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Abstract

This paper gives the optimal values of the sum of a topological
index and its reciprocal version of fixed-order unicyclic graphs for
the cases of the first Zagreb index, second Zagreb index, forgotten
topological index, and Sombor index. For each of the aforemen-
tioned four topological indices, the cycle graph uniquely attains the
minimum value of the mentioned sum and the graph formed by in-
serting one edge in the star graph uniquely attains the maximum
value of this sum in the considered class of graphs. These findings
extend the results of the recent paper [W. Gao, MATCH Commun.
Math. Comput. Chem. 93 (2025) 535–547] from trees to unicyclic
graphs. The results about the minimum values remain valid for
fixed-order molecular unicyclic graphs.
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1 Introduction

Topological indices play a particular role in predicting physicochemical

properties of molecules based solely on their structural features [7, 18].

According to [8], “Topological indices are mathematical entities encoding

the structure of molecules which are depicted as graphs. In these graphs,

the vertices correspond to the atoms and the edges represent the bonds

between these atoms”. More precisely, real-valued graph invariants are

commonly referred to as topological indices in chemical graph theory [20,

21], where a graph invariant is a property of graphs that remains the same

under graph isomorphisms [12]. The graph-theoretical terms (chemical-

graph-theoretical terms, respectively) used here but not defined in this

paper can be found in the books [4, 6] ([20,21], respectively).

We consider the following topological indices of a graph G:

TI(G) =
∑

uv∈E(G)

Φ(u, v) and RTI(G) =
∑

uv∈E(G)

1

Φ(u, v)
,

where Φ is a positive-valued function defined on the Cartesian square of

the vertex set V (G) of G. Following [14], we call the index RTI(G) as

the reciprocal version of TI(G) and vice versa. Let dG(w) denote the

degree of a vertex w ∈ V (G). If we take Φ(u, v) = dG(u) + dG(v), or

Φ(u, v) = dG(u)dG(v), or Φ(u, v) = (dG(u))
2 + (dG(v))

2 or Φ(u, v) =√
(dG(u))2 + (dG(v))2 in the above definitions of TI(G) and RTI(G), we

obtain (TI,RTI) = (Z1,RZ1), or (TI,RTI) = (Z2,
mZ2), or (TI,RTI) =

(F ,RF), or (TI,RTI) = (SO,mSO), respectively; where Z1 is the first

Zagreb index [5, 16], 2RZ1 is the harmonic index [3, 9], Z2 is the second

Zagreb index [5, 15], mZ2 is the modified second Zagreb index [19], F
is the forgotten (topological) index [10], RF is the reciprocal forgotten

(topological) index, SO is the Sombor index [13], and mSO is the modified

Sombor index [17].

Recently, Gao [11] characterized the graphs attaining the minimum

and maximum values of the following topological indices from the class

of all fixed-order trees: Z1 + RZ1, Z2 + mZ2, F + RF . The primary

goal of the present study is to extend the results of Gao [11] to unicyclic
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graphs not only for the aforementioned three sums but also for the sum

SO+mSO, where a unicyclic graph is a connected graph of the same order

and size. The obtained results concerning minimum values are valid also

for molecular graphs, which are the graphs of maximum degree at most 4.

2 Preliminary lemmas

In this section, we provide several preliminary results, which are used in

the subsequent section. By an n-order graph, we mean a graph of order n.

Lemma 1. [2] Let G be an n-order connected graph of size m ≥ 2. Let

ℏ be a function defined on the Cartesian square of the set of real numbers

greater than or equal to 1 such that ℏ(x1, x2) = ℏ(x2, x1) ≥ 0 for all x1
and x2 belonging to the domain of ℏ and ℏ(x1, x2) > 0 for x1 ̸= x2. Define

the function Φ on the Cartesian square of the set of positive integers as

Φ(r1, r2) := ℏ(r1, r2) +
2ℏ(1, 2)(r1r2 − r1 − r2)

r1r2
+

ℏ(2, 2)(2r1 + 2r2 − 3r1r2)

r1r2
,

such that n−1 ≥ r2 ≥ r1 ≥ 1 and (r1, r2) ̸∈ {(1, 2), (2, 2)}. If Φ(r1, r2) > 0

then∑
uv∈E(G)

ℏ(dG(u), dG(v)) ≥ 2[ℏ(1, 2)− ℏ(2, 2)]n+ [3ℏ(2, 2)− 2ℏ(1, 2)]m,

with equality if and only if G is either path graph Pn or cycle graph Cn.

By a k-cyclic n-order graph, we mean a connected n-order graph of

size n + k − 1. Particularly, for k = 0 and k = 1, such graphs are called

n-order trees and n-order unicyclic graphs, respectively.

Lemma 2. [1] Let ℏ be a strictly increasing function defined on the Carte-

sian square of the set of real numbers greater than or equal to 1 such that

ℏ(x1, x2) = ℏ(x2, x1) ≥ 0 for all x1 and x2 belonging to the domain of

ℏ, and the following inequalities hold for 2 ≤ x4 + 1 ≤ x3 ≤ x1 and

1 ≤ x2 ≤ x1:

ℏ(x1 + x4, x2)− ℏ(x1, x2) + ℏ(x3 − x4, x2)− ℏ(x3, x2) ≥ 0,
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ℏ(x1 + x4, x3 − x4)− ℏ(x1, x3) ≥ 0.

If G is a graph having the maximum value of
∑
uv∈E(G) ℏ(dG(u), dG(v))

among all n-order k-cyclic graphs, then the maximum degree of G is n−1.

Lemma 3. The function f defined as

f(x1, x2) =
√
x21 + x22 +

1√
x21 + x22

, with x1 ≥ 1 and x2 ≥ 1,

is strictly increasing (in both variables).

Proof. For i = 1, 2, we have ∂f
∂xi

(x1, x2) =
xi(x

2
1+x

2
2−1)

(x2
1+x

2
2)

3/2 .

Lemma 4. For the function f defined in Lemma 3, the inequality

f(x1 + t, c− t)− f(x1, c) > 0

holds for 2 ≤ t+ 1 ≤ c ≤ x1.

Proof. Take g(x1, c, t) = f(x1 + t, c− t)− f(x1, c). Since

∂g

∂t
(x1, c, t) =

(x1 + 2t− c)
(
(x1 + t)2 + (c− t)2 − 1

)
((x1 + t)2 + (c− t)2)

3/2
> 0,

we have g(x1, c, t) ≥ f(x1+1, c−1)−f(x1, c) > 0 for 2 ≤ t+1 ≤ c ≤ x1.

Lemma 5. For the function f defined in Lemma 3, the inequality

f(x1 + x4, x2)− f(x1, x2) + f(x3 − x4, x2)− f(x3, x2) > 0

holds for 2 ≤ x4 + 1 ≤ x3 ≤ x1 and 1 ≤ x2 ≤ x1.

Proof. We take

Φ(x1, x2, x3, x4) = f(x1 + x4, x2)− f(x1, x2) + f(x3 − x4, x2)− f(x3, x2).

Since the function h defined as

h(y1, y2) = −y2(y
2
1 + y22 − 1)

(y21 + y22)
3/2

with y1 ≥ 1 and y2 ≥ 1,
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is strictly decreasing in y2, we have

∂Φ

∂x3
(x1, x2, x3, x4) = h(x2, x3)− h(x2, x3 − x4) < 0

and
∂Φ

∂x4
(x1, x2, x3, x4) = h(x2, x3 − x4)− h(x2, x1 + x4) > 0.

Hence, Φ(x1, x2, x3, x4) ≥ Φ(x1, x2, x1, 1) > 0.

Lemma 6. The function ψ defined as

ψ(x1, x2) = j(x1, x2) +
1

j(x1, x2)
,

with x1 ≥ 1 and x2 ≥ 1, is strictly increasing (in both variables), where

j(x1, x2) ∈
{
x1 + x2, x

2
1 + x22

}
. Also, the inequality

ψ(x1 + x4, x2)− ψ(x1, x2) + ψ(x3 − x4, x2)− ψ(x3, x2) > 0 (1)

holds for 2 ≤ x4 + 1 ≤ x3 ≤ x1 and 1 ≤ x2 ≤ x1.

Proof. We only prove (1). If j(x1, x2) = x1 + x2, then

ψ(x1 + x4, x2)− ψ(x1, x2) + ψ(x3 − x4, x2)− ψ(x3, x2)

=
x24x1 + 2x2x

2
4 + x3x

2
4 + x4(x

2
1 − x23) + 2x2x4(x1 − x3)

(x1 + x2) (x2 + x3) (x2 + x3 − x4) (x1 + x2 + x4)
> 0.

In what follows, we assume that j(x1, x2) = x21 + x22 and we take

ψF (x1, x2, x3, x4)=ψ(x1+x4, x2)−ψ(x1, x2)+ψ(x3 − x4, x2)−ψ(x3, x2).

Then, ∂ψF

∂x3
(x1, x2, x3, x4) is equal to

2

(
x3

(x22 + x23)
2
− x3

(x22 + (x3 − x4) 2) 2
− x4 +

x4
(x22 + (x3 − x4) 2) 2

)
,

which is negative under the given constraints. Hence,

ψF (x1, x2, x3, x4) ≥ ψF (x1, x2, x1, x4).
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Now,

∂ψF
∂x4

(x1, x2, x1, x4) = 4x4 +
2 (x1 − x4)

(x22 + (x1 − x4) 2) 2
− 2 (x1 + x4)

(x22 + (x1 + x4) 2) 2
,

which is positive because of the given conditions. Hence,

ψF (x1, x2, x3, x4) ≥ ψF (x1, x2, x1, x4) ≥ ψF (x1, x2, x1, 1)

=
2
(
x61 + 3x42x

2
1 + 4x21 + x62 + 2x42 + x41(3x

2
2 − 2)− 1

)
(x21 + x22) (x

2
1 − 2x1 + x22 + 1) (x21 + 2x1 + x22 + 1)

> 0,

as x1 ≥ 2 and x2 ≥ 1.

Lemma 7. For the function ψ defined in Lemma 6, the inequality

ψ(x1 + t, c− t)− ψ(x1, c) ≥ 0

holds for 2 ≤ t+ 1 ≤ c ≤ x1.

Proof. If j(x1, x2) = x1 + x2, then ψ(x1 + t, c − t) − ψ(x1, c) = 0. Next,

assume that j(x1, x2) = x21 + x22. Then, ψ(x1 + t, c− t)− ψ(x1, c) equals

2c2t(x1 − c) + 2c2t2 + 2t2x21 + 2tx21(x1 − c)− 1

c2 + x21
+

1

(c− t)2 + (x1 + t)2
,

which is positive for 2 ≤ t+ 1 ≤ c ≤ x1.

3 Results

For a vertex x of a graph G, let NG(x) be the set of neighbors of x in G.

First, we study the sum Z2 +
mZ2 of the second Zagreb index and its

modified version. For finding the maximum value of this sum over the

class of fixed-order unicyclic graphs, we need the following two lemmas:

Lemma 8. Let G be an n-order unicyclic graph of maximum degree at

most n−2. Let x, y, y1 ∈ V (G) provided that xy, yy1 ∈ E(G), xy1 ̸∈ E(G),

x has the maximum degree in G, and |NG(x) ∩ NG(y)| = 1. Also, let

NG(y)\NG(x) := {x, y1, . . . , yr} with r ≥ 1. If G′ is a new graph such that
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V (G′) := V (G) and E(G′) := (E(G)\{yyi : 1 ≤ i ≤ r})∪{xyi : 1 ≤ i ≤ r}
(see Figure 1), then Z2(G) +

mZ2(G) < Z2(G
′) + mZ2(G

′).

G

y

y1

y2

yr

x

k≥0︷ ︸︸ ︷

G′

y

y1

y2

yr

x

k≥0︷ ︸︸ ︷

Figure 1. The unicyclic graphs G and G′ used in Lemma 8.

Proof. For any s ∈ V (G) = V (G′), we assume that ds = dG(s). We define

Θ := Z2(G)+
mZ2(G)−Z2(G

′)− mZ2(G
′). We note here that dy = r+2.

If NG(x) ∩NG(y)| = {w}, then we have

Θ =
∑

u∈NG(x)\{w,y}

(
(dxdu)

2 + 1

dxdu
− (dx + r)2d2u + 1

(dx + r)du

)

+

r∑
i=1

(
(r + 2)2d2yi + 1

(r + 2)dyi
−

(dx + r)2d2yi + 1

(dx + r)dyi

)

+
(dx(r + 2))2 + 1

dx(r + 2)
− 4(dx + r)2 + 1

2(dx + r)

− r(dx − 2)(dx + r + 2)

2dxdw(r + 2)(dx + r)
. (2)

Since the functions ϕ and ψ defined as

ϕ(t1, t2, t3) =
(t1t2)

2 + 1

t1t2
− (t1 + t3)

2t22 + 1

(t1 + t3)t2
,

ψ(t1, t2, t3) =
((t3 + 2)t2)

2 + 1

(t3 + 2)t2
− (t1 + t3)

2t22 + 1

(t1 + t3)t2
,

with t1 ≥ ti ≥ 1, i = 2, 3, and t1 ≥ 3, are strictly decreasing in t2, Equation
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(2) yields

Θ ≤ (dx − 2)

(
d2x + 1

dx
− (dx + r)2 + 1

(dx + r)

)
+ r

(
(r + 2)2 + 1

r + 2
− (dx + r)2 + 1

(dx + r)

)
+

(dx(r + 2))2 + 1

dx(r + 2)
− 4(dx + r)2 + 1

2(dx + r)

− r(dx − 2)(dx + r + 2)

2dxdw(r + 2)(dx + r)

= − Ψ(dx, dw, r)

2(r + 2)(dx + r)dxdw
, (3)

where Ψ(dx, dw, r) is equal to

r(dx − 2)
(
2(r2 + 2r − 1)dwdx + dw

(
(2r + 4)d2x − (2r + 3)

)
+ dx + r + 2

)
,

which is positive because dx ≥ 3, dw ≥ 2, and r ≥ 1. Therefore, the

right-hand side of (3) is negative and hence Θ < 0, as desired.

Lemma 9. Let G be an n-order unicyclic graph of maximum degree at

most n − 2. Let x, y, y1 ∈ V (G) such that xy, yy1 ∈ E(G), xy1 ̸∈ E(G),

x has the maximum degree in G and |NG(x) ∩ NG(y)| = 0. Moreover,

let NG(y) := {x, y1, y2, . . . , yr} with r ≥ 1. If G′ is a new graph such that

V (G′) := V (G) and E(G′) := (E(G)\{yyi : 1 ≤ i ≤ r})∪{xyi : 1 ≤ i ≤ r},
then Z2(G) +

mZ2(G) < Z2(G
′) + mZ2(G

′).

Proof. With the same notations as used in the proof of Lemma 8, we have

Θ ≤(dx − 1)

(
d2x + 1

dx
− (dx + r)2 + 1

dx + r

)
+ r

(
(r + 1)2 + 1

r + 1
− (dx + r)2 + 1

dx + r

)
+

(dx(r + 1))2 + 1

dx(r + 1)
− (dx + r)2 + 1

dx + r

=− r(dx − 1)(rdx + dx − 1)

(r + 1)dx
< 0, (4)
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because r ≥ 1 and dx ≥ 3. Therefore, (4) yields Θ < 0, as desired.

For n ≥ 3, let S+
n denote the graph formed by adding an edge (between

any two vertices of degree 1) in the n-order star graph Sn.

Theorem 1. If G is an n-order unicyclic graph, then

Z2(G) +
mZ2(G) ≤

4n3 − 4n2 + 17n− 21

4(n− 1)
,

with equality if and only if G = S+
n .

Proof. Among all n-order unicyclic graphs, let G∗ be a graph such that

Z2(G
∗) + mZ2(G

∗) is maximum. Then

Z2(G) +
mZ2(G) ≤ Z2(G

∗) + mZ2(G
∗). (5)

We claim that the maximum degree of G∗ is n−1. Contrarily, suppose

that the maximum degree of G∗ is less than n−1. Let x, y, y1 ∈ V (G∗) such

that xy, yy1 ∈ E(G∗), xy1 ̸∈ E(G∗), x has the maximum degree in G∗ and

|NG∗(x)∩NG∗(y)| ≤ 1. Moreover, letNG∗(y)\NG∗(x) := {x, y1, y2, . . . , yr}
with r ≥ 1. If G′ is a new graph such that V (G′) := V (G∗) and E(G′) :=

(E(G∗) \ {yyi : 1 ≤ i ≤ r}) ∪ {xyi : 1 ≤ i ≤ r}, then by Lemmas 8 and 9

we have Z2(G
∗) + mZ2(G

∗) < Z2(G
′) + mZ2(G

′), a contradiction. Hence,

the maximum degree of G∗ is n− 1 and so it is isomorphic to S+
n . Thus,

Z2(G
∗) + mZ2(G

∗) =
4n3 − 4n2 + 17n− 21

4(n− 1)
. (6)

Now, the desired inequality follows from (5) and (6).

Theorem 2. Let G be an n-order connected graph of size |E(G)| ≥ 2.

Then

Z2(G) +
mZ2(G) ≥

31

4
|E(G)| − 7

2
n,

with equality if and only if G is either the path Pn or the cycle graph Cn.

Proof. We take ℏ(x1, x2) = x1x2 +
1

x1x2
. Then, the function Φ defined in
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Lemma 1 becomes

Φ(r1, r2) =
1

r1

(
1

r2
+

7

2

)
+ r1r2 +

7

2r2
− 31

4
.

If r2 ≥ r1 > 2, then we have

Φ(r1, r2) ≥ Φ(r1, r1) =
(r1 − 2)(4r31 + 8r21 − 15r1 − 2)

4r21
> 0.

If r1 ∈ {1, 2} and r2 ≥ 3, then

Φ(r1, r2) ≥ Φ(r1, 3) =
36r21 − 79r1 + 46

12r1
> 0.

Hence, by Lemma 1, we have

Z2(G) +
mZ2(G) ≥

31

4
|E(G)| − 7

2
n,

with equality if and only if G is either the path graph Pn or the cycle

graph Cn.

Remark. For |E(G)| = n (|E(G)| = n − 1, respectively) Theorem 2 gives

the best possible lower bound, in terms of only n, on Z2+
mZ2 for n-order

unicyclic graphs (n-order trees of size at least 2, respectively); remarks

similar to this one, hold for (forthcoming) Theorems 3, 4, and 5.

Theorem 3. Let G be an n-order connected graph of size |E(G)| ≥ 2.

Then

SO(G) + mSO(G) ≥ 3

20

[
(45

√
2− 16

√
5 )|E(G)|+ (16

√
5− 30

√
2 )n

]
,

with equality if and only if G is either the path Pn or the cycle graph Cn.

Proof. We take ℏ(x1, x2) =
√
x21 + x22 + 1√

x2
1+x

2
2

. Then the function Φ
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defined in Lemma 1 becomes

Φ(r1, r2) =
1

20

(
24
√
5

(
− 2

r2
− 2

r1
+ 2

)
+ 45

√
2

(
2

r2
+

2

r1
− 3

)

+20
√
r21 + r22 +

20√
r21 + r22

)
.

If r2 ≥ r1 > 2, then we have

Φ(r1, r2) ≥ Φ(r1, r1) =
(r1 − 2)

(
20
√
2r1 + 48

√
5− 95

√
2
)

20r1
> 0.

If r1 ∈ {1, 2} and r2 ≥ 3, then Φ(r1, r2) ≥ Φ(r1, 3) > 0. Hence, by Lemma

1, we have the required inequality.

Corollary 1. If G is an n-order unicyclic graph, then

SO(G) + mSO(G) ≥ 9

2
√
2
n,

with equality if and only if G is the cycle graph Cn.

Theorem 4. Let G be an n-order connected graph of size m ≥ 2. Then

F(G) +RF(G) ≥ 13

40

(
43m− 18n

)
,

with equality if and only if G is either the path Pn or the cycle graph Cn.

Proof. We take ℏ(x1, x2) = x21 + x22 +
1

x2
1+x

2
2
. Then the function Φ defined

in Lemma 1 becomes

Φ(r1, r2) = r21 + r22 +
117

20r2
+

1

r21 + r22
+

117

20r1
− 559

40
.

If r2 ≥ r1 > 2, then

Φ(r1, r2) ≥ Φ(r1, r1) =
(r1 − 2)(80r31 + 160r21 − 239r1 − 10)

40r21
> 0.

If r1 ∈ {1, 2} and r2 ≥ 3, then Φ(r1, r2) ≥ Φ(r1, 3) > 0. Hence, by Lemma

1, we have the desired conclusion.
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Corollary 2. If G is an n-order unicyclic graph, then

F(G) +RF(G) ≥ 65

8
n,

with equality if and only if G is the cycle graph Cn.

Since the proof of the next result is similar to that of Theorem 4, we

omit it.

Theorem 5. Let G be an n-order connected graph of size m ≥ 2. Then

Z1(G) +RZ1(G) ≥
1

12

(
73m− 22n

)
,

with equality if and only if G is either the path Pn or the cycle graph Cn.

Corollary 3. If G is an n-order unicyclic graph, then

Z1(G) +RZ1(G) ≥
17

4
n,

with equality if and only if G is the cycle graph Cn.

Theorem 6. If G is a graph having the maximum value of any of the

following indices over the class of all n-order k-cyclic graphs, then the

maximum degree of G is n− 1 : SO + mSO, Z1 +RZ1, F +RF .

Proof. The result follows from Lemmas 2, 3, 4, 5, 6, and 7.

The next result follows immediately from Theorem 6.

Corollary 4. In the class of all n-order unicyclic graphs (n-order trees, re-

spectively), the graph S+
n (Sn, respectively) uniquely attains the maximum

value of any of the following indices: SO + mSO, Z1 +RZ1, F +RF .

We end this paper with the remark that Theorems 2, 3, 4, and 5 remain

valid if we consider molecular graphs in these results.
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dices 30 years after, Croat. Chem. Acta. 76 (2003) 113–124.
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