A typical enzyme-catalyzed reaction takes the form:

{
du
dt = α− F1(u, v)− F3(u),
dv
dt = β (F1(u, v)− F2(v)) ,

(1)

where u and v are the concentrations of the substrate S and product P ,

respectively, please refer to the reaction scheme diagram Fig. 1; F1(u, v)

represents the rate law function of the substrate S and product P , which

satisfies F1(0, v) = 0, ∂F1/∂u > 0 and ∂F1/∂v > 0 for u > 0 and v >

0; moreover, F2(v) and F3(u) are sink rate functions of product P and

substrate S, respectively; they are nonnegative, namely, F2(v) ≥ 0 and

F3(u) ≥ 0 are valid in the enzyme-catalyzed reaction (1) for u > 0 and

v > 0. The parameters α and β are positive kinetics constants. For more

explanations with respect to this reaction scheme please refer to Refs. [6,7].

Figure 1. Reaction scheme diagram of the system (1) by involving
three enzymes, where S is substrate and P describes the
product. (This diagram can be also found in [6, 7].)

Let us recall some existing results with respect to (1). When β =

1, F1(u, v) = umv, F2(v) = v/(v + 1) and F3(u) = 0, Leng et al. [8] re-

ported the existence and nonexistence of periodic solutions by the aid of
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Poincaré-Bendixson theorem and integral of divergence. When F1(u, v) =

uvm, F2(v) = v/(v+1) and F3(u) = u, Su [9] classified the types of the equi-

libria and discussed the existence of saddle-node bifurcation, Bogdanov-

Takens bifurcation and Hopf bifurcation. A similar local bifurcation dy-

namic analysis of the enzyme-catalyzed reaction (1), such as the saddle-

node, transcritical, pitchfork and Hopf bifurcations, has been also inves-

tigated by Zhang et al. [10] as F1(u, v) = uv, F2(v) = v/(v + 1) and

F3(u) = u/(1 + u). If F1(u, v) = uv, F2(v) = v/(v + 1) and F3(u) = u

and consider the diffusion effect into the enzyme-catalyzed reaction (1),

Atabaigi et al. [11] investigated the local stability of the constant steady

state and they explored the occurrence conditions of the spatially homo-

geneous /nonhomogeneous periodic orbits and nonconstant steady states.

For more existing dynamic results of system (1), please refer to [7,12–15].

Owing to the diffusion process being a basic movement phenomenon

in the real world, there are many nonlinear systems involving the diffu-

sion effect, see Refs. [16–19]. Inspired by this aspect and suppose that

F1(u, v) = uv2, F2(v) = v/(v + 1) and F3(u) = 0, one yields the following

non-dimensional reaction diffusion version enzyme-catalyzed system:
∂u
∂t = d1∆u+ α− uv2, x ∈ Ω, t > 0,
∂v
∂t = d2∆v + β

(
uv2 − v

v+1

)
, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(2)

where we assume that d1 and d2 represent the diffusion rates of the sub-

strate u and product v at time t and location x, respectively; ∆ is the

classical Laplacian operator; Ω ⊂ RN (N ≥ 1) is a bounded region, ν is set

to be the outward unit normal vector along the smooth boundary ∂Ω. The

condition ∂u
∂ν = ∂v

∂ν = 0 is the homogeneous Neumann boundary condition.

Furthermore, we need to explain that the term F1(u, v) = uv2 is called

cubic rate law and it can be found in other chemical reaction systems, see

Refs. [7, 20,21]. All parameters, d1, d2, α and β, are positive constants.

In this present paper, we shall perform the spatiotemporal dynamics

of the enzyme-catalyzed reaction system (2). The reaction terms in the
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enzyme-catalyzed reaction system (2) involve two parameters, namely, α

and β. The case of the enzyme-catalyzed reaction system (1) with β = 1

has been studied in some existing literature (cf. [8]). However, in this

paper, we can show that control parameter β plays a crucial role in ana-

lyzing and deducing the complex dynamics of the system (2) when β ̸= 1.

For the local system of (2), we give a stability and type classification of

the constant steady state and the occurrence conditions of the Hopf bi-

furcation are also yielded by considering the range of β. For system (2),

we perform the stability analysis of the constant steady state so that the

emergence conditions of the Turing instability and Turing space can be

presented when we choose β as the main critical parameter. In light of

Turing instability, some complicated patterns are exhibited by choosing

different values of β in Turing space.

This paper is structured as follows. In Sec. 2, the stability conditions

of the positive equilibrium and the emergence conditions of the Hopf bi-

furcation are explored for the local system. In Sec. 3, one establishes the

occurrence of the Turing instability for system (2). In Sec. 4, complex

patterns of the system (2) are displayed with the aid of the numerical

approach. We end this paper with some conclusions in Sec. 5.

2 Analysis of local temporal system

Without diffusion, the enzyme-catalyzed reaction system (2) has the form:{
du
dt = α− uv2,
dv
dt = β

(
uv2 − v

v+1

)
.

(3)

Define f(u, v) = α− uv2 and g(u, v) = β
(
uv2 − v

v+1

)
. As such, it is easy

to see that the model (3) enjoys a unique constant steady state, say E∗,

where E∗ =
(

(1−α)2

α , α
1−α

)
with the assumption 0 < α < 1. Now let us

study the local asymptotically stability of this constant steady state E∗.
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To achieve this goal, we can compute the Jacobian matrix at E∗:

J0 =

(
− α2

(1−α)2 2(α− 1)
βα2

(1−α)2 β(1− α2)

)
.

In light of J0, we can obtain the characteristic equation below:

λ2 − T0(β)λ+D0(β) = 0, (4)

where T0(β) = β(1−α2)− α2

(1−α)2 , D0(β) = α2β > 0. To perform the types

and stability of the constant steady state E∗, it is necessary to investigate

the eigenvalues of the characteristic equation (4). To this end, we shall

solve the eigenvalue λ, from (4), as follows:

λ1,2 =
T0(β)±

√
T 2
0 (β)− 4D0(β)

2
.

Let

βH =
α2

(1− α2)(1− α)2
> 0, β∗ =

α2(3− α)− 2α2
√

2(1− α)

(1− α)(1− α2)2
> 0 (5)

and

β∗ =
α2(3− α) + 2α2

√
2(1− α)

(1− α)(1− α2)2
> 0. (6)

Now we can have the following.

Lemma 1. Suppose that 0 < α < 1, then we claim that β∗ < βH < β∗.

Proof. We can confirm the result is true by contradiction. Suppose

that β∗ ≥ βH . This is

α2(3− α)− 2α2
√
2(1− α)

(1− α)(1− α2)2
≥ α2

(1− α2)(1− α)2
.

This means that 3−α−2
√
2(1− α) ≥ 1+α, namely, we can have α ≤ −1.

This is impossible since we have restricted 0 < α < 1. Similarly, if we

assume that βH ≥ β∗, then one must require that α − 1 ≥
√
2(1− α).
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Clearly, this case is incorrect since 0 < α < 1. Therefore, there holds

β∗ < βH < β∗ for 0 < α < 1. We end the proof.

Theorem 1. Suppose that 0 < α < 1 is valid, we build the following.

(1) If 0 < β ≤ β∗, then the steady state E∗ is a stable node;

(2) If β∗ < β < βH , then the steady state E∗ is a stable focus;

(3) If βH < β < β∗, then the steady state E∗ is an unstable focus;

(4) If β ≥ β∗, then the steady state E∗ is an unstable node;

(5) If β = βH , then the steady state E∗ is a center.

Proof. To obtain our desired results, let H(β) = T 2
0 (β)−4D0(β). Then

H(β) = (1− α2)2β2 − 2α2(3− α)

1− α
β +

α4

(1− α)4
.

Let H(β) = 0, then it is easy to compute its root existence criterion, say

∆H(β), is ∆H(β) = 32α4

1−α > 0 owing to 0 < α < 1. This implies that the

equation H(β) = 0 must has two positive real solutions:

β∗ =
α2(3− α)− 2α2

√
2(1− α)

(1− α)(1− α2)2
, β∗ =

α2(3− α) + 2α2
√

2(1− α)

(1− α)(1− α2)2
.

In view of β∗ and β∗, one obtains H(β) ≥ 0 if 0 < β ≤ β∗ or β ≥ β∗.

Moreover, H(β) < 0 if β∗ < β < β∗ is valid.

(1) If 0 < β ≤ β∗ holds, by employing Lemma 1, we know that 0 <

β ≤ β∗ < βH must be satisfied. Accordingly, one gets T0(β) = β(1−α2)−
α2

(1−α)2 < βH(1− α2)− α2

(1−α)2 = 0, i.e., T0(β) < 0 for 0 < β ≤ β∗. On the

other hand, it is noticed that D0(β) = α2β > 0. So E∗ is a stable node.

(2) If β∗ < β < βH holds, then we have H(β) < 0 and T0(β) < 0.

Hence, all eigenvalues λ1,2 of the characteristic equation (4) with negative

real parts. It is suggested that the steady state E∗ is a stable focus.

(3) If βH < β < β∗ is satisfied, then we have H(β) < 0 and T0(β) =

β(1 − α2) − α2

(1−α)2 > βH(1 − α2) − α2

(1−α)2 = 0. For this case, it is clear

that all eigenvalues λ1,2 of the characteristic equation (4) with positive

real parts. As a result, the positive steady state E∗ is an unstable focus.

(4) If β ≥ β∗ is satisfied, this is β > β∗ > βH by using Lemma 1. We

immediately yield T0(β) > 0 is fulfilled. Moreover, one has H(β) > 0 for
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β ≥ β∗. It is shown that all eigenvalues λ1,2 of the characteristic equation

(4) with positive real parts. Therefore, E∗ is an unstable node.

(5) If β = βH holds, we can infer that H(β) < 0 since β∗ < βH = β <

β∗ is valid. Also, it is easy to check that T0(βH) = βH(1−α2)− α2

(1−α)2 = 0.

So the positive steady state E∗ is a center. This ends the proof.

We have given a classification of the types and stability of the positive

steady state E∗, please also see Fig. 2 to understand Theorem 1 better.

Figure 2. Stability and types of the unique positive constant steady
state E∗ in the plane of α − β. In the “green domain”, we
can see that 0 < β ≤ β∗, so the constant steady state E∗ is
a stable node; in the “blue domain”, we have β∗ < β < βH ,
thereby, the constant steady state E∗ is a stable focus; in the
“red domain”, it is found that βH < β < β∗, we claim that
the constant steady state E∗ is an unstable focus; finally, in
the “yellow domain”, clearly, one has β ≥ β∗, so the constant
steady state E∗ is an unstable node.

Now let λ = χ(β)± iδ(β) be the eigenvalue of (4), where

χ(β) =
β(1− α2)

2
− α2

2(1− α)2
, δ(β) =

√
4D0(β)− T 2

0 (β)

2
.

Therefore, in light of (5) of Lemma 1, when β = βH , then χ(βH) = 0 and

δ(βH) = α2

1−α

√
1

1−α2 > 0. This shows that the characteristic equation (4)

has a pair of purely imaginary roots. On the other hand, we can verify

that χ′(β)|β=βH
= 1−α2

2 > 0. Therefore, the Poincaré Andronov-Hopf

bifurcation theory indicates that enzyme-catalyzed model (3) surfers from

the Hopf bifurcation at E∗ as β = βH .
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The following result reports the direction of the Hopf bifurcation.

Theorem 2. Suppose that 0 < α < 1 is valid. Then the enzyme-catalyzed

reaction model (3) enjoys Hopf bifurcation when β = βH = α2

(1−α2)(1−α)2 .

Furthermore, the Hopf bifurcation is supercritical (the periodic solution

is stable) as ℓ(βH) < 0, however, the Hopf bifurcation is subcritical (the

periodic solution is unstable) as ℓ(βH) > 0, where ℓ(βH) can be found later.

Proof. Making the transformations ǔ = u − (1−α)2

α , v̌ = v − α
1−α and

still denoting ǔ, v̌ by u, v, respectively. Then model (3) takes the form:

du

dt
=m10(β)u+m01(β)v +m20(β)u

2 +m11(β)uv +m02(β)v
2

+m30(β)u
3 +m21(β)u

2v +m12(β)uv
2 +m03(β)v

3 +O(|u, v|4),
dv

dt
=n10(β)u+ n01(β)v + n20(β)u

2 + n11(β)uv + n02(β)v
2

+ n30(β)u
3 + n21(β)u

2v + n12(β)uv
2 + n03(β)v

3 +O(|u, v|4),

where O(|u, v|4) are higher terms and

m10(β) = − α2

(1− α)2
, m01(β) = 2(α− 1), m20(β) = 0,

m11(β) = − 2α

1− α
, m02(β) = − (1− α)2

α
, m12(β) = −1,

n10(β) =
βα2

(1− α)2
, n01(β) = β(1− α2), n20(β) = 0, n30(β) = 0,

n11(β) =
2βα

1− α
, n02(β) = β(1− α)3 +

β(1− α)2

α
, n21(β) = 0,

n12(β) = β, n03(β) = −β(1− α)4, m30(β) = m21(β) = m03(β) = 0.

To perform the direction of the Hopf bifurcation, we should determine the

sign of the first Lyapunov number (see [22]). This is

L1(β) =A{[m10(β)n10(β)(m
2
11(β) +m11(β)n02(β) +m02(β)n11(β))

+m10(β)m01(β)(n
2
11(β) +m20(β)n11(β) +m11(β)n02(β))

+ n2
10(β)m02(β)(m11(β) + 2n02(β))− 2m10(β)n10(β)
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× (n2
02(β)−m20(β)m02(β))− 2m10(β)m01(β)

× (m2
20(β)− n20(β)n02(β))−m2

01(β)n20(β)(2m20(β) + n11(β))

+ (m01(β)n10(β)− 2m2
10(β))(n11(β)n02(β)−m11(β)m20(β))]

− (m2
10(β) +m01(β)n10(β))[3(n10(β)n03(β)−m01(β)m30(β))

+ 2m10(β)(m21(β) + n12(β)) + (n10(β)m12(β)−m01(β)n21(β))]}

=Aℓ(β),

where A = −3π

2m01(β)D0(β)3/2
and

ℓ(β) =− 2α4

(1− α)4

(
2α2

(1− α)2
− αβ(1− α)2 − 2β(1− α)

)
+

4α2

1− α

(
2βα2

(1− α)2
− α(1− α)2 − (1− α)

)
+

2βα2

(1− α)3
(
α2 − αβ(1− α)4 − β(1− α)3

)
+ 2β2α4

(
1− α+

1

α

)2

− 4β

(
βα2 +

α4

(1− α)3

)
(α(1− α) + 1)

+ 3

(
α4

(1− α)4
− 2βα2

1− α

)(
βα2(1− α)2 +

α2

(1− α)2

)
.

Now at the Hopf bifurcation critical point βH = α2

(1−α2)(1−α)2 , one yields

D0(βH) = α4

(1−α2)(1−α)2 > 0 and m01(βH) = 2(α − 1) < 0, this is A > 0.

Therefore, the first Lyapunov number L1(βH) uniquely depends on the

sign of ℓ(βH), where we can not directly determine the sign of ℓ(βH) since

it is complex. However, one could still yield the desired results at the

critical point β = βH by discussing the sign of ℓ(βH). Precisely, the Hopf

bifurcation is supercritical (the periodic solution is stable) as ℓ(βH) <

0, however, the Hopf bifurcation is subcritical (the periodic solution is

unstable) as ℓ(βH) > 0. We finished the proof.

To verify the effectiveness of Theorem 2, we take α = 0.4, then one

obtains E∗ = (0.9000, 0.6667) and the Hopf bifurcation critical point is

βH = 0.5291. In this fashion, we obtain also ℓ(βH) = −0.4571 < 0. It is

suggested that there are stable periodic solutions due to the supercritical
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Hopf bifurcation, see Fig. 3.

Figure 3. The enzyme-catalyzed reaction model (3) possesses the sta-
ble periodic solution due to the supercritical Hopf bifurca-
tion, where one takes α = 0.4 and β = 0.5291.

3 Turing instability

To yield the occurrence conditions of the Turing instability near E∗, let us

first give the local linearized system of the enzyme-catalyzed model (2):

∂

∂t

(
u

v

)
= L

(
u

v

)
= D

(
u

v

)
+ J0

(
u

v

)
, (7)

where

D =

(
d1∆ 0

0 d2∆

)
, J0 =

(
− α2

(1−α)2 2(α− 1)
βα2

(1−α)2 β(1− α2)

)
.

Considering the general solution of the local system (7), this is(
u

v

)
=

(
ak

bk

)
eλkt+iw·q, (8)

where λk denotes by the characteristic spectrum for k ∈ N0 = {0, 1, 2, · · · },
w = (kx, ky) is the wave number and there holds k = |w|, q = (x, y)T

describes the spatial vector, i satisfies i2 = −1, ak and bk are constants.
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Putting (8) into (7), we can get

(Jk − λkI)

(
ak

bk

)
eλkt+iw·q = 0,

where

Jk =

(
− α2

(1−α)2 − d1k
2 2(α− 1)

βα2

(1−α)2 β(1− α2)− d2k
2

)
.

Accordingly, we can get the following dispersion relation equation:

λ2
k − Tk(β)λk +Dk(β) = 0, (9)

where  Tk(β) = −(d1 + d2)k
2 + β(1− α2)− α2

(1−α)2 ,

Dk(β) = d1d2k
4 +

[
α2

(1−α)2 d2 − d1β(1− α2)
]
k2 + βα2.

In view of Turing’s idea, we should first guarantee the positive constant

steady state E∗ is locally asymptotically stable for the enzyme-catalyzed

reaction model (3), however, this positive constant steady state will lose

its local stability as the diffusion effect is presented. This implies that we

should further explore the stability problem of E∗ for the reaction-diffusion

enzyme-catalyzed model (2). Utilizing Theorem 1, it is find that for the

local stability of E∗, we should only require that 0 < β < βH is satisfied.

Now let us explore the stability result for E∗ of the model (2).

Theorem 3. Suppose that 0 < α < 1 and 0 < β < βH are satisfied.

(1) The positive constant steady state E∗ is locally asymptotically stable

when β∗
1 < β < min{βH , β∗

2};
(2) The positive constant steady state E∗ is unstable as βH > β > β∗

2

or 0 < β < min{βH , β∗
1}, where

β∗
1 =

d2α
2(3− α)− 2d2α

2
√
2(1− α)

d1(1− α)(1− α2)2
= β∗ d2

d1
> 0, (10)
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and

β∗
2 =

d2α
2(3− α) + 2d2α

2
√

2(1− α)

d1(1− α)(1− α2)2
= β∗

d2
d1

> 0, (11)

and β∗ and β∗ have been defined in (5) and (6).

Proof. Owing to 0 < β < βH is satisfied, we immediately have Tk(β) =

−(d1+d2)k
2+β(1−α2)− α2

(1−α)2 < −(d1+d2)k
2 < 0 for all k ∈ N0. Hence,

our following task is only exploring the sign ofDk(β) since it will determine

the stability of E∗. On the other hand, for the Turing instability, we should

look for some conditions such that Dk(β) < 0 for some k ∈ N0\{0}. This

indicates that we have to ensure that

β >
α2

(1− α2)(1− α)2
d2
d1

= βH
d2
d1

> 0. (12)

Now we are able to choose β as the critical parameter of the Turing insta-

bility. Considering the critical condition of the Turing instability, namely,

minkT∈N0\{0} DkT
(β) = 0, where kT ∈ N0\{0} refers to the critical wave

number of the Turing instability and it will be performed later. A straight-

forward calculation shows that minkT∈N0\{0} DkT
(β) := − φ(β)

4d1d2
= 0 with

φ(β) = d21(1− α2)2β2 − 2d1d2α
2(3− α)

1− α
β +

d22α
4

(1− α)4
.

Now we can obtain the potential critical values of the Turing instability

by solving β from φ(β) = 0. They are:

β∗
1 =

d2α
2(3− α)− 2d2α

2
√

2(1− α)

d1(1− α)(1− α2)2
> 0,

and

β∗
2 =

d2α
2(3− α) + 2d2α

2
√

2(1− α)

d1(1− α)(1− α2)2
> 0.

Clearly, one obtains φ(β) < 0 when β∗
1 < β < β∗

2 and φ(β) > 0 when

β > β∗
2 or 0 < β < β∗

1 is satisfied. Since we define minkT∈N0\{0} DkT
(β) :=

−φ(β) = 0, one claims that Dk(β) > 0 when β∗
1 < β < β∗

2 and Dk(β) < 0
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when β > β∗
2 or 0 < β < β∗

1 for some k ∈ N0. It is noticed that the

assumption 0 < β < βH , then unique positive constant steady state E∗

is locally asymptotically stable as β∗
1 < β < min{βH , β∗

2} and it becomes

unstable as βH > β > β∗
2 or 0 < β < min{βH , β∗

1}. This ends the proof.

Benefiting from Theorem 3, we can establish the following result con-

cerning the Turing instability.

Theorem 4. Suppose that 0 < α < 1 and d1 > d2 are satisfied. Then

the reaction-diffusion enzyme-catalyzed reaction mode (2) suffers from the

Turing instability when βT < β < βH with the critical wave number k =

kT , where kT satisfies k2 = k2T =
√

βTα2

d1d2
and

βT =
d2α

2(3− α) + 2d2α
2
√
2(1− α)

d1(1− α)(1− α2)2
> 0. (13)

Proof. Theorem 3 tells us β∗
1 or β∗

2 may be the potential critical value of

the Turing instability, see (10) and (11), respectively. Keeping this in mind

and noting the necessary conditions for the Turing instability 0 < β < βH

and (12), i.e., β > βH
d2

d1
, we immediately infer that the unique Turing

instability critical value is β = β∗
2 since we have known that β∗ < βH < β∗

is valid, see Lemma 1. Therefore, the strictly Turing instability domain for

the positive constant steady state E∗ is β∗
d2

d1
:= βT < β < βH . However,

β∗ < βH < β∗ is true, so one must require that d2 < d1. Finally, recalling

that minkT∈N0\{0} DkT
(β) = 0, we can obtain the critical wave number of

the Turing instability is k2 = k2T =
√

βTα2

d1d2
. This ends the proof.

4 Pattern formation: Numerical approach

In this subsection, we will perform the pattern formation of the reaction-

diffusion enzyme-catalyzed reaction mode (2) in 2D computational domain

Ω = (0, 50)×(0, 50). According to the explicit Euler method, the reaction-

diffusion enzyme-catalyzed reaction mode (2) can be discretized as follows:
un+1
ij −un

ij

∆t = d1∆du
n
ij + α− un

ij(v
n
ij)

2,
vn+1
ij −vn

ij

∆t = d2∆dv
n
ij + β

(
un
ij(v

n
ij)

2 − vn
ij

1+vn
ij

)
,

(14)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. The enzyme-catalyzed reaction model (2) possesses the spot
patterns when one takes α = 0.65, d1 = 2.25, d2 = 0.5 and
β = 3.75 with the initial data (15).

where

∆du
n
ij =

un
i+1,j − 2un

ij + un
i−1,j

∆x2
+

un
i,j+1 − 2un

ij + un
i,j−1

∆y2
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. The enzyme-catalyzed reaction model (2) possesses the
spot-stripe mixed patterns when choosing α = 0.65, d1 =
2.25, d2 = 0.5 and β = 5.15 with the initial data (15).

and

∆dv
n
ij =

vni+1,j − 2vnij + vni−1,j

∆x2
+

vni,j+1 − 2vnij + vni,j−1

∆y2
.
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where ∆t is time step size and n = 0, 1, · · · . By using the discrete Eq.

(14), we can obtain the numerical approximate solution as follows:{
un+1
ij = un

ij +∆t[d1∆du
n
ij + α− un

ij(v
n
ij)

2],

vn+1
ij = vnij +∆t

[
d2∆dv

n
ij + β

(
un
ij(v

n
ij)

2 − vn
ij

1+vn
ij

)]
.

In our following content, we take the time step length ∆t = 0.01 and the

initial conditions are:{
u(x, y, 0) = u∗ − 0.02 ∗ rand(x, y),
v(x, y, 0) = v∗ − 0.02 ∗ rand(x, y),

(15)

where rand(x, y) is a random variable between −1 and 1.

Firstly, we shall fix the parameters α = 0.65, d1 = 2.25 and d2 = 0.5,

then we obtain the positive constant steady state E∗ = (0.1885, 1.8571),

the Hopf bifurcation threshold is βH = 5.9723, and the Turing instability

critical point is βT = 3.2361. Therefore, with the help of Theorem 4, we

know that the Turing instability domain is 3.2361 < β < 5.9723.

(A) Taking β = 3.75 in the enzyme-catalyzed reaction model (2). The

numerical result can be found in Fig. 4. Initially, there are no patterns

formatting in the bounded domain Ω, see (a) of Fig. 4. However, with

the increase of the reaction time t, a small number of irregular spots begin

to appear in the fixed domain, see (b) of Fig. 4. These patterns become

clearer with the competition of the substances u and v and they occupy

the whole domain, see pictures (c)-(f) of Fig. 4. Finally, the shape of this

spot pattern will not change with the random perturbation of the initial

data (15), see the last two pictures (g)-(h) of Fig. 4.

(B) Now let us maintain β = 5.15, obviously, we have 3.2361 < β <

5.9723. The numerical experiment result has been performed in Fig. 5.

When the time t is short, there are no clear patterns that appear in the

domain, see (a) and (b) of Fig. 5. However, this phenomenon is transient

since the stripe and spot patterns rapidly occupy the bounded region with

the random perturbation of the initial data (15), see pictures (c)-(f) of Fig.

5. In fact, they are mixed patterns. It is not difficult to observe that such

a mixed pattern will not change its shape although the reaction time t is
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. The enzyme-catalyzed reaction model (2) possesses the
stripe patterns when we take α = 0.65, d1 = 2.25, d2 = 0.5
and β = 5.95 with the initial data (15).

increasing, please refer to (g) and (h) of Fig. 5.

(C) In the Turing instability domain 3.2361 < β < 5.9723, we choose
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the control parameter β = 5.95. It is suggested that the enzyme-catalyzed

reaction model (2) possesses the stripe patterns, see Fig. 6. Initially, there

are some irregular mixed patterns filling the domain, see (a) and (b) of Fig.

6. This pattern phenomenon could be easily observed when we increase

the reaction time t, refer to (c) and (d) of Fig. 6. However, as reaction

time t increases, an interesting phenomenon is the spot patterns gradually

disappear and the stripe patterns begin to capture the whole domain, see

pictures (e) and (f) of Fig. 6. Finally, the pure stripe patterns occupy the

domain and they do not change the shapes as the increase of reaction time

t, please refer to the last two pictures (g) and (h) of Fig. 6.

5 Conclusions

In this paper, we study the temporal and spatial dynamics of a reaction

diffusion enzyme-catalyzed reaction system with cubic rate law. For the

non-diffusive system, the stable and unstable node and focus are classified

by investigating the parameter range of β, see Theorem 1. In particular,

if the equilibrium is a center, one shows that subcritical or supercriti-

cal Hopf bifurcation will occur for the non-diffusive system, see Theorem

2. In what follows, we turn our attention to the spatiotemporal system.

When diffusion is integrated into the system, the positive equilibrium may

change its local stability. In this manner, we obtain the conditions to

ensure the existence of Turing instability, see Theorem 3 and Theorem

4, respectively. Finally, various complex spatial patterns are found in the

enzyme-catalyzed reaction system (2), see Figs. 4-6, respectively. We hope

that these results will help us to understand the interaction dynamics of

the substrate and product for an enzyme-catalyzed reaction system.
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