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Abstract

Several relations for the Sombor index are presented. A sim-
pler proof of a result by Phanjoubam and Mawiong is given. An
inequality connecting graph energy and Sombor index is corrected;
in its proof Arizmendi’s concept of vertex energy is used. An easy
estimate of Sombor index in terms of eigenvalues of Sombor matrix
is stated, followed by a conjecture.

1 Introduction

Let G = (V (G), E(G)) be a simple graph of order n, where V (G) =

{v1, v2, . . . , vn} and E(G) are the vertex and edge sets of G, respectively.

By the order and size of G, we mean the number of its vertices and edges.

The edge of G, connecting the vertices u and v will be denoted by uv.

The degree du of a vertex u ∈ V (G) is the number of first neighbors of

u in G. The maximum and minimum degrees of G are denoted by ∆ and

δ, respectively.

The Sombor index [7,8,14,16,19] and the first Zagreb index [6,11,13,17]
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of a graph G are defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v and M1(G) =

∑
uv∈E(G)

(
du + dv

)
.

The energy E(G) of the graph G is defined as the sum of the absolute

values of the eigenvalues of its adjacency matrix [1–3,15,20,21]. According

to Arizmendi et al. [4, 5], the graph energy can be distributed over the

vertices of G. If EG(u) is the energy pertaining to the vertex u, then∑
u∈V (G)

EG(u) = E(G) .

The Sombor matrix ASO(G) = (sij) of the graph G is defined by [9]

sij =
√
d2vi + d2vj if vi and vj are adjacent and 0 otherwise. We denote its

eigenvalues by σ1 ≥ σ2 ≥ · · · ≥ σn.

In order to proceed, we need to recall a few auxiliary and earlier estab-

lished results.

Theorem 1. [4] For a graph G and a vertex u ∈ V (G), it holds

EG(u) ≤
√

du .

Theorem 2. [4] Let G be a graph with vertex covering set C. Then

∑
u∈C

EG(u) ≥
1

2
E(G) .

Lemma 1. Let x, y ≥ 2 be two real numbers. Then√
x2 + y2 ≥

√
x+

√
y . (1)

Equality holds if and only if x = y = 2.

Proof. Observe first that both x(x − 2) and y(y − 2) are non-negative,

implying x2−x ≥ x and y2−y ≥ y. Therefore, x2+y2−x−y ≥ x+y and

x + y ≥ 2
√
xy (by the inequality between the arithmetic and geometric

means). Consequently, x2+y2 ≥ x+y+2
√
xy = (

√
x+

√
y)2 and inequality
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(1) holds.

Since x(x − 2) and y(y − 2) are equal to zero only for x = y = 2, the

condition for equality in (1) follows.

Note that equality in (1) holds also for (x, y) equal to (0,0), (1,0), or

(0,1).

2 Main results

In Theorem 2.6 of [18], the authors proved that for an arbitrary graph of

size m, SO(G) ≤
√

m∆M1(G). We start this article by giving a shorter

proof for this result.

Theorem 3. [18] Let G be a graph of size m. Then SO(G) ≤
√

m∆M1(G).

Proof. By the Cauchy–Schwartz inequality, we have

SO(G) =
∑

xy∈E(G)

√
d2x + d2y ≤

∑
xy∈E(G)

√
∆(dx + dy)

≤
√ ∑

xy∈E(G)

∆

√ ∑
xy∈E(G)

(dx + dy)

and the result follows.

In Theorem 5 of [12] it was claimed that if C is a vertex-covering set

of a graph G, then

E(G) ≤ 2√
δ
SO(G)−

√
2∆2

√
δ

|C| .

A mistake has occurred in the last line of the respective proof. In the next

theorem, we state an improved version of this result.

Theorem 4. Let G be a connected graph and C its vertex-covering set.

Then

E(G) ≤ 2

δ
√
δ
SO(G) + 4

√
δ − 1

δ
|E(G[C])| (2)
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where |E(G[C])| is the number of edges of the subgraph of G indices by C,

that is the number of edges of G whose both endpoints belong to C.

Proof. If G is a graph of size 0 or 1, then clearly the inequality holds.

Therefore, we assume that the size of G is greater than one.

First note that 1
2 E(G) ≤

∑
i∈C

√
di, by Theorems 1 and 2. Also, since C

is a vertex-covering set, every edge of G has at least one side in C. So we

have:

1

2
E(G) ≤

∑
i∈C

√
di =

∑
ij∈E(G)
i∈C,j∈V \C

√
di
di

+
∑

ij∈E(G)
i,j∈C

(√
di
di

+

√
dj

dj

)

=
∑

ij∈E(G)
i∈C,j∈V \C

√
di
di

+
1√
δ

∑
ij∈E(G)
i,j∈C

(√
di
di

+

√
dj

dj

)

+

√
δ − 1√
δ

∑
ij∈E(G)
i,j∈C

(√
di
di

+

√
dj

dj

)

≤ 1

δ

∑
ij∈E(G)
i∈C,j∈V \C

√
d2i
di

+
d2j
dj

+
1

δ
√
δ

∑
ij∈E(G)
i,j∈C

(√
di +

√
dj
)

+

√
δ − 1√
δ

∑
ij∈E(G)
i,j∈C

(
1√
di

+
1√
di

)
.

Also, du ≥ 2 for any vertex u ∈ C. Therefore, by Lemma 1,

1

2
E(G) ≤ 1

δ
√
δ

∑
ij∈E(G)
i∈C,j∈V \C

√
d2i + d2j +

1

δ
√
δ

∑
ij∈E(G)
i,j∈C

√
d2i + d2j

+ 2

√
δ − 1

δ
|E(G[C])| = 1

δ
√
δ
SO(G) + 2

√
δ − 1

δ
|E(G[C])|

from which Eq. (2) straightforwardly follows.
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Denote by K2 the connected graph of order 2. Also, denote by Hm,n

the graph consisting of m copies of K2 and n− 2m isolated vertices. Note

that σ1(K2) =
√
2 and therefore also σ1(Hm,n) =

√
2.

Theorem 5. Let G be a graph of size m > 0 and order n, and let σ1 ≥
σ2 ≥ · · · ≥ σn be the eigenvalues of its Sombor matrix. Then

mσ1 ≥ SO(G) . (3)

If G is connected, then equality in (3) holds if and only if G ∼= K2, i.e., if

G is the complete graph of order 2. In the general case, equality holds if

and only if G ∼= Hm,n, when SO(G) =
√
2m.

Note that in a trivial manner, relation (3) holds also for m = 0, since

for edgeless graphs, SO(G) = 0.

Proof. Let e = vivj be an arbitrary edge of G and X = [xk] be an n-

dimensional (0,1)-row-vector, where xk = 1 if and only if k = i and k = j,

and zero otherwise. By the Rayleigh–Ritz variational principle,

XT ASO(G)X

XT X
≤ σ1

and therefore
√

d2i + d2j ≤ σ1. Summation over all edges yields (3).

Equality in (3) will hold ifX is the eigenvector of ASO(G) corresponding

to the eigenvalue σ1.

Assume first that G is connected and that equality in (3) holds. Then

by the Perron–Frobenius theorem, all components of X must be positive-

valued. Therefore, X must be of dimension n = 2, and therefore it must

be G ∼= K2.

If G is not connected, then all components of G must be K2 or isolated

vertices, i.e., G ∼= Hm,n.

Note that if G is a bipartite graph, then σ1 = −σn. If G is a connected

non-bipartite graph, then σ1 > −σn, see [9, 10].
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Conjecture 1. (a) Using the same notation as in Theorem 5, we hypoth-

esize that

m |σn| = −mσn ≥ SO(G) . (4)

(b) If G is connected, then equality in (4) holds if and only if G is the

complete graph. Then σn = −
√
2(n− 1) and SO(G) =

√
2(n− 1) n(n−1)

2 .

In the general case, equality holds if and only if G consists of mutually

isomorphic complete graphs and some (or no) isolated vertices.
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