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Abstract

The Gierer-Meinhardt system characterizes the fundamental dy-
namics of pattern formation through the interaction of two variables.
Currently, research on the spatiotemporal evolution of this system
at home and abroad has been limited to Turing instability and pat-
terns, and research on composite patterns formed by non-uniform
cross-diffusion distributions is not yet in-depth. This article presents
a composite pattern of the system based on linear, periodic, and
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radial distributions of cross diffusion. We conduct a comprehen-
sive study of the two-dimensional spatiotemporal dynamics of the
Gierer-Meinhardt model, treating the cross-diffusion coefficients as
bifurcation parameters. Using multiscale analysis, the amplitude
equation at the Turing threshold is derived. Subsequently, the ef-
fects of the proportional-derivative controller, fractional diffusion
orders, and anisotropy on system stability, pattern formation, and
evolution speed are systematically investigated. Numerical simula-
tions are provided to validate the conclusions.

1 Introduction

In 1952, Turing [1] first used reaction-diffusion equations to describe the

mechanisms underlying biological pattern formation on surfaces. Reaction-

diffusion systems can describe differential and spatial patterns in biological

and chemical fields. Diffusion-induced instability is a key factor driving

the formation of spatial patterns. Inspired by Turing’s work, reaction-

diffusion systems have garnered significant attention, leading to the pro-

posal of numerous models, such as predator-prey models in zoology [2–4],

infectious disease models in medicine [5, 6], virus propagation models in

cyber-physical systems [7, 8], and various biological and chemical mod-

els [9–12]. In 1972, the Gierer-Meinhardt model (GM) was proposed to

study molecular mechanisms of catalysis [13]. Gierer and Meinhardt [14]

derived the sufficient conditions for spatial pattern formation. Since then,

the GM model has been widely used in modeling many biological and

chemical reaction processes.

Wu et al. [15] investigated the impact of self-diffusion on the stability

of the GM system. They confirmed that self-diffusion could drive Turing

instability, which can induce various pattern formations. Ruan [16] con-

sidered the GM model for morphogenesis, showing that if the self-diffusion

coefficients are appropriately chosen, the uniform equilibrium solution be-

comes unstable. For the GM system with saturation terms, Song et al. [17]

derived the amplitude equations at the bifurcation critical values by using

a multi-scale method. Various patterns were obtained through simulation.

However, these studies did not consider the role of cross-diffusion on the

GM system.
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Actually, cross-diffusion can also drive Turing instability [18–21]. Sev-

eral studies had analyzed the role of cross-diffusion and discussed its im-

pact on pattern formation and pattern types in these systems. Giunta et

al. [20] explained that while cross-diffusion coefficients are non-negative in

most cases, negative cross-diffusion coefficients also have physical signif-

icance in specific biological and chemical systems. Pal et al. [21] stated

that negative cross-diffusion coefficients represent a reverse diffusion phe-

nomenon, where the concentration gradient of one substance drives the

other substance to diffuse towards the low concentration region. Even if the

cross-diffusion coefficient is small or negative, it can still promote pattern

formation [22,23]. Lu et al. [24] studied the mechanism of cross-diffusion’s

impact on spatial patterns in the SI model with nonlinear incidence rates.

Dong et al. [25] introduced cross-diffusion into the Schnakenberg system,

resulting in temporally periodic patterns, and found that changing the

cross-diffusion coefficient could transform these patterns into temporally

stable structures. Cross-diffusion also significantly influences the occur-

rence of supercritical Turing instabilities, as demonstrated by Gambino

et al. [26] through weakly nonlinear multi-scale analysis. Notably, there

is currently no literature discussing the impact of cross-diffusion on the

pattern evolution speed in the GM system.

In the past few years, fractional-order derivatives had been widely

incorporated into various models to more accurately describe phenom-

ena [27–31]. Fractional diffusion significantly impacts pattern formation.

For instance, Liu et al. [29] investigated Turing instability in a predator-

prey system with cross-fractional diffusion. Nec et al. [30] described a su-

perdiffusive resource-consumer system and studied its Turing bifurcation,

concluding that fractional diffusion affects the stability of certain equilib-

ria. The impact of cross-fractional diffusio was considered, leading to the

study of a predator-prey model [31]. It was ultimately demonstrated that

appropriate cross-fractional diffusion can induce Turing patterns. Using

fractional-order derivatives provides a better explanation for the pattern

formation process in reaction-diffusion systems. Therefore, this paper dis-

cusses the impact of fractional diffusion on pattern formation in the GM

system.



162

Control strategies have rapidly advanced and found wide applications

across various models [32–36]. The introduction of control strategies sig-

nificantly impacts various models [37–39]. To date, in order to adapt to the

diverse characteristics of systems, an increasing number of control types

have emerged [40–42]. There is relatively less research on control strate-

gies for reaction-diffusion systems considering two-dimensional spatial in-

formation. Chemical reaction-diffusion systems are characterized by com-

plex spatiotemporal dynamics, where reactant concentrations and diffusion

rates are influenced by various factors, leading to instability and pattern

changes. The Proportional-Derivative controller (PD), through propor-

tional and derivative control, regulates errors and their rate of change,

ensuring a fast response and stability at the desired state. It helps reduce

steady-state errors, predicts future changes, and accelerates stabilization,

offering precise control over pattern formation and system behavior.

Experimental and theoretical studies have shown that the diffusion

processes of many nonlinear physical and biological systems in reality do

not conform to the theory of completely random walks. These diffusion

processes exhibit directionality, such as anisotropic diffusion in porous

media [43], colloids [44], and organ tissues [45]. When randomness and

anisotropy are present and a single diffusion direction satisfies the condi-

tions for Turing instability, Turing patterns still exist [46]. The orientation

of stripes in Turing patterns is determined by the degree of anisotropic dif-

fusion, and anisotropy enhances the stability of these stripes [47,48].

This paper considers a GM system with cross-diffusion and extends it to

fractional-order diffusion. The effects of cross-diffusion coefficients and the

fractional-order diffusion on the system’s pattern dynamics are discussed.

Additionally, a PD controller is introduced to regulate the system’s pat-

tern formation by comprehensively adjusting the controller parameters.

Furthermore, the impact of anisotropic diffusion on the system’s Turing

patterns is also investigated.
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2 Model description

This section introduces a fractional order diffusion GM model with cross-

diffusion and PD control. Let the concentrations of the activator and

inhibitor be represented by u and v, respectively.. Song et al. [17] first

proposed the following self-diffusion system:

∂u

∂t
=Du∇2u+ r

(
u2

(1 + pu2)v
− cu

)
,

∂v

∂t
=Dv∇2v + r(u2 − av),

(1)

and

∇2 =
∂2

∂x2
+

∂2

∂y2
, (x, y) ∈ Ω = [0, R]× [0, R],

where ∇2 represents the Laplacian operator in a two-dimensional plane,

and Ω denotes an internally connected region with a smooth boundary ∂Ω.

System (1) follows Neumann boundary conditions

∂u

∂ϑ
=

∂v

∂ϑ
= 0,

and ϑ represents the unit outward normal vector on the boundary ∂Ω. r

is the chemical reaction factor, p is the saturation coefficient. a and c are

the degradation rates of the inhibitor and activator, respectively. Du and

Dv are the self-diffusion coefficients. The ordinary differential equation

corresponding to system (1) is:

du

dt
=r

(
u2

(1 + pu2)v
− cu

)
,

dv

dt
=r(u2 − av).

(2)

Except for the origin, the system (2) has a non-trivial equilibrium point

E∗ = (u∗, v∗), and E∗ satisfies

1

1 + p(u∗)2
=

cu∗

a
, v∗ =

(u∗)2

a
.
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Furthermore, to regulate the spatial dynamics of the system, we intro-

duce a PD controller:

η = Kpe(t) +Kd
de

dt
,

where e(t) = v(t)−v∗ is the error term, representing the difference between

the current state v(t) and the desired target state v∗ of the system. The

parameter Kp represents the proportional part of the error. A higher value

ofKp means that the system responds more aggressively to deviations from

the target state. Kp adjusts the response based on the distance between

the current state and the desired state. The parameter Kd represents the

rate of change of the error, accounting for how fast the error is changing.

A higher value of Kd allows the system to predict and react to future

changes in the error. The range of the controller coefficients Kp and Kd

is flexible, allowing both positive and negative values depending on the

desired system behavior and stability requirements [35,36]. We can get:

du

dt
=r

(
u2

(1 + pu2)v
− cu

)
,

dv

dt
=r(u2 − av) + η.

(3)

The equivalent form of system (3) is :

du

dt
=r

(
u2

(1 + pu2)v
− cu

)
,

dv

dt
=
r(u2 − av) +Kp (v − v∗)

1−Kd
.

(4)

Remark. Considering the structure of system (4), its equilibrium point will

not change. Consequently, the PD controller can effectively modulate the

system’s dynamic characteristics while preserving its original equilibrium

point E∗.

In chemical catalytic reactions, fractional-order diffusion is utilized as

a more appropriate way to describe certain scenarios of catalytic reactions.

Research indicates that cross-diffusion can impact the spatiotemporal dy-

namics of reaction-diffusion systems, affecting phenomena such as pattern
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formation and evolutionary rates. To more accurately describe the reaction

processes of activators and inhibitors in spatial regions, we introduce cross-

diffusion terms in system (4) and extend the diffusion terms to fractional

order, resulting in the following form of reaction-diffusion equations:

∂u

∂t
=Du∇αu+Duv∇αv + r

(
u2

(1 + pu2)v
− cu

)
,

∂v

∂t
=Dvu∇αu+Dv∇αv +

r(u2 − av) +Kp (v − v∗)

1−Kd
,

(5)

where Duv and Dvu are the cross-diffusion coefficients. The spectrum

definition of the fractional-order diffusion operator ∇αu(x) is given by:

∇αu (x) = −
∞∑
j=0

ûjλ
α
2
j φj , u ∈ Iα,

where Iα =
{
u =

∑∞
j=0 ûjφj , ûj = ⟨u, φj⟩,

∑∞
j=0 |ûj |2 |λj |

α
2 < ∞

}
, λj and

φj are respectively the eigenvalues and orthogonal eigenfunctions of the

standard Laplacian operator ∇2 on a bounded region Ω, satisfying the

standard boundary conditions, namely, ∇2φj = −λjφj .

Remark. Cross-diffusion models the mutual diffusion between substances,

especially when reactant-product interactions are involved [20]. It captures

the effects of concentration gradients on diffusion, influencing stability and

pattern formation [24, 25] . The advantage of cross-diffusion is its ability

to more accurately represent the coupling between substances in complex,

heterogeneous environments, offering a more flexible approach compared

to self-diffusion models.

Remark. Integer-order diffusion assumes a constant rate and independent

behavior, suitable for simple diffusion in homogeneous media. In contrast,

fractional-order diffusion can model diffusion in heterogeneous media, cap-

turing changes in the medium’s structure and describing non-uniform dif-

fusion in complex media [29,30].
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3 Stability analysis of non-spatial diffusion

models

Consider the ordinary differential system (4). Taking into account the

practical significance, we focus on the equilibrium point E∗ of system (4).

The corresponding Jacobian matrix is:

J =

(
J11 J12

J21 J22

)
=

rc
(

2cu∗

a − 1
)

−r ac
u∗

2ru∗

(1−Kd)
−ar+Kp

1−Kd

 .

We get the characteristic equation:

λ0
2 −M1λ0 +M2 = 0, (6)

where

M1 = J11 + J22, M2 = J11J22 − J12J21.

We propose the following hypotheses:

(H1) : M1 < 0, M2 > 0.

Theorem 1. If (H1) holds, system (4) is locally asymptotically stable at

E∗.

Proof. If (H1) holds, according to the Routh-Hurwitz criterion, it can

be determined that system (4) is locally asymptotically stable at E∗.

Remark. Turing instability is fundamentally caused by diffusion-induced

instability. Therefore, subsequent stability analyses of the system are

based on the premise that the non-diffusive system (4) is stable at the

point E∗. In this case, it is necessary to ensure that (H1) always holds.
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4 The dynamic behavior of spatial diffusion

models

4.1 Turing instability

We guarantee the stability of the non-diffusive system (4) at the point

E∗, and then extend the time stability of the uniform steady state to

non-uniform perturbations:(
u

v

)
=
∑
k

(
uk

vk

)
e(λkt+ik·r) + c.c., (7)

where λk represents the growth rate of perturbations at t. i, k, and r rep-

resent the imaginary unit, wave number, and spatial vectors, respectively,

and c.c. is the complex conjugate.

By linearizing system (5) around E∗, we get the following equations:
∂u

∂t
= Du∇αu+Duv∇αv + J11u+ J12v,

∂v

∂t
= Dvu∇αu+Dv∇αv + J21u+ J22v.

(8)

By substituting Eq. (7), we can obtain the characteristic equation:

λk
2 −M3(k

α)λk +M4(k
α) = 0, (9)

where

M3(k
α) = M1 − (Du +Dv)k

α,

M4(k
α) = (DuDv −DuvDvu)k

2α

+ (−DuJ22 −DvJ11 +DvuJ12 +DuvJ21)k
α +M2.

If (H1) and Du + Dv > 0 hold, then we have M3(k
α) < 0. In this

case, the only way for the occurence of Turing instability is M4(k
α) < 0

for certain values of k. We can ascertain the most critical mode value kT
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for system’s response to perturbations as follows:

kT =

(
DuJ22 +DvJ11 −DvuJ12 −DuvJ21

2(DuDv −DuvDvu)

) 1
α

.

Substituting kT back into M4(k
α):

M4min = M4(k
α) = M2 −

(−DuJ22 −DvJ11 +DvuJ12 +DuvJ21)
2

4(DuDv −DuvDvu)
.

Fixing the other parameters of system (4), we set the cross-diffusion

coefficient Dvu as the bifurcation parameter and the critical value DvuT

of Turing bifurcation can be obtained by solviong M4min = 0.

From the above analysis, we propose the following assumption:

(H2) : Du +Dv > 0, DuDv −DuvDvu > 0,

−DuJ22 −DvJ11 +DvuJ12 +DuvJ21 < 0,

(DuJ22 +DvJ11 −DvuJ12 −DuvJ21)
2 − 4M2(DuDv −DuvDvu) > 0.

Theorem 2. If (H1) and (H2) hold, then system (5) undergoes Turing

instability at the equilibrium point E∗.

Proof. When (H1) and (H2) are satisfied, there exists kα > 0 such that

M4(k
α) < 0. In this case, Eq. (9) has characteristic roots with positive

real parts, then system (5) exhibits Turing instability at E∗.

4.2 Turing pattern’s amplitude equation

In this subsection, to rigorously characterize the various types of Turing

patterns, we employ the method of multiple scales to derive the amplitude

equation for system (5) in the vicinity of the Turing bifurcation point.

We select Dvu as the bifurcation parameter. By setting u = u∗ + û and

v = v∗ + v̂, and for notational simplicity, we retain the original variables.

Consequently, at the point (u∗, v∗), system (5) can be expressed as:

∂X

∂t
= LX +N, (10)
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where

X =

(
u

v

)
, L =

(
Du∇α + J11 Duv∇α + J12

Dvu∇α + J21 Dv∇α + J22

)
,

N =

(
ζ20u

2 + ζ11uv + ζ02v
2 + ζ30u

3 + ζ21u
2v + ζ12uv

2 + ζ03v
3

χ20u
2 + χ11uv + χ02v

2 + χ30u
3 + χ21u

2v + χ12uv
2 + χ03v

3

)
,

in which

ζ20 =
c2r(4cu∗ − 3a)

a2
, ζ02 =

a2cr

(u∗)3
, ζ21 =

c2r(3a− 4cu∗)

a(u∗)2
, ζ12 =

2ac2r

(u∗)3
,

ζ11 =
−2c2r

u∗ , ζ30 =
4c2r(a2 − 3acu∗ + 2c2(u∗)2)

a3u∗ , ζ03 =
−a3cr

(u∗)5
,

χ20 =
r

1−Kd
, χ02 = χ21 = χ12 = χ11 = χ30 = χ03 = 0.

Near the Turing bifurcation critical value, expanding Dvu, X and N in

terms of the small parameter ε:

DvuT
−Dvu = εd1 + ε2d2 + ε3d3 + o(ε3), (11)(

u

v

)
= ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+ o

(
ε3
)
, (12)

and

N = ε2N2 + ε3N3 + o
(
ε3
)
, (13)

where

N2 =

(
ζ20u

2 + ζ11uv + ζ02v
2

χ20u
2 + χ11uv + χ02v

2

)
,

N3 =

(
ζ30u

3 + ζ21u
2v + ζ12uv

2 + ζ03v
3

χ30u
3 + χ21u

2v + χ12uv
2 + χ03v

3

)
.

Simultaneously,

L = Lc + (DvuT
−Dvu)M, (14)
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where

Lc =

(
Du∇α + J11 Duv∇α + J12

DvuT
∇α + J21 Dv∇α + J22

)
, M =

(
0 0

−∇α 0

)
.

Separate the dynamical scales of the system by letting t1 = ϵt, t2 = ϵ2t

and t3 = ϵ3t, and treat them as mutually independent variables, we obtain

the following equation:

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+ ε3

∂

∂t3
+ o(ε3). (15)

By rearranging, we obtain:

ε : Lc

u1

v1

 = 0, (16)

ε2 : Lc

(
u2

v2

)
=

∂

∂t1

(
u1

v1

)
− d1M

(
u1

v1

)
−N2, (17)

ε3 : Lc

(
u3

v3

)
=

∂

∂t1

(
u2

v2

)
+

∂

∂t2

(
u1

v1

)
− d2M

u1

v1



− d1M

u2

v2

−N3.

(18)

At the ε order in Eq. (16), Lc functions as the system’s linear operator

at the critical point DvuT
. The solution of perturbation equations can be

described by the modulus which includes three wave vectors called k1, k2

and k3, respectively. Soving Eq. (16), we can get

(
u1

v1

)
=

(
β

1

) 3∑
j=1

Wje
(ikj ·r) + c.c.

 , j = 1, 2, 3, (19)



171

where c.c. denotes the complex conjugate and r = (x, y) stands for the

spatial vector. Wj is the amplitude of e(ikj ·r) and

β =
Duvk

α
c − J12

J11 −Dukαc
, |kj | = kc, k

α
c = kαT (D

T
vu).

In accordance with the Fredholm solvability condition, Eq. (17) must

be orthogonal to the null eigenvector of L+
c . Here, L+

c refers to the adjoint

of the operator Lc, with its zero eigenvector given by:(
1

ϕ

)
e(ikj ·r) + c.c., j = 1, 2, 3, (20)

where ϕ =
Duk

α
c −J11

J21−DT
vuk

α
c
. L+

c and ε2 satisfy:

(1, ϕ)

(
F j
u

F j
v

)
= 0, j = 1, 2, 3, (21)

in which, F j
u and F j

v represent the coefficients in Fu and Fv corresponding

to e(ikj ·r), respectively.

Applying the Fredholm solvability condition to Eq. (21), we obtain:
(β + ϕ)∂W1

∂t1
= d1k

α
c W1 + 2(γ1 + ϕγ2)W 2W 3,

(β + ϕ)∂W2

∂t1
= d1k

α
c W2 + 2(γ1 + ϕγ2)W 1W 3,

(β + ϕ)∂W3

∂t1
= d1k

α
c W3 + 2(γ1 + ϕγ2)W 1W 2,

(22)

where γ1 = 2ζ20β
2 + 2ζ11β + 2ζ02,

γ2 = 2χ20β
2 + 2χ11β + 2χ02.
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Then, solving Eq. (17), we can get:u2

v2

 =

(
U0

V0

)
+

3∑
j=1

(
Uj

Vj

)
eikj ·r +

3∑
j=1

(
Ujj

Vjj

)
ei2kj ·r

+

(
U12

V12

)
ei(k1−k2)·r +

(
U23

V23

)
ei(k2−k3)·r

+

(
U31

V31

)
ei(k3−k1)·r + c.c.,

(23)

where, (
U0

V0

)
=

(
u00

v00

)
(|W1|2 + |W2|2 + |W3|2), Uj = βVj ,(

Ujj

Vjj

)
=

(
u11

v11

)
W 2

j ,

(
Uij

Vij

)
=

(
u∗

v∗

)
WiW j .

The specific expressions are obtained by the method of undetermined co-

efficients:(
u00

v00

)
=

−1

J11J22 − J12J21

(
J22γ1 − J12γ2

J11γ2 − J21γ1

)
,

(
u11

v11

)
= − 1

2

(
J11 − 4Duk

α
c J12 − 4Duvk

α
c

J21 − 4DvuT
kαc J22 − 4Dvk

α
c

)−1(
γ1

γ2

)
,

(
u∗

v∗

)
= −

(
J11 − 3Duk

α
c J12 − 3Duvk

α
c

J21 − 3DvuT
kαc J22 − 3Dvk

α
c

)−1(
γ1

γ2

)
.

For the third-order terms of ε in Eq. (18), using the solvability condi-
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tion, the results can be obtained as follows through calculation:

(β + ϕ)(
∂Y1

∂t1
+

∂W1

∂t2
) =kαc (d2W1 + d1Y1)− [(I1 + ϕT1)|W1|2

+ 2(γ1 + ϕγ2)(W 2Y 3 +W 3Y 2)

+ (I2 + ϕT2)(|W2|2 + |W3|2)]W1,

(β + ϕ)(
∂Y2

∂t1
+

∂W2

∂t2
) =kαc (d2W2 + d1Y2)− [(I1 + ϕT1)|W2|2

+ 2(γ1 + ϕγ2)(W 1Y 3 +W 3Y 1)

+ (I2 + ϕT2)(|W1|2 + |W3|2)]W2,

(β + ϕ)(
∂Y3

∂t1
+

∂W3

∂t2
) =kαc (d2W3 + d1Y3)− [(I1 + ϕT1)|W3|2

+ 2(γ1 + ϕγ2)(W 2Y 1 +W 1Y 2)

+ (I2 + ϕT2)(|W2|2 + |W1|2)]W3,

(24)

where

I1 =− (2βζ20 + ζ11)(u00 + u11)− (βζ11 + 2ζ02)(v00 + v11)

− 3ζ30β
3 − 3ζ03 − 3ζ21β

2 − 3ζ12β,

I2 =− (2βζ20 + ζ11)(u00 + u∗)− (βζ11 + 2ζ02)(v00 + v∗)

− 6ζ30β
3 − 6ζ03 − 6ζ21β

2 − 6ζ12β,

T1 =− (2βχ20)(u00 + u11),

T2 =− (2βχ20)(u00 + u∗).

The amplitude Aj satisfy the following equation:

Aj = εWj + ε2Yj +O
(
ε2
)
. (25)

Eqs. (22) and (24) are multiplied by ε2 and ε3, respectively. By utilizing
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Eq. (25) to combine these variables, we can obtain the equations:

τ0
∂A1

∂t
= µA1 + g0Ā2Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1,

τ0
∂A2

∂t
= µA2 + g0Ā1Ā3 − [g1|A2|2 + g2(|A1|2 + |A3|2)]A2,

τ0
∂A3

∂t
= µA3 + g0A1A2 − [g1|A3|2 + g2(|A1|2 + |A2|2)]A3,

(26)

where

τ0 =
β + ϕ

DvuT
kαc

, µ =
DvuT

−Dvu

DvuT

, g0 =
2(γ1 + ϕγ2)

DvuT
kαc

,

g1 =
I1 + ϕT1

DvuT
kαc

, g2 =
I2 + ϕT2

DvuT
kαc

.

4.3 Turing pattern stability analysis

By substituting Aj = ρje
iθj into Eq. (26), we can obtain four different

equations:

τ0
∂θ

∂t
= −g0

ρ21ρ
2
2 + ρ22ρ

2
3 + ρ21ρ

2
3

ρ1ρ2ρ3
sin θ,

τ0
∂ρ1
∂t

= µρ1 + |g0| ρ2ρ3 cos θ − g1ρ
3
1 − g2

(
ρ22 + ρ23

)
ρ1,

τ0
∂ρ2
∂t

= µρ2 + |g0| ρ1ρ3 cos θ − g1ρ
3
2 − g2

(
ρ21 + ρ23

)
ρ2,

τ0
∂ρ3
∂t

= µρ3 + |g0| ρ1ρ2 cos θ − g1ρ
3
3 − g2

(
ρ21 + ρ22

)
ρ3,

(27)

where θ = θ1 + θ2 + θ3. The following points are summarized:

(1) The uniform states:

ρ1 = ρ2 = ρ3 = 0.

System (5) is stable for µ < µ2 = 0 and unstable for µ > µ2 = 0.

(2) The stripe pattern state:

ρ1 =

√
µ

g1
̸= 0, ρ2 = ρ3 = 0.

System (5) is stable for µ > µ3 =
g2
0g1

(g2−g1)
2 and unstable µ < µ3.
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(3) The hexagon pattern or the spot pattern state has the following form:

ρ1 = ρ2 = ρ3 =
|g0| ±

√
g20 + 4(g1 + 2g2)µ

2(g1 + 2g2)
.

This solution exists when the following condition is satisfied:

µ > µ1 = − g20
4(g1 + 2g2)

.

The solution ρ− =
|g0|−

√
g2
0+4(g1+2g2)µ

2(g1+2g2)
is always unstable, and the

solution ρ+ =
|g0|+

√
g2
0+4(g1+2g2)µ

2(g1+2g2)
is stable only for

µ < µ4 =
g20(2g1 + g2)

(g2 − g1)2
.

(4) The mixed state:

ρ1 =
|g0|

g2 − g1
, ρ2 = ρ3 =

√
µ− g1ρ21
g1 + g2

,

where g2 > g1, and the solution exists when µ > µ3 =
g2
0g1

(g2−g1)2
. It is

always unstable.

5 Numerical simulation

In this section, we conduct a numerical simulation of system (5) in the

two-dimensional plane to investigate the formation of two-dimensional pat-

terns. All numerical simulations are performed within Ω = (0, 200) ×
(0, 200), with spatial step sizes ∆x = ∆y = 1 and a time step size of

∆t = 0.05. Neumann boundary conditions are used. Since the spatial dis-

tributions of the activator and inhibitor are similar, we only focus on the

formation of spatial patterns of the activator u in the following numerical

simulations.

Fix some parameter values of system (5): a = 0.9, c = 1.0, r = 0.5, p =
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0.1451,Du = 0.1,Dv = 2.0 andDuv = 0.2. We can obtain E∗ = (u∗, v∗) =

(0.820, 0.747).

Figure 1. Graph of Turing bifurcation threshold DvuT varying with
control parameter Kp and Kd.

Fig. 1 gives the dependence of DvuT
on the control parameter Kd and

Kp for system (5). It can be observed that within a certain range, DvuT

changes as Kp and Kd change.

Remark. We can change the stability of system (5) by adjusting the PD

control parameters Kp and Kd. Based on Fig. 1, we discuss the effects of

cross-diffusion coefficients, proportional control coefficients, and differen-

tial control coefficients on the Turing patterns.

5.1 Influence of the cross-diffusion coefficient Dvu on

pattern formation

This subsection demonstrates the pattern dynamics corresponding to the

values of Dvu selected near the critical point DvuT
where Turing instability

occurs. Firstly, we set the parameter value Kp = Kd = 0, α = 2, and get

the Turing bifurcation threshold DvuT
= −0.199. The coefficients of the

corresponding amplitude equation (27) are: g0 = 2.3982, g1 = 46.8737 and

g2 = 15.7634. The critical values for the emergence of various patterns are:

µ1 = −0.0183, µ2 = 0, µ3 = 0.2785 and µ4 = 0.6507.

Fig. 2 presents the bifurcation diagram of the amplitude with respect to

Dvu, and the corresponding critical value ofDvu for Turing instability, spot

pattern, stripe pattern are DvuT
= −0.199, Dvup = −0.144 and Dvuq =
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Figure 2. Bifurcation diagram from amplitude equations.

−0.069. Based on these critical values, we select different values of Dvu

that fall into different regions for simulation.

Figure 3. The relationship between Re (λk) about kα is shown when
Dvu = −0.05, −0.12, −0.18, −0.23.

WhenDvu = −0.23 < DvuT
, system (5) is locally asymptotically stable

at E∗. When Dvu = −0.18, −0.12, −0.05 > DvuT
, (H1) and (H2) hold.

According to Theorem 2, system (5) exhibits Turing instability at E∗. Fig.

3 illustrates the relationship between the real part of the eigenvalue Re (λk)

and kα for Eq. (9). When Duv = −0.25, the characteristic equation (9)

has no roots with positive real parts, indicating that system (5) is stable.

When Duv = −0.18, −0.12, and −0.05, the characteristic equation (9) has

roots with positive real parts, implying that system (5) undergoes Turing

instability, which is consistent with the previous analysis.

Table 1 calculates the corresponding µ values for the four sets of Dvu
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and their respective parameter intervals, predicting the resulting pattern

formation modes. When Dvu = −0.23, the corresponding µ < µ1. Accord-

ing to theoretical results in subsection 4.3, the system should ultimately

be stable. Fig. 4 (a) shows that the system eventually forms a uniform,

solid color pattern. When Dvu = −0.18, the corresponding µ ∈ (µ2, µ3).

Fig. 4 (b) shows that the system, after evolution, eventually forms distinct

spot patterns. Fig. 4 (c) illustrates the pattern structure corresponding

to Dvu = −0.12; at this point, µ ∈ (µ3, µ4), and the system forms a mixed

structure of coexisting spots and stripes. When Dvu = −0.05, the corre-

sponding µ > µ4. Fig. 4 (d) shows that the system ultimately forms only

stripe patterns.

Table 1. Coefficients for different parameter values of Dvu

Dvu region of Dvu µ region of µ Pattern formation

−0.23 Dvu<DvuT
<Dvup<Dvuq −0.157 µ<µ1<µ2<µ3<µ4 Steady

−0.18 DvuT
<Dvu<Dvup<Dvuq 0.0945 µ1<µ2<µ<µ3<µ4 Spot

−0.12 DvuT
<Dvup<Dvu<Dvuq 0.3964 µ1<µ2<µ3<µ<µ4 Mixed

−0.05 DvuT
<Dvup<Dvuq<Dvu 0.7485 µ1<µ2<µ3<µ4<µ Stripe
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0.2

0.4

0.6

0.8

1

1.2

1.4

(d)Dvu = −0.05 (e)dCdt (f)umax, umean, umin

Figure 4. (a)-(d): The pattern structure of system (5) when Dvu =
−0.23, −0.18, −0.12 and −0.05; (e): The time-reciprocal
waveform diagram of parameter C; (f): The maximum
value, average value, and minimum value of u when Dvu =
−0.18,−0.12 and −0.05.
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Remark. Although the emergence of pattern formations is inherently due

to the instability of the system, the structure of these patterns eventually

stabilizes. To reveal the effect of the cross-diffusion coefficient on the

speed of pattern evolution, we construct a lumped parameter using the

distribution characteristic parameters at each moment.

By performing a weighted summation of the kurtosis and skewness

values at each moment, we obtain the lumped parameter C. During the

pattern evolution process, there are usually significant changes in the con-

centration distribution, leading to noticeable changes in the distribution

characteristics of the concentration data. When the system forms a stable

pattern mode, the distribution characteristics of the concentration data

will no longer change. Therefore, when the lumped parameter C no longer

changes, the system has formed a stable pattern mode, and dC
dt approaches

0. The corresponding time t can then be regarded as the time required for

the system to form a stable pattern.

Fig. 4 (e) shows the waveform of the dC
dt , and Fig. 4 (f) shows the

maximum, average, and minimum values of u in the discrete spatial domain

at different times, which can be used to describe the time required for the

system to form stable patterns. It can be observed that whenDvu = −0.18,

the system requires t = 500 to form stable patterns. When Dvu = −0.12,

the system requires t = 250 to form stable patterns. When Dvu = −0.05,

the system only needs t = 150 to form stable patterns. Therefore, the

cross-diffusion coefficient Dvu not only changes the system’s stable state

and pattern structure but also affects the time required for the system to

form stable patterns. The larger the absolute value of Dvu, the shorter

the time required for the system to form patterns.

To more intuitively describe the effect of the cross-diffusion coefficient

Dvu on the system, we enlarge the reaction domain to Ω = (0, 400) ×
(0, 400) and select Dvu as a linear function of the spatial coordinates x

Dvu = −0.3 + 0.3
x

400
,
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a periodic function of the spatial coordinates x

Dvu = −0.15− 0.15 cos(
10x

400
),

and a spatially varying function of the spatial coordinates x and y

Dvu = −0.3 + 0.5

√
(x− 200)2 + (y − 200)2

200
,

for the corresponding simulation experiments.

Figure 5. The pattern structure of system (5) when Dvu = −0.3 +
0.3 x

400
.

Figure 6. The pattern structure of system (5) when Dvu = −0.15 −
0.15 cos( 10x

400
).

Figs. 5-7 show the pattern formations of the system under spatially

varying Dvu. In Fig. 5, Dvu = −0.3 + 0.3 x
400 varies linearly with x,

then Dvu ∈ (−0.3, 0] passes through the three corresponding threshold
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Figure 7. The pattern structure of system (5) when Dvu = −0.3 +

0.5

√
(x−200)2+(y−200)2

200
.

DvuT
= −0.199, Dvup

= −0.144 and Dvuq
= −0.069. As the cross diffu-

sion coefficient Dvu increases, the visual pattern undergoes a slow tran-

sition from a green solid color pattern to a blue dot pattern on a green

background, to the coexistence of blue dots and stripes, and finally be-

comes a pattern dominated by blue stripes. The patterns change with x,

sequentially forming stable patterns, spot patterns, mixed spot-stripe pat-

terns, and stripe patterns. Similarly, in Fig. 6, Dvu = −0.15−0.15 cos( 10x400 )

varies periodically with x, thenDvu ∈ [−0.3, 0]. The system’s patterns also

vary periodically with x. In Fig. 7, Dvu = −0.3 + 0.5

√
(x−200)2+(y−200)2

200

increases radially outward from the center (200, 200). The system exhibits

stable patterns, spot patterns, mixed spot-stripe patterns, and stripe pat-

terns from the center outward. We can explain these behaviors by compar-

ing the values of Dvu at different locations with the corresponding critical

values for Turing instability (DvuT
), spot patterns (Dvup

), and stripe pat-

terns (Dvuq
). Therefore, Figs. 5-7 allow us to infer the types of patterns

formed under different distributions of Dvu.

5.2 Influence of the Kp on pattern formation

This subsection discusses the impact of proportional control coefficients

Kp on the pattern dynamics of the system, and Dvu = −0.2, Kd = 0 and

α = 2 are fixed.

Fig. 8 depicts the dispersion curves of system (5) for different pro-
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portional control coefficients Kp. When Kp = 0.02, for any kα, the real

parts of the eigenvalues of the characteristic equation (9) are all negative,

indicating that the system is stable. For Kp = −0.06, −0.15 and −0.2,

there is always suitable kα that makes the real part of the eigenvalues of

characteristic equation (9) greater than zero, then the system will generate

Turing instability, which verifies Theorem 2.

Figure 8. The graphic of Re(λk) against kα when Kp =
0.02, −0.06, −0.15, −0.2.

Fig. 9 illustrates the pattern evolution process whenKp = 0.02, −0.06,

−0.15 and −0.2. When Kp = 0.02, system (5) is stable and eventually

evolves into a uniform monochromatic distribution. When Kp = −0.06,

system (5) exhibits Turing instability, resulting in spot patterns. When

Kp = −0.15, system (5) results in spot-stripe hybrid patterns. WhenKp =

−0.2, system (5) evolves into stripe patterns. From the above simulations,

it can be concluded that as the value of Kp changes, system (5) transitions

from the local asymptotic stability at the equilibrium point E∗ to the

Turing instability, and generate different types of patterns.

Similarly, Fig. 9 (e) shows the waveform of the dC
dt , and Fig. 9 (f) shows

the maximum, average, and minimum values of u in the discrete spatial

domain at different times. We can see that when Kp = −0.06, the system

requires t = 400 to form stable patterns. When Kp = −0.15, the system

requires t = 250 to form stable patterns. When Kp = −0.2, the system

only needs t = 200 to form stable patterns. Therefore, the proportional

controller parameter Kp can not only change the system’s stable state and

pattern structure but also affect the time required for the system to form
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Figure 9. (a)-(d): The pattern structure of system (5) when Kp =
0.02, −0.06, −0.15 and −0.2; (e): The time-reciprocal
waveform diagram of parameter C; (f): The maximum
value, average value, and minimum value of u when Kp =
−0.06, −0.15 and −0.2.

stable patterns. The larger the value of Kp, the longer the time required

for the system to form patterns.

5.3 Influence of the Kd on pattern formation

This subsection discusses the impact of proportional control coefficients

Kd on the pattern dynamics of the system, and Dvu = −0.2, Kp = 0 and

α = 2 are fixed. The analysis process is the same as Subsection 5.2.

Fig. 10 depicts the dispersion curves of system (5) for several dif-

ferential control coefficients Kd. When Kd = 0.1, the real part of the

eigenvalues of any kα characteristic equation (9) is less than zero, so the

system is stable. For Kd = −0.02, −0.1 and −0.3, there is always suitable

kα that makes the real part of the eigenvalues of characteristic equation (9)

greater than zero, then the system will generate Turing instability, which

verifies Theorem 2.

Fig. 11 illustrates the pattern evolution process whenKd = 0.1, −0.02,

−0.1 and −0.3. When Kd = 0.1, system (5) is stable. When Kd = −0.02,
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system (5) resulting in spot patterns. For Kd = −0.1, system (5) exhibits

spot-stripe hybrid patterns. In contrast, Kd = −0.3 leads system (5) to

evolve into stripe patterns.

Similarly, we can get that as the value of Kd changes, system (5) tran-

sitions from the local asymptotic stability at the equilibrium point E∗ to

the Turing instability, and generate different types of patterns.

Figure 10. The graphic of Re(λk) against kα when Kd =
0.1, −0.02, −0.1 and −0.3.

Fig. 11 (e) shows the waveform of the dC
dt , and Fig. 11 (f) shows

the maximum, average, and minimum values of u in the discrete spatial

domain at different times. We get that when Kd = −0.02, the system

requires t = 600 to form stable patterns. When Kd = −0.1, the system

requires t = 250 to form stable patterns. When Kd = −0.3, the system

only needs t = 150 to form stable patterns. Therefore, the differental

controller parameter Kd not only changes the system’s stable state and

pattern structure but also affects the time required for the system to form

stable patterns. The larger the value of Kd, the longer the time required

for the system to form patterns.

5.4 Influence of the fractional diffusion order α on

pattern formation

This subsection discusses the influence of fractional diffusion order α on

system pattern dynamics. We set Dvu = −0.2, Kp = 0 and Kd = 0.

Fig. 12 reveals that as α increases, the critical wavenumber kT for
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Figure 11. (a)-(d): The pattern structure of system (5) when Kd =
0.1, −0.02, −0.1 and −0.3; (e): The time-reciprocal wave-
form diagram of parameter C; (f): The maximum value,
average value, and minimum value of u when Kd =
−0.02, −0.1 and −0.3.
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Figure 12. The graphic of Re(λk) against k when α =
1.1, 1.5, 1.9, 2.0.
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Turing instability also increases, leading to a smaller wavelength of the

solution and a narrower range of wavenumbers for Turing instability.

Figure 13. The curve of critical wave number kT as a function of α.
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Figure 14. The pattern structure of system (5) for different values of
Dvu and α.

Fig. 13 provides a more detailed relationship between the critical

wavenumber kT for Turing instability and the fractional diffusion order

α. Observing Figs. 14 and 15, we can see that as α increases, the width of

the patterns (size of spots and stripes) and the wavelength of the solution

all significantly decrease.

Fig. 16 shows the waveform of the dC
dt , and Fig. 17 implys the max-
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(a)Dvu = −0.18 (b)Dvu = −0.12 (c)Dvu = −0.05

Figure 15. The curve depicting the variation of the wavelength of the
solution with respect to α.

imum, average, and minimum values of u in the discrete spatial domain

at different times. Differently, The fractional diffusion order α does not

affect the time required for the system to form stable patterns.

Remark. The curves for different fractional diffusion orders α are nearly

synchronized. This is different from the conclusion regarding the effect of

the cross-diffusion coefficient and PD controller on the system’s evolution

speed.

(a)Dvu = −0.18 (b)Dvu = −0.12 (c)Dvu = −0.05

Figure 16. The time-reciprocal waveform diagram of parameter C for
different values of Dvu and α.

5.5 Influence of the anisotropic diffusion on pattern

formation

In this subsection, by keeping Kp = 0, Kd = 0 and α = 2 constant, we

study the impact of anisotropic diffusion on Turing patterns by varying

the cross-diffusion coefficients Dvux
and Dvuy

in different directions. We

can obtain the Turing bifurcation threshold DvuT
= −0.199. We first fix
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(a)Dvu = −0.18 (b)Dvu = −0.12 (c)Dvu = −0.05

Figure 17. The maximum value, average value, and minimum value of
u for different values of Dvu and α.

Dvuy
while allowing Dvux

to linearly increase in space.
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Figure 18. When Dvux = −0.35 + 0.55 x
200

the pattern structure of
system (5).

Fig. 18 illustrates the mixed pattern formed when Dvu increases mono-

tonically in the x-direction. As x increases, Dvux transitions from being

lower than Dvuy to gradually becoming higher than Dvuy . For the left part

of Fig. 18 (a), where Dvux ≈ Dvuy = −0.25 < DvuT
, the system exhibits a

stable monochrome state. As Dvux increases, the following cases occur se-

quentially: Dvux ∈ (DvuT
, Dvup), Dvux ∈ (Dvup , Dvuq ), andDvux > Dvuq ,

corresponding to point, mixed point-stripe, and stripe patterns along the x-

direction. However, it is worth noting that because Dvuy = −0.25 < DvuT
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remains true, the system is generally stable along the y-direction.

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)Dvuy
= −0.25 (b)Dvuy

= −0.18

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)Dvuy = −0.12 (d)Dvuy = −0.05

Figure 19. When Dvux = −0.15− 0.15 cos( 10x
200

) the pattern structure
of system (5).

However, through Fig. 18 (b), (c) and (d), we find that in the left region

of these three figures, Dvux < Dvuy , and the system exhibits horizontal

stripes. In the right region, Dvux > Dvuy , and the system shows vertical

stripes. However, because Dvux varies linearly with x in all three cases,

while their respective Dvuy values are different, larger Dvuy leads to more

horizontal stripes.

Similarly, we also provide the system’s pattern with Dvux varying peri-

odically in space as show in Fig. 19, which exhibits phenomena consistent

with Fig. 18.

6 Conclusion

This paper derives the conditions for Turing bifurcation in the GM sys-

tem using cross-diffusion coefficients as bifurcation parameters. Through

multi-scale analysis, the amplitude equation at the Turing threshold is de-

rived, predicting the types of patterns that may emerge under different

cross-diffusion coefficients. The effects of cross-diffusion coefficients, PD
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controllers, and fractional-order diffusion on system stability, pattern for-

mation, and evolution speed are discussed. For the system studied in this

article, the findings indicate that the system forms various pattern struc-

tures under different cross-diffusion coefficients, with larger cross-diffusion

coefficients resulting in shorter times for the system to form stable pat-

terns. When cross-diffusion coefficients are non-uniformly distributed in

space, different regions can select different pattern types. The PD con-

troller can alter the Turing bifurcation threshold, affecting the system’s

stability and the final pattern that evolves. Smaller control coefficients

lead to shorter times for the system to achieve stable patterns. Different

fractional-order diffusion orders do not affect system stability and evolu-

tion speed; however, as the fractional-order diffusion increases, the critical

wavenumber for Turing instability also increases, resulting in smaller wave-

lengths and a higher number of patterns within the same spatial domain.

Finally, the impact of anisotropic diffusion on Turing patterns in hetero-

geneous environments is presented.
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