
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 94 (2025) 135–155

ISSN: 0340–6253

doi: 10.46793/match.94-1.135D

Topological Isomers of DNA Dodecahedral

Links

Jin-Wei Duana,∗, Xiao-Sheng Chengb, Tao Dengc

aSchool of Sciences, Chang’an University, Xi’an, Shaanxi, 710064,

China.
bSchool of Mathematics and Statistics, Huizhou University, Huizhou,

Guangdong, 516007, China.
cSchool of Mathematics and Computer Science, Northwest Minzu

University, Lanzhou 730030, China.

duanjw@chd.edu.cn

(Received December 23, 2024)

Abstract

A comprehensive understanding of the interrelationships among
various DNA dodecahedral topological configurations holds immense
theoretical significance for guiding experimental synthesis and prac-
tical applications. In this study, we investigate the topological iso-
mers of DNA dodecahedral links. We defined DNA dodecahedral
links with a consistent component number and genus as topological
isomers. Two distinct strategies were employed to identify potential
topological isomers. The HOMFLY-polynomial has been validated
as a potent tool for distinguishing the topological isomers of DNA
dodecahedral links. Our research not only provides valuable insights
into the comprehensive understanding of DNA nanostructures but
also offers clues for scientists to screen and synthesize unexplored
DNA nanostructures.
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1 Introduction

Since DNA is conventionally recognized as an information storage material,

it is also a versatile building material for the construction of various poly-

hedral configurations [1–3]. Scientists have successfully synthesized a vari-

ety of DNA nanostructures, which have demonstrated immense potential

for drug delivery [4–6], disease diagnosis [7,8], bioimaging technologies [9]

and treatment due to their exceptional biocompatibility, programmability,

addressability, and precisely controllable [10–13].

The dodecahedron, a unique geometric structure, offers a volume-to-

surface-area ratio of a dodecahedral cage that is greater than that of its

crystallographic counterparts, has been utilized in nanotechnology for the

development of novel materials with different physical and chemical prop-

erties, particularly folding DNA / RNA strands in dodecahedral configu-

rations [14, 15]. As an innovative nanomaterial and technology platform,

DNA dodecahedra exhibits wide potential applications in the fields of

nanoscale packaging materials, biomedical science, material science, and

foundmental scientific research [16–19]. For example, DNA dodecahedra

have been utilized to encapsulate and protect various biological or drug

molecules [20], while also serving as nanoreactors for certain chemical re-

actions or biological processes [21].

The complexity and cost associated with the synthesis and assembly,

ensuring stability and biocompatibility within living organisms, remain

urgent. These challenges have prompted scientists to explore theoretical

aspects more deeply to investigate diverse possibilities for DNA dodecahe-

dral configurations. To provide a comprehensive overview of the number

and diversity of dodecahedral DNA structures, topological methods have

been introduced to systematically determine possible candidate structures

that can be synthesized in laboratories [22, 23]. DNA polyhedral links, a

topological model that represents DNA strands as dimensionless lines, have

been proposed to describe and simulate artificial DNA structures [24–27].

A series of polyhedral links were constructed, and various topological in-

dices were calculated, including component number (µ), crossing number

(c), HOMFLY polynomial [28,29], braid index [30], etc. These indices have
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contributed significantly to the design of novel polyhedral structures from

a topological perspective. Consequently, the results suggest that DNA

polyhedral links have great potential as templates for controlling chemical

synthesis and have been validated [31].

It is worth noting that most previous studies have primarily focused

on obtaining diverse configurations of DNA polyhedral links and exploring

topological indexes. However, more attention should be paid to investi-

gating the connections and distinctions among these various DNA polyhe-

dral configurations, particularly those with identical topological indexes.

We previously demonstrated potential relationships between various topo-

logical parameters associated with DNA polyhedral links. Our findings

revealed that the genus g of a branched DNA polyhedral link depends

not only on the number of components µ but also exhibits periodic varia-

tions [32]. This work lays the foundation for further exploration into the

relationships among DNA dodecahedral configurations.

It is particularly intriguing to know whether there is a unique DNA

dodecahedral configuration that can satisfy the given set of (µ, g). If not,

it is plausible that one can have multiple different DNA dodecahedral con-

figurations with the same genus and component number. These special

configurations may exhibit diverse or even diametrically opposite prop-

erties, thereby affecting their practical applications. However, the precise

definition and identification of these configurations remain an urgent issue,

while the means to discern their distinctions have not yet been determined.

Therefore, it is necessary to define and distinguish these DNA dodec-

ahedral configurations accurately. In this study, we defined DNA dodeca-

hedral configurations with the same genus g and component number µ as

topological isomers. These topological isomers were obtained by integrat-

ing the two strategies proposed by N. Jonoska [33, 34] and J. Duan [35],

respectively. Subsequently, we employed the HOMFLY polynomials to

discern the distinct characteristics of these topological isomers.

It is crucial to investigate their construction and analysis to facilitate

the design and synthesis of DNA dodecahedra, providing theoretical guide-

lines for their rational design from a theoretical perspective. The study

of topological isomers of DNA dodecahedral links not only enhances our
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understanding of the relationship between topological indices of DNA poly-

hedral links but also offers valuable insights and potential candidates for

experimental synthesis and application.

2 Methods

2.1 Define the topological isomers

A polyhedral link L is an interlinked and interlocked architecture obtained

from a polyhedral graph G, utilizing tangle structures to replace its vertices

and edges. To determine the genus of DNA polyhedral links, we introduce

the Seifert algorithm [36], which provides an explicit method to find an

orientable surface with one boundary component. As depicted in Figure

1a, each edge with 2k (or 2k+1) half-turns will be transform to 2k -1 (or 2k)

Seifert circles, while each vertex corresponds to a Seifert circle. The total

Seifert number s is then calculated as the sum of the number of edge and

vertex Seifert circles. For example, a given tetrahedral link is transformed

into a configuration composed of several Seifert circles, as shown in Figure

1b. In this case, the total Seifert number is ten, comprising four vertex

Seifert circles (blue, red, orange, and green) and six edge Seifert circles

(purple).

Understanding the interrelationships between these topological indices,

as each index corresponds to a specific configuration parameter,it is crucial

to accurately providing a broader range of potential synthesis candidates.

Hu was the first to reveal the relationship between component number

(µ), crossing number (c), and Seifert number (s) based on the Seifert algo-

rithm [37]. His results show that these three numbers satisfy a simple and

elegant mathematical formula (1), called the new Euler formula for DNA

polyhedra.

s+ µ− c = 2− 2g (1)

The formula serves as a crucial link connecting the topological pa-

rameters of DNA cages and the Euler characteristic of the corresponding

polyhedron, facilitating the design of novel DNA polyhedra with a genus

larger than 0. Li and his colleagues have extended this new formula to



139

Figure 1. Schematic of Seifert algorithm on DNA polyhedral links.
a)apply Seifert algorithm on vertexes and edges ; b)
Schematic of Seifert algorithm on DNA tetrahedral links.

crossed DNA polyhedral links [38]. Duan and Hu have proposed a se-

ries of innovative design strategies to embed DNA polyhedral links into

high-genus surfaces. These studies collectively demonstrate potential re-

lationships between various topological parameters associated with DNA

polyhedral links. In fact, the genus of a branched DNA polyhedral link

depends not only on the number of components but also exhibits periodic

variations [39], such as formula (2).

g =
F − µ

2
(2)

The component number µ reflects the required number of strands to

construct a desired DNA polyhedron, while the genus represents an in-

trinsic property of the DNA polyhedral links. Using formula (2), we can

observe that the genus varies with the component number of a given DNA

polyhedral link. Therefore, revealing their relationship can provide valu-

able insight that guide synthesis strategies. Furthermore, it is imperative

to address the challenge of distinguishing between different configurations

of DNA polyhedral links that may have identical component numbers and

genus. In this study, by incorporating the concept of allotropy in chem-

istry, we define DNA dodecahedral configurations with identical compo-

nent number µ and genus g as topological isomers, denoted as (µ, g).

Theoretically, formula (2) implies the potential existence of topological

isomers of DNA dodecahedral links.
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Figure 2. Construction of DNA tetrahedral links employing two di-
verse strategies.

2.2 Determin the topological isomers

However, the challenge to validate the existence of topological isomers re-

mains. In this study, two strategies are employed to identify the potential

topological isomers of DNA dodecahedral isomers. To illustrate the strate-

gies, a DNA tetrahedral link with four components is chosen as the starting

point,each edge being covered by even half-turns.

Strategy I: Duan and his colleague proposed an approach to replace

vertex configurations with the minimum number of pseudo-surrounded ver-

tices [35] (as shown in Figure 2a), thereby obtaining DNA polyhedral links

with different numbers of components. For example, the central vertex

(marked with a red circle) of the given tetrahedral link illustrated in Fig-

ure 2a can be designated as a pseudo-surrounded vertex, resulting in the

tetrahedral link with two component numbers depicted in Figure 2a.

Strategy II: This strategy was proposed by N. Jonoska and R. Twar-

ock [33, 34] , presenting a blueprint for organizing nucleic acid within a

dodecahedral cage in such a way that the resulting product has minimal

component number through adjusting even half-turns on selected edges of

a DNA polyhedral configuration to odd half-turns. The even half-turns

circled by a red circle (with crosses) are replaced by odd half-turns, as

depicted in Figure 2b, resulting in a reduction of the number of components

of the tetrahedral link from four to three (Figure 2b). Therefore, various

DNA polyhedral configurations with different component numbers can be

obtained based on this method.
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Figure 3. Crossing and smoothing changes on a local region of a link
diagram

Therefore, both strategies are utilized in conjunction to assist us in

identifying distinct topological isomers of the DNA icosahedral link that

meet our requirements, ensuring an adequate number of configurations for

analysis and comparison.Since the antiparallel property of the DNA dou-

ble helix determines that the DNA polyhedral links must be antiparallel,

verification is required. Therefore, for a dodecahedron, if there is an even

number of odd half-turn edges on each face, then the corresponding DNA

dodecahedron link must be antiparallel.

2.3 Distinct the topological isomers

When we successfully obtained the topological isomers, distingushing them

became a critical challenge. Although mathematical methods exist to

differentiate similar structures, such as employing types of polynomial,

we opted to utilize the HOMFLY polynomial in this paper. The HOM-

FLY polynomial is a powerful invariant for knots and links, remaining

unchanged under transformations, which allows for adequate distinction

between different knots. It surpasses other invariants, like the Alexander

and Jones polynomials, in its ability to differentiate complex knot types.

Additionally, in certain cases, specific isomers can be represented as knots,

enabling the potential use of the HOMFLY polynomial to distinguish them.

Previous studies demonstrated that the HOMFLY polynomial is limited to

isomers with apparent topological features, such as DNA polyhedral links.

These attempts demonstrate the applicability of the HOMFLY polynomial

in differentiating isomorphic variants, thereby providing valuable insight

for our subsequent differentiation of topological isomers of DNA polyhedral

links.

In this study, the framed version was introduced to the fore, for a link
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L, we denote the evaluation of its HOMFLY polynomial by P(L), which

is defined by the following skein relations:

(1) P(unknot)= 1

(2) 1
vPL+ − vPL− = zPL−

Where L+, L−, and L0 are the links formed by crossing and smoothing

changes in a local region of a link diagram, as indicated in Figure 3. Then,

the Kodama’s program KnotGTK (http://www.math.kobe-u.ac.jp/∼ ko-

dama/knot.html) was employed to calculate the HOMFLY polynomials of

all topological isomers [40].

3 Results

3.1 DNA dodecahedra with six components

According to Strategy I, three vertices on the given dodecahedron were

chosen and replaced by pseudo-surrounded vertices (Figure 4a, left), re-

sulting in DNA dodecahedral configuration I with a component number of

six (Figure 4a, right). Although there may be other ways to determine the

positions of these three vertices, previous literature has shown that they

are equivalent and confirmed that they have the same configuration [35].

Configuration II is obtained through Strategy II, with component num-

ber of six. Initially, 24 edges were circled, as depicted in Figure 4b (left),

indicating the replacement of these even half-turn edges with odd half-

turn edges. Subsequently, the final structure is presented in a simplified

wireframe representation (Figure 4b, right). As well as configuration II,

strategy II was also employed to obtain configuration III, which also con-

sists of six components.

The Seifert number and the crossing number were calculated for con-

figurations I, II and III, while formulas (1) and (2) were employed to

determine the genus of these configurations. All three configurations were

observed to exhibit a genus of three. Given their identical component

number and genus, these configurations satisfy our definition of topolog-

ical isomers, which are denoted as (6, 3) topological isomers of the DNA

dodecahedral links.
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Figure 4. Construction of DNA dodecahedral links employing two di-
verse strategies. a) configuration I with six components; b)
configuration II with six components; c) configuration III
with six components.

Table 1. Details of (6, 3) dodecahedral topological isomers

Configuration s µ c F g
I 41 6 51 12 3
II 26 6 36 12 3
III 26 6 36 12 3
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To differentiate between these configurations, we utilized Kodama’s

KnotGTK program to compute the HOMFLY polynomials for each con-

figuration. The results are presented in the following:

HOMFLY-polynomial of configuration I:

PI(v, z) = z−5(v59−11v57+52v55−138v53+225v51−231v49+146v47−
52v45 + 8v43) + z−3(−24v57 + 228v55 − 903v53 + 1, 923v51 − 2, 355v49 +

1, 620v47−537v45+39v43+3v41+6v39)+z−1(259v55−2, 056v53+6, 462v51−
10, 031v49 +7, 565v47 − 1, 899v45 − 418v43 + v41 +96v39 +17v37 +4v35) +

z(−1, 650v53+10, 372v51−23, 284v49+20, 346v47−1, 871v45−4, 288v43−
819v41 + 700v39 + 359v37 + 126v35 + 9v33) + z3(6, 823v51 − 30, 721v49 +

37, 127v47 + 3, 886v45 − 17, 558v43 − 7, 583v41 + 2, 592v39 + 3, 324v37 +

1, 650v35+406v33+51v31+3v29)+z5(−18, 792v49+47, 885v47+7, 053v45−
45, 301v43 − 29, 100v41 + 6, 048v39 + 17, 342v37 + 12, 342v35 + 5, 229v33 +

1, 582v31 + 386v29 + 75v27 + 11v25 + v23) + z7(33, 414v47 − 13, 975v45 −
77, 636v43−51, 910v41+20, 635v39+59, 784v37+54, 630v35+32, 672v33+

15, 034v31+5, 766v29+1, 875v27+495v25+93v23+9v21)+z9(−34, 050v45−
62, 089v43−16, 897v41+75, 088v39+137, 189v37+138, 983v35+102, 889v33+

61, 527v31+31, 293v29+13, 822v27+5, 283v25+1, 704v23+442v21+84v19+

9v17)+z11(14, 019v43+56, 691v41+114, 444v39+154, 959v37+159, 420v35+

133, 620v33+95, 395v31+59, 678v29+33, 231v27+16, 563v25+7, 371v23+

2, 901v21 + 992v19 + 286v17 + 66v15 + 11v13 + v11)

HOMFLY-polynomial of configuration II:

PII(v, z) = z−5(−v17+5v15− 10v13+10v11− 5v9+ v7)+ z−3(−7v17+

39v15−84v13+86v11−39v9+3v7+2v5)+z−1(−10v17+109v15−314v13+

364v11−152v9−13v7+12v5+4v3)+z(−3v17+125v15−626v13+927v11−
342v9−154v7+29v5+42v3+2v)+z3(108v15−825v13+1, 600v11−379v9−
684v7−65v5+214v3+29v+2v−1)+z5(−2v17+81v15−837v13+1, 988v11−
16v9−1, 766v7−733v5+540v3+149v+19v−1+v−3)+z7(34v15−605v13+

1, 858v11 + 657v9 − 2, 958v7 − 2, 288v5 + 697v3 + 388v + 84v−1 + 5v−3) +

z9(−v17+19v15−349v13+1, 332v11+1, 169v9−3, 570v7−4, 172v5+163v3+

600v+207v−1+18v−3)+z11(−2v17+30v15−215v13+770v11+1, 227v9−
3, 238v7− 5, 187v5− 933v3+544v+304v−1+38v−3)+ z13(−v17+25v15−
158v13+370v11+963v9− 2, 317v7− 4, 696v5− 1, 701v3+215v+275v−1+

47v−3)+z15(8v15−94v13+212v11+571v9−1, 411v7−3, 097v5−1, 524v3−
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87v+133v−1+30v−3)+ z17(−24v13+119v11+167v9−728v7−1, 411v5−
800v3−143v+23v−1+9v−3)+z19(28v11−11v9−250v7−387v5−230v3−
59v − 3v−1 + v−3) + z21(−11v9 − 37v7 − 46v5 − 27v3 − 8v − v−1)

HOMFLY-polynomial of configuration III:

PIII(v, z) = z−4(2v20−9v18+16v16−14v14+6v12− v10)+ z−2(5v20−
34v18+77v16−79v14+42v12−17v10+8v8−2v6)+(v20−52v18+191v16−
258v14 + 192v12 − 149v10 + 104v8 − 29v6) + z2(2v20 − 64v18 + 387v16 −
672v14+555v12−533v10+469v8−131v6−11v4−2v2)+z4(3v20−87v18+

589v16−1, 234v14+889v12−1, 034v10+1, 323v8−303v6−122v4−24v2)+

z6(v20−42v18+522v16−1, 345v14+614v12−1, 182v10+2, 828v8−124v6−
409v4 − 149v2 − 10) + z8(−17v18 + 252v16 − 855v14 − 271v12 − 823v10 +

4, 545v8 + 1, 094v6 − 615v4 − 434v2 − 60) + z10(v20 − 10v18 + 121v16 −
355v14 − 831v12 − 408v10 + 5, 499v8 + 3, 196v6 − 230v4 − 722v2 − 168 −
5v−2) + z12(v20 − 13v18 + 42v16 − 63v14 − 774v12 − 311v10 + 5, 095v8 +

4, 622v6 + 694v4 − 638v2 − 243 − 20v−2) + z14(−8v18 + 43v16 + 54v14 −
595v12 − 166v10 + 3, 675v8 + 4, 056v6 + 1, 198v4 − 227v2 − 168− 21v−2) +

z16(22v16 − 27v14 − 335v12 +135v10 +1, 960v8 +2, 208v6 +882v4 +58v2 −
44−8v−2)+z18(−24v14−52v12+187v10+658v8+680v6+312v4+59v2−
v−2) + z20(9v12 + 48v10 + 94v8 + 86v6 + 41v4 + 10v2 + 1)

The analysis of the HOMFLY polynomials reveals that despite having

identical genus and component numbers, these (6, 3) dodecahedral topo-

logical isomers exhibit distinct topological properties. This highlights the

effectiveness of the HOMFLY polynomial as a powerful tool for discerning

their dissimilarities.

3.2 DNA dodecahedra with four components

The acquisition of configuration IV with four components by strategy I re-

quires the presence of four pseudo-surrounded vertices, as depicted in Fig-

ure 5a. The positional distribution scheme of the four pseudo-surrounded

vertices shown in Figure 5a (left) is unique, which is particularly notewor-

thy due to the equivalence of the 20 vertices of a dodecahedron. The final

simplified wireframe configuration is presented in Figure 5a (right).

According to strategy II, a total of 24 odd half-turns are strategically

positioned at distinct locations to substitute the corresponding even half-
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Figure 5. Construction of DNA dodecahedral links employing two di-
verse strategies. a) configuration VI with four components;
b) configuration V with four components; c) configuration
VI with four components.

turns, thereby effectively reducing the component count to four. The spe-

cific details can be observed in Figures 5b (left) and 5c (left), leading to

the derivation of two distinct configurations denoted V and VI.

Subsequently, the Seifert algorithm was executed on the three config-

urations to determine their Seifert number s and the crossing number c.

These values are listed in Table 2 and were then utilized in formulas (1)

and (2) to calculate their genus g. Remarkably, it was observed that each

configuration exhibited a genus of 4. Evidently, these three configurations

can be classified as topological isomers based on the definition and should

be designated as the (4, 4) dodecahedral topological isomers.

The KnotGTK program is employed to compute HOMFLY polynomi-

als in configurations VI, V and VI. The findings suggest that the HOMFLY

polynomials of the three (4, 4) dodecahedral topological isomers exhibit

distinct variations, indicating their topological dissimilarity. The obtained

HOMFLY polynomials are presented as follows:

HOMFLY-polynomial of configuration IV:
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PIV (v, z) = z−3(−v55+11v53−51v51+129v49−192v47+168v45−80v43+

16v41)+z−1(22v53−204v51+762v49−1, 446v47+1, 422v45−618v43+38v41+

24v37)+z(−215v51+1, 607v49−4, 420v47+5, 098v45−1, 488v43−954v41−
43v39 + 301v37 + 79v35 + 35v33) + z3(1, 220v49 − 6, 758v47 + 10, 822v45 −
1, 052v43−6, 423v41−1, 787v39+1, 893v37+1, 511v35+775v33+213v31+

18v29) + z5(−4, 383v47 + 14, 777v45 − 1, 197v43 − 19, 773v41 − 9, 839v39 +

7, 131v37 + 11, 172v35 + 7, 662v33 + 3, 259v31 + 899v29 + 192v27 + 32v25 +

4v23) + z7(10, 002v45 − 8, 714v43 − 34, 312v41 − 18, 236v39 + 22, 058v37 +

42, 826v35+37, 183v33+21, 313v31+9, 016v29+3, 068v27+852v25+174v23+

18v21) + z9(−13, 119v43 − 24, 761v41 + 193v39 + 53, 581v37 + 90, 979v35 +

90, 217v33 + 64, 359v31 + 36, 039v29 + 16, 711v27 + 6, 555v25 + 2, 148v23 +

562v21+108v19+12v17)+z11(6,474v41+28,710v39+61,881v37+87,039v35+

90, 576v33 + 74, 864v31 + 51, 521v29 + 30, 483v27 + 15, 786v25 + 7, 194v23 +

2, 871v21 + 989v19 + 286v17 + 66v15 + 11v13 + v11)

HOMFLY-polynomial of configuration V:

PV (v, z) = z−3(−v37 + 3v35 − 3v33 + v31) + z−1(v39 − 12v37 + 35v35 −
38v33 + 26v31 − 24v29 + 12v27) + z(−2v39 − 29v37 + 148v35 − 113v33 −
22v31−137v29+137v27+17v25+v23)+z3(−v39−6v37+368v35−340v33−
783v31−185v29+860v27+298v25+29v23)+z5(35v37+375v35−1, 157v33−
2, 532v31 + 584v29 + 3, 671v27 + 2, 077v25 + 461v23 + 38v21) + z7(10v37 −
38v35−1, 823v33−2, 858v31+3, 180v29+9, 141v27+6, 920v25+2, 637v23+

608v21 + 90v19 + 6v17) + z9(−v37 − 95v35 − 824v33 − 251v31 + 5, 658v29 +

11, 701v27+10, 625v25+5, 762v23+2, 163v21+596v19+114v17+12v15)+

z11(v35 + 87v33 + 981v31 + 3, 494v29 + 5, 967v27 + 6, 028v25 + 4, 149v23 +

2, 137v21 + 863v19 + 274v17 + 66v15 + 11v13 + v11)

HOMFLY-polynomial of configuration VI:

PV I(v, z) = z−3(v39 − 5v37 + 9v35 − 7v33 + 2v31) + z−1(3v39 − 34v37 +

82v35−56v33−13v31+18v29)+z(−3v39−53v37+278v35−193v33−240v31+

139v29 + 66v27 + 6v25) + z3(−v39 − 4v37 + 503v35 − 570v33 − 1, 212v31 +

527v29+756v27+208v25+17v23)+z5(36v37+408v35−1, 445v33−2, 882v31+

1, 587v29 + 3, 784v27 + 1, 907v25 + 408v23 + 36v21) + z7(10v37 − 38v35 −
1, 955v33−2, 904v31+4, 035v29+9, 534v27+6, 875v25+2, 577v23+596v21+

90v19+6v17)+z9(−v37−95v35−840v33−189v31+6, 040v29+11, 996v27+

10, 706v25 + 5, 761v23 + 2, 154v21 + 594v19 + 114v17 + 12v15) + z11(v35 +
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Table 2. Details of (4, 4) dodecahedral topological isomers

Configuration s µ c F g
IV 38 4 48 12 4
V 26 4 36 12 4
VI 26 4 36 12 4

Table 3. Details of (2, 5) dodecahedral topological isomers

Configuration s µ c F g
VII 35 2 45 12 5
VIII 26 2 36 12 5

87v33 +996v31 +3, 556v29 +6, 033v27 +6, 065v25 +4, 162v23 +2, 139v21 +

863v19 + 274v17 + 66v15 + 11v13 + v11)

3.3 DNA dodecahedra with two components

To obtain configuration VII with two components, as shown in Figure

6a based on strategy I, it is necessary to position five pseudo-surrounded

vertices at different locations. It should be noted that Figure 6a only dis-

plays the result. In fact, a two-step approach is required to determine

the locations instead of placing all five pseudo-surrounded vertices simul-

taneously. Firstly, four pseudo-surrounded vertices are needed to achieve

configuration IV and reduce the number of components to four. Secondly,

the fifth pseudo-surrounded vertex should be placed strategically to fur-

ther decrease the component count to two. According to strategy II, a

total of 24 odd half-turns are still employed to replace the precisely posi-

tioned even half-turns, resulting in the achievement of configuration VIII

comprising two components (as shown in Figure 6b).

The Seifert number, crossing number and genus have been calculated

and are presented in Table 3. In accordance with the definition, it is also

imperative to consider both configurations as topological isomers, denoted

by the term (2, 5) dodecahedral topological isomers.

The HOMFLY polynomials of two (2, 5) dodecahedral topological iso-

mers were computed using the KnotGTK program. The obtained results

suggest that the two configurations exhibit distinct topological character-
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Figure 6. Construction of DNA dodecahedral links employing two di-
verse strategies. a) configuration VII with 2 components; b)
configuration VIII with 2 components.

istics. The specific HOMFLY polynomials are presented below:

HOMFLY-polynomial of configuration VII:

PV II(v, z) = z−1(v51− 11v49+43v47− 69v45+20v43+60v41− 43v39−
19v37+18v35)+ z(−20v49+177v47− 480v45+249v43+720v41− 741v39−
235v37 + 250v35 + 74v33 + 15v31) + z3(175v47 − 1, 143v45 + 1, 435v43 +

2, 560v41−4, 025v39−2, 010v37+1, 603v35+1, 294v33+513v31+111v29+

3v27)+z5(−867v45+3, 403v43+2, 866v41−11,707v39−7,614v37+5,985v35+

8, 882v33 + 5, 405v31 + 2, 017v29 + 462v27 + 75v25 + 6v23) + z7(2, 592v43 −
2, 105v41 − 18, 754v39 − 10, 985v37 + 17, 129v35 + 30, 926v33 + 25, 135v31 +

13, 421v29+5, 216v27+1, 586v25+370v23+56v21+3v19)+z9(−4, 362v41−
11, 205v39 + 1, 955v37 + 34, 719v35 + 57, 327v33 + 54, 874v31 + 37, 453v29 +

19, 898v27 + 8, 668v25 + 3, 151v23 + 940v21 + 219v19 + 36v17 + 3v15) +

z11(2, 481v39+13, 230v37+30, 948v35+44, 616v33+46, 013v31+36, 907v29+

24, 270v27 +13, 533v25 +6, 507v23 +2, 703v21 +959v19 +283v17 +66v15 +

11v13 + v11)

HOMFLY-polynomial of configuration VIII:

PV III(v, z) = z−1(v39−8v37+22v35−25v33+10v31)+z(−3v39−12v37+

130v35 − 173v33 − 65v31 + 111v29 + 24v27) + z3(−v39 + 16v37 + 322v35 −
603v33 − 818v31 +684v29 +674v27 +141v25 +9v23) + z5(36v37 +309v35 −
1, 504v33− 2, 447v31+2, 119v29+3, 900v27+1, 754v25+361v23+36v21)+

z7(10v37−56v35−1, 999v33−2, 600v31+4, 674v29+9, 914v27+6, 818v25+
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2, 513v23 + 586v21 + 90v19 + 6v17) + z9(−v37 − 95v35 − 845v33 − 47v31 +

6, 380v29+12, 302v27+10, 792v25+5, 755v23+2, 142v21+591v19+114v17+

12v15) + z11(v35 + 87v33 + 1, 019v31 + 3, 619v29 + 6, 111v27 + 6, 114v25 +

4, 180v23 + 2, 142v21 + 863v19 + 274v17 + 66v15 + 11v13 + v11)

4 Discussion

The more complex the geometric structure, the greater the possibility of

encountering topological isomers. Therefore, in this study, we defined

DNA dodecahedral configurations having identical genus and component

number as topological isomers. Subsequently, two strategies were utilized

to determine the potential topological isomers of DNA dodecahedral links.

The HOMFLY-polynomials of these topological isomers were calculated by

KnotGTK to characterize their differences. Based on the results, it can be

concluded that topological isomers of DNA dodecahedral links truly exist,

and the HOMFLY polynomial has been demonstrated as a suitable tool

for their discrimination.

In compariing the findings with previous studies [41–44], it must be

pointed out that the majority of works focused on obtaining diverse con-

figurations of DNA polyhedral links, but the connections and differences

between these configurations have not been paid sufficient attention. This

hinders the discovery of topological isomers and the deep understanding

of DNA dodecahedral links. This study presents a theoretical definition

of topological isomers and employs two alternative methods to construct

topological isomers of DNA dodecahedral links. It is worth noting that

the strategy I represents the most convenient approach for obtaining topo-

logical isomers, while the strategy II offers a more comprehensive search

for isomers. Therefore, combining both strategies becomes essential to

maximize the discovery of topological isomers of DNA dodecahedral links.

These topological configurations will hopefully serve as useful candi-

dates for experimental synthesis and may play different roles in various

application fields. For instance, isomers II, V and VIII all exhibit six

edges with even half-turns; however, their distribution patterns differ.

Obviously, the different distribution of the six edges will lead to varing
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component numbers and genus, thus providing theoretical design details

for these DNA dodecahedra. The spatial configurations of isomers II and

III, which have the same number of components and genus, are differ-

ent; therefore, the design details for their experimental synthesis are also

different.

Despite its limitations, this study provides insights into the definition,

construction, and differentiation of topological isomers of DNA dodeca-

hedral links. However, several unanswered questions persist. Firstly, the

manual determination of all topological isomers remains infeasible, fur-

ther endeavors are needed to explore suitable methods for their identifica-

tion. Secondly, the quest for a more efficient and straightforward approach

to distinguish topological isomers continues. Additionally, the proposed

strategy in this study necessitates additional verification, particularly re-

garding the applicability of polynomials in discerning topological isomers

of other polyhedra.

Thus, the integration of our strategies in future endeavors may facili-

tate the development of customized algorithms, which could exhibit even

greater efficacy in accurately determining all topological isomers of DNA

dodecahedral links, even of DNA polyhedral links. To facilitate the de-

sign and synthesis of DNA dodecahedra, it is crucial to investigate their

construction and analysis while providing theoretical guidelines for their

rational design from a theoretical perspective. Our work not only enhances

our understanding of the relationship between topological indices of DNA

polyhedral links but also offers valuable insights and potential candidates

for experimental synthesis.
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