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Abstract

Let G be a graph with vertex set V and edge set E. A topological
index has the form

TIG) = Y f(dud),
uwvel

where f = f (z,y) is a pertinently chosen function which must be
symmetric and real-valued for all x, y pertaining to vertex degrees of
the graph G. Particularly interesting are the Sombor index SO and
the elliptic Sombor index £SO, induced by the functions f (z,y) =
Va2 +y? and f(z,y) = (z+y)/x%+ y?, respectively. In this
paper we solve some optimization problems for the general elliptic
Sombor index £SO, induced by the function f(x,y) = (z+y)*(z>+
y2)a/ 2 (a # 0), in particular on the set of graphs (respectively, trees)
with n vertices.
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1 Introduction

In what follows, G = (V, E) is a simple graph with vertex set V and edge
set E. The degree of a vertex u € V is denoted by d,, = d,, (G). An edge
of the graph G, connecting a vertex of degree ¢ and a vertex of degree
J, is called an (4, j)-edge. The number of such edges will be denoted by
m;; =m;j (G).

A topological index has the form

TI=TI(G)= Y f(dudy),

uwveE

where f = f(z,y) is a pertinently chosen function which must be sym-
metric and real-valued for all z, y pertaining to vertex degrees of the graph
G. Particularly interesting is the recently created elliptic Sombor in-
dex £SO [6], and the Sombor index SO [5], induced by the functions
f(zy) = (x+y) /22 +42 and f(z,y) = /22 + y2, respectively. For
recent results on the Sombor index and the elliptic Sombor index we re-
fer to [1-3,5,8,10,11,14]. Both topological indices were conceived using
geometric considerations and both showed good predictive potential [6,13].

Our main interest in this paper is to solve some optimization problems
for the general elliptic Sombor index £SO, [11], induced by the function
f(x,y) = (x +y)*(z? +y*)*/?, a € R\ {0}, in particular on the set of

graphs (respectively, trees) with n vertices.

2 Extremal problems on the elliptic Sombor
index and the general elliptic Sombor in-

dex

If @, b are arbitrary real numbers, the Gutman-Milovanovié¢ index is defined
in [7] by

Mop(G) = D (dudy)(du + )",
wweE(G)
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This index is a natural generalization of the first Zagreb, the general second
Zagreb and the general sum-connectivity indices. This index is attracting
growing interest, see e.g. [4,9].

Notice that My is the first Zagreb index M, M ¢ is the second Za-
greb index My, M_y /3¢ is the Randi¢ index R, 2M; 5 _; is the geometric-
arithmetic index GA, %M71/2,1 is the arithmetic-geometric index AG,
2My,—; is the harmonic index H, M; ; is the second Gourava index GO,
Mg o is the general second Zagreb index M5, My g is the general sum-
connectivity index xg, 4M1,_2 is the harmonic-arithmetic index H A, etc.

Optimization arguments using differential calculus allows to obtain the
following result relating the general elliptic Sombor index and the Gutman-

Milovanovié¢ index.

Theorem 1. If o, € R (a # 0) and G is a graph with mazimum degree

A and minimum degree &, then
ka,p Mp.a(G) < E8O(G) < Kap Mpo(G),

where s = =20/ a,

(252s+2)o¢/27 fora>0,s>—1,
(2A25+2)a/2’ fO’l" a>0,s<—1,
(2A23+2)a/2, fO?“ a<0,s>0,

max { (AJ)* (A% + 6%), 2A25+2}a/2, fora <0, -1<s<0,
max { (A8)*(A? + §2), 2525+2}a/2, fora <0, -2<s<—1,
(2025+2)a/2, fora <0,s <=2,
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and

(2A25+2)/2, fora>0,s>0,
max {(A5)* (A2 +62), 2824212 for >0, -1 < 5 <0,
max { (A6)* (A% + 6%), 2525+2}a/2, fora>0-2<s<—1,

(2525+2)o¢/27 fO’l“ a>0,s< -2
(2625+2)0/2, forao< 0,8 > —1,
(2A25+2)a/2, fora <0,s< -1

The bounds are tight and they are attained on any regular graph.

Proof. For each § < z,y < A, define the function J : [0, A] X [0,A] = R

by

Thus,

Also,

J(z,y) = (zy)*(* + 7).

aJ S— S s,.8
oy (@) = s2" (27 4 y7) 2ty 2w
= xs_lys (sx2 + sy2 + 2962)

=2y ((s + 2)2” + sy?).

aJ
oy =Y = y et (s + 2y + sa?).

If s > 0, then 8J/0x,0J/0y > 0 and so,

20%5%2 = J(6,6) < J(x,y) < J(A,A) = 2A%+2

for any z,y €[4, A].
If s < —2, then 0J/0x,0J/0y < 0 and so,

OA2F2 = J(A,A) < J(z,y) < J(65,6) = 26%+2

for any z,y € [0, A].
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Consider now —1 < s < 0. We have s +2 > —s and

oJ
5, (Y) = 2y (s + 2)2° + sy”)

Z —S.’I,‘S_lys (1‘2 _ y2)

By symmetry, we can assume that z > y. Then, 0J/9z > 0 and so,

J(y,y) < J(z,y) < J(A,y).
Let us define

aly) = J(y,y) = 2y>2.

Since —1 < s < 0, the function a(y) is increasing and
J(z,y) > J(y,y) = aly) > a() = 26>+2

for any z,y €[4, A].

Define the function
b(y) = J(A,y) = (Ay)* (A% +¢7)
on the interval [§, A]. We have
V(y) = A% ((s +2)y° + sA?).

Note that b'(A) = AZF12(s + 1) > 0 if —1 < s < 0. Since the function
(s +2)y? + sA? has at most a zero on the interval [0, A], and it is positive
on (A—g, A) for some € > 0, we conclude that b is either positive on (§, A)
or negative on (,7) and positive on (v, A) (for some v € (4, A)). In both
cases, b(y) < max{b(d),b(A)} and so,

J(z,y) < J(A,y) = bly) < max {b(5), b(A)}
=max {J(A,¥), J(A,A)}
= max {(A8)* (A% + 6%), 2412}

for any x,y € [J, A]. If s = —1, a similar argument gives the same inequal-

ity.
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Finally, consider the case —2 < s < —1. We have s +2 < —s and

oJ
5y (Y = 2y (s + 2)2” + sy?)

< _Sl,sflys (SU2 _ y2)

By symmetry, we can assume that < y. Then, dJ/0z < 0 and so,

J(y,y) < J(x,y) < J(6,y).
Let us consider

a(y) = J(y,y) = 2y>*2.
Since —2 < s < —1, the function a(y) is decreasing and

J(@,y) > J(y,y) = aly) > a(A) = 247+

for any z,y € [, A].

Consider the function
c(y) = J(8,y) = (0y)* (6* +y?)
on [, A]. We have
d(y) = 8%y* 1 ((s + 2)y* + s6°).

Note that ¢/(§) = §2512(s + 1) < 0. Since the function (s + 2)y? + 52
has at most a zero on the interval [§, A], and it is negative on (8,0 + ¢)
for some € > 0, we conclude that b is either negative on (4, A) or negative
on (4,7) and positive on (v,A) (for some v € (§,A)). In both cases,
c(y) < max{c(d),c(A)} and so,

J(x,y) < J(0,y) = c(y) < max {c(A), c(d)}
=max {J(A,6), J(6,6)}
= max {(Ad)* (A% 4 6%), 26>°%}

for any z,y € [0, A].
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Let us define
26%5%2 for s > —1,

ag =
2A25T2 for s < —1,
and
2A25F2, for s > 0,
A max { (A0)* (A% +6%), 2A%F2} for —1< s <0,
T | max {(A6)5 (A% + 62), 262+2),  for —2 <5< —1,
262512, for s < —2.
Consequently,

as < (zy)*(2® +y°) = J(z,y) < Aq

for every s € R and § < z,y < A. If & > 0, then

a?/z < (xy)sa/Q(xQ Jryz)oc/z

/2 - 2 2\ /2 /2
afi?ﬁ/a < (wy) P2+ 7)< A(i%}/a’

< A2,

and if o < 0, then we obtain the converse inequalities. Note that

. af/;ﬁ/a, for a > 0, I Af/;ﬁ/w for a > 0,
@B =9 . aB =9 .
A_/;i/a, for a < 0, a_/;ﬁ/a, for a < 0.

ka,ﬁ < (Jﬁy)fﬁ ($2 + y2)a/2 < Ka,,@a
for every o, 8 € R (v #0) and 0 < z,y < A. Thus,

/2 S Ka,ﬁ(dudv)ﬂ(du + dv)a7

Fap(dudy)? (du + dy)® < (dy + dy)* (d2 + d3)
for every , 8 € R (a # 0) and wv € E(G). Therefore,

k‘a”g M37Q(G) < 5SOQ(G) < K,p M,@@(G).
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Finally, we are going to show that the bounds are tight and they are
attained on any regular graph. If G is a §-regular graph with m edges,
then A =6, ko = Ko p = (202512)0/2 = 90/25sata — 9a/25-26+a apq

ka,p Mg o(G) = 20/25728F 5289050 m = 29§92°/25%n = £80,(G).

Since My, is the first Zagreb index M, %M_l/m is the arithmetic-
geometric index AG, M ; is the second Gourava index GO2, My o is the
general sum-connectivity index y,, Theorem 1 has the following conse-

quence.

Corollary 1. If « € R\ {0} and G is a graph with mazimum degree A

and minimum degree §, then

kq on(G) < ESOa(G) <K, Xa(G)7
V26 M1 (G) < ESO(G) < V2 A M (G),

% GOs(G) < ESO(Q) < ? GOy (G),

2W20%AG(G) < ESO(G) < 22 A2AG(G),

20/25%  for a > 0, 202N for a > 0,
202N for a < 0, “ 20/25%  for a < 0.

The bounds are tight and they are attained on any regular graph.
Consider any topological index defined as

TIG) = Y f(du,dy), (1)

weE(G)

where f(z,y) is any non-negative symmetric function f : Z* x ZT —
[0, 00).
We say that the index T'T defined by (1) belongs to F if f is a positive

function that is strictly increasing in each variable.
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Considering the index T'I in these classes allows to study many indices

in a unified way.

It is clear that T'I € F; for:
o f(z,y) = (2 +y*)~! with a < 0 (variable inverse sum deg index),
o f(z,y) = log®x + log®y with @ > 0 (variable sum lodeg index, for
graphs without isolated edges),
f(z,y) = a® + a¥ with a > 1 (variable sum exdeg index),
f(z,y) =271 +y*~1 with @ > 1 (variable first Zagreb index),
f(x,y) = (xy)® with a > 0 (variable second Zagreb index),
f(z,y) = (x + y)* with @ > 0 (variable sum connectivity index),
. f(ﬂlc7 y) = x+y+ay and f(z,y) = 22y+2y? (first and second Gourava
indices, respectively),
o f(z,y) = (x+y+a2y)? and f(x,y) = (z%y + zy*)? (first and second
hyper-Gourava indices, respectively),
e f(x,y) = (vy)¥(x + y)? with a, 8 > 0 (Gutman-Milovanovié¢ index),
(z,y) = /22 + y2 (Sombor index),
f(x,9) = (z +y)/22 + y2 (elliptic Sombor index),
(z,9) = (z +y)* (2% + y*)*/? with a > 0 (general elliptic Sombor
index).
Given an integer n > 2, let G(n) (respectively, G.(n)) be the set of
graphs (respectively, connected graphs) with n vertices. In [12] appear the

two following results.

Proposition 2. Consider TI € F; and an integer n > 2.

(1) The only graph that mazimizes the TI index in G.(n) or G(n) is
the complete graph K,.

(2) If a graph minimizes the T1 index in G.(n), then it is a tree.

(3) If n is even, then the only graph that minimizes the TI index in
G(n) is the union of n/2 paths Py. If n is odd, then the only graph that
minimizes the TI index in G(n) is the union of (n — 3)/2 paths Py with a
path Ps.

Corollary 2. Let G be a graph with n vertices and T1 € F;.
(1) Then,

TIG)<=nn—-1)f(n—1,n-1),

w\H
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and the equality in the bound is attained if and only if G is the complete
graph K,.
(2) If n is even, then

TIG) > 5 nf(1,1),

and the equality in the bound is attained if and only if G is the union of
n/2 path graphs Ps.
(3) If n is odd, then

TIG) > 5 (n—3)f(01) +27(1,2),

and the equality in the bound is attained if and only if G is the union of
(n —3)/2 path graphs Py and a path graph Ps.

Since TI = £SO, if f(x,y) = (x+y)* (x> +y?)*/?, we have ESO,, € F;
for every a > 0. Hence, Proposition 2 and Corollary 2 have the following

consequences.

Proposition 3. Consider a > 0 and an integer n > 2.

(1) The only graph that mazimizes ESOy in Ge(n) or G(n) is the com-
plete graph K.

(2) If a graph minimizes ESO, in G.(n), then it is a tree.

(3) If n is even, then the only graph that minimizes ESO,, in G(n) is
the union of n/2 paths Py. If n is odd, then the only graph that minimizes
ESO,, in G(n) is the union of (n — 3)/2 paths Py with a path Ps.

Proposition 4. Let G be a graph with n vertices and o > 0.
(1) Then,
ESOL(G) < V2n(n—1)3,

and the equality in the bound is attained if and only if G is the complete
graph K.
(2) If n is even, then

ESOL(G) > V2n,
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and the equality in the bound is attained if and only if G is the union of
n/2 path graphs Ps.
(3) If n is odd, then

ESOL(G) > V2 (n—3) +6V5,

and the equality in the bound is attained if and only if G is the union of
(n — 3)/2 path graphs Py and a path graph Ps.

We are going to show two graph transformations that allow to obtain
graphs with smaller £S0O,,.

We need some previous results.

Lemma 1. Let 0 < a <1 < A. If h: R — R is defined by h(a) =
2 —a%— A% and h(1) > 0, then h(a) > 0 for every o € (0, 1].

Proof. We have h/(a) = —a®loga — A% log A = 0 if and only if

« —loga
A —loga log Tog A
— e — = ——0 = .
< a ) log A “ log 4 “
Hence, A’ > 0 on (—oo, ;) and b’ < 0 on (aq,00).
Since lim;—, _ o, A(t) = —o0, h(0) = 0, h(1) > 0 and lim;_,, h(t) = —o0,
we have h(a) > 0 for every o € (0, 1]. [ |

Proposition 5. Let G be a graph of n vertices and 0 < a < 1. Assume
that the vertices u,v,w,x € V(G) satisfy the following properties: uv, wx
are different pendent edges (although it is possible to have w = v) with
dy >3 and 2 < dy, < d,. Let G' be the graph with n vertices obtained
form G by deleting the edge uv and adding a pendent edge to x. Then,
ESOL(G) < ESOL(G).

Proof. Assume first that w # v.
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Since d,, = 1, a computation gives

£8OL(G) — ESOL(G")

= ) (dy+d.)*(d2+d2)*? + (dy + 1)*(d2 + 1)/
z€N (v)\{u}

(o + 1)+ D = D (dy — 1 d) (dy — 1) 4 d2)?
zEN (v)\{u}

. 3a5a/2 . (dw + Z)Q(d%u + 4)a/2
> (dy 4+ D)(d? +1)% 4 (dy + 1) (d2 + 1)2/?
— 3952 — (dyy + 2)%(d? + 4)¥/2.

If d, = 2, since d,, > 3, we obtain

ESOL(G) — E80L(G)

> (dy + 1)(d? + 1)/ + (dy + 1)%(d?, +1)2/?
—3%5%/2 — (dyy + 2)%(d?, + 4)*/?

= (dy + 1) (d? +1)%/2 4 3%5%/2 _ 3a5a/2 _ grga/2

> 40100/2 — g0/ — 4a9a/? (50‘/2 — 2a) > 0.

Now, we are going to prove that the function
g(t) = 2(t + 1)*(t? + 1)°/% — (¢ + 2)*(¢* + 4)*/

is increasing on [0, 00) for any 0 < o < 1.
Let us check first that

2(t+ 1) (2 + 1) > (¢ +2)2 7 (¢ 4+ 4)/2
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fort >0 and 0 < a < 1. We have

214
WP rds 44 = 254018
t24+1
log (2 t+2 214 «
g (249) 1sa o otF2 (12 /t2+
log<t+2 t2+4> t+1 t+1Vt2+1

t+1 t2+1

2(t + 1)(1—1(t2 + 1)04/2 > (t + 2)a—1(t2 _|_4)a/2

fort>0and 0 < @ < 1.

Let us check now that
2(t 4+ 1) (82 4+ )21 > ¢(t 4+ 2)*(t* + 4)*/*71

fort >0and 0 < a < 1. We have

t+2

AW4+2>t+2 = 2>
t+1

t+1 t2+1

2(t + 1)a(t2 —|— 1)0‘/2_1 > (t _|_ 2)Oé(t2 _|_ 4)04/2—1 =
2t(t —+ 1)a(t2 —+ 1)0‘/271 2 t(t + 2)06(t2 + 4)04/271

fort>0and 0 < a<1.

Since

2(t+ 1)a—1(t2 + 1)04/2 > (t + 2)(1—1(t2 _’_4)04/27
2(t+ 1) (#2 + 1)°271 > ¢(t 4+ 2)* (% + 4)*/>71,

fort > 0and 0 < a <1, we have

g'(t) = 2a(t + 1)1 + 1)*/2 4+ 2at(t + 1) (#2 + 1)1

—a(t+2) N2+ 4?2 —at(t +2)%(t2 +4)¥ >0

for every t > 0 and 0 < o < 1 and so, ¢ is increasing on [0, 00).

log (2 244 244 [t+2 [Pra)\
g(2mi1) >1>a = 2 2+ > [LE 2+
log(t+2 t2+4) 241 t+1Vet2+1
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If d,, > 3, we have g(dy) > ¢(3) and

ESOL(G) — E8OL(G)
> (dy + 1)(d2 + 1)% 4 (dy + 1)%(d2 +1)2/2
=352 — (dy +2)*(d;, + 4)*/
> 2(dy + 1)%(d? +1)%/2 — 352 — (d,, + 2)*(d?, + 4)*/?
> 2.4210%/2 — 3%52/2 _ 5139/2

o) (35

=: 4°10%%h(cv).
Since
V1
W1y =2— S V18 4
44/2 410

Lemma 1 gives that h(a) > 0 for every a € (0, 1], and we conclude that
ESOL(G) — ESOL(G) > 0 for any « € (0,1].

Assume now that w = v. A computation gives

£80L(G) — ESOL(G)

= Y (dy+do)*(dd+d2)*? 4+ 2(dy +1)(d] + 1)/
€N (0)\{u,z}

- Z (dv -1+ dZ)a((dv - 1)2 + di)a/Z

z€N(v)\{u,z}

— 3952 — (d, + 1)%((d, — 1) + 4)*/?

2(dy + 1)%(d? +1)*/? — 3952 — (d, + 1)*((d, — 1) + 4)*/2
2dy 4 1)%(d% 4+ 1)%/2 = 395%/2 — (d,, + 2)*(d? + 4)*/2.

Since d,, > 3, the previous argument implies

ESOL(G) — E80L(G)
> 2(dy + 1)*(df + 1)*/? = 3%5%/% — (d, +2)*(d3 + 4)*/°
> 2.4910%/2 — 3%5%/2 _ 5213%/2 >

for any « € (0,1]. |
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Lemma 2. Let 0 < a <1< A withaA <1 and let H : R — R be the
function defined by H(a) = a® + A% — 2. Then, there exists ag > 0 such
that H < 0 on (0,0) and H > 0 otherwise.

Proof. We have H'(a) = a®loga + A% log A = 0 if and only if

a

o =

AN 1 log o5
( ) =% — g A i a.
log A log £

Since aA < 1, we conclude that log A < —loga and so, a; > 0. Hence,
H' <0on (—oo,a1) and H' > 0 on (aq,00).

Since limy—, oo H(t) = 00, H(0) = 0, H'(ap) = 0 and limy_,oc H(t) =
00, there exists a unique positive zero oy of H and there is no negative
zero of H.

Consequently, H < 0 on (0,ap) and H > 0 otherwise. |

Definition 1. Let ag be the unique positive solution of the equation
5v/13 a+ 35\ _,
8v2 8v2
Lemma 3. This constant ag belongs to the interval (0,1) and the function
5VIB ) . (3V5 )
oy (Y | (35
8v2 8v2
satisfies H < 0 on (0,aq) and H > 0 on [ag, 00).

Proof. This function H is the one in Lemma 2, with

Lo 3Vh 4o VI3
8v2’ 8v2

Since

A 3v5 513 15V65
8v2 82 128

Lemma 2 gives that H(«) < 0 for any 0 < o < ap and H(«) > 0 for every

<1,
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a > aq. Since

_ 5/13 | 3V5
H(1)_m+87§—2

we have 0 < ag < 1. [ |

>0,

An induced path with vertices ui,ug,...,u, (n > 3) of a graph G is
called a pendent path at u; of G, if dy, =+ =4d,, , =2and d,, =1

(there is no requirement on the degree of uy).

Proposition 6. Let o > «ag and let G be a graph of n vertices with two
pendent paths P and Q, such that P starts at a vertex v with d, > 3. Let
G’ be the graph with n vertices obtained form G by deleting P and pasting
it at the pendent vertex in Q. Then, ESOL(G') < ESO,(G).

Proof. Let u be the vertex in P which is incident to v. Since d, > 3 and

dy = 2, a computation gives

ESOL(G) — ESOL(G")
= ) (dy+d)(ds+d2)*? + (dy +2)%(d2 +4)*/2 + 352/
zEN (v)\{u}
_ Z (dv — 14 dz)a((dv o 1)2 + di)a/Q . 8a2a/2 _ 8a2a/2
zeN(v)\{u}
> (dy + 2)*(d2 + 4)*/% + 395/ — 2. 8*2/2
> 5a13a/2 + 3a5a/2 _9. 8a2a/2

gager ((BYBY L [3V5)
oo () ()
=8%2%/2H(a),

where H is the function in Lemma 3. Hence, H(«) > 0 for every a > ap.
Therefore, ESO,(G) — ESOL(G’) > 0 for any a > «ayp. |

Motivated by Proposition 3, we are going to optimize £SO, on the set
T (n) of trees with n vertices. The corresponding results for ESO appear
in [6].
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Theorem 7. Consider an integer n > 2 and o > aqg. The only graph that
minimizes ESO,, in T(n) is the path graph P, and every tree T € T (n)

satisfies

ESOLT) > (n—3) (3v2)" +2(3v5)"

Proof. If f(x,y) = (z +y)*(x? +y?)*/2, the general elliptic Sombor index
of any graph G is

£804(G) = Y f(du,dv)

wveE(G)

Hence,
ESOL(Py) = (n—3)£(2,2) +2f(1,2) = (n — 3) <8\/§)a +2 (3\/5)a

Note that if {dy,d,} # {1,2}, then f(dy,d,) > f(2,2): it suffices to
check that f(1,3) > f(2,2), and this holds since v/10 > 2v/2 implies

£(1,3) = (4\@) (8f) £(2,2).

Consider any tree T' € T (n) that is not the path graph P, let E 2 be
the set of edges in F(T') with incident vertices of degrees 1 and 2, and let
mq 2 be the cardinality of the set Ej 5.

If my 2 <2, then

ESOL(T)= > fldudy)+ Y f(1,2)

weE(G)\E1,2 uvEly 2
>(n—-1- ml,g)f(Q, 2) + mi2f(1,2)
> (n - 3)f(27 2) + Qf(la 2) = gSOa(Pn)

Assume now that mj 2 > 3. For each e € E 5, let us denote by e* the
closest edge to e with incident vertices of degrees 2 and d(e) > 3. Denote
by Ef, the set {e* € E(T) : e € E12}. One can check that the map
M : Ey 2 — EY 5 defined by M(e) = e*, is one to one.
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Lemma 3 implies that
NGEANNE VAN
@ﬁ)*@ﬁ)zz
(3\/5)a + (5\/ﬁ)a > 9 (8\/5)0‘,
F(1,2) + f(2,3) > 2f(2,2).

Hence,
£80,(T) = > fldurdo) + Y F(1L,2) 4+ > fldu,dy)
weE(G)\(E1,2VUET ,) weE] o w€EE] ,
>(n—1-2m12)f(2,2) + mi12f(1,2) + m12f(2,3)
=(n—1-=2m12)f(2,2) +2f(1,2) + (m12 — 2)f(1,2)
+2£(2,3) + (m12 — 2)£(2,3)
> (n+1-=2m12)f(2,2) +2/(1,2) + (m12 — 2)(f(1,2) + f(2,3))
= (n+1-2m12)f(2,2) +2f(1,2) + 2(m12 — 2)f(2,2)
(n—3)f(2,2) +2f(1,2) = ESOL(Pp).

Proposition 3 and Theorem 7 have the following consequence.

Theorem 8. Consider an integer n > 2 and o > a. The only graph that
minimizes ESO, in Go(n) is the path graph P, and every graph G € G.(n)

satisfies

£80,(G) > (n - 3) (Sf) +2(3v5)
Note that since ay < 1 by Lemma 3, Theorem 7 holds for £SO.

Theorem 9. Consider an integer n > 2 and o € R.
(1) If o > 0, then the only graph that mazimizes ESO, in T (n) is the
star graph Sy, and every tree T € T (n) satisfies

ESOL(T) < (n—1)n® (n? — 2n+2)""%.

(2) If a < 0, then the only graph that minimizes ESOq in T (n) is the
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star graph Sy, and every tree T € T (n) satisfies

ESOL(T) > (n— 1)n® (n? — 2n+2)""%.
Proof. Assume that o > 0.

Consider any tree T' € T(n) and any ww € E(T). Since T is a tree,
there is no vertex w with wu,wv € E(T) (T is triangle free). Hence,
dy+d, <mnandso, d2 +d? < (n—1)2+1; also, d> +d? = (n—1)% + 1 if
and only if {d,,d,} = {n —1,1}. Hence,

(dy +d)V/d2 +d2 <ny/(n—1)2+1,

(du + dy)*(d2 + d2)*/* < n®((n —1)* +1)*/2,

and the equality is attained if and only if (d,,d,) = (n—1,1) or viceversa.

Consequently,

ESOL(T) = > (dy+dy)*(d2 +d2)*/
uwv€EE(G)
< ) n%((n=1)° +1)*? = £804(S,)
wv€EE(G)

and the equality is attained if and only if (d,,d,) = (n — 1, 1) or viceversa
for every edge in E(T), i.e., T is the star graph .S,,.
If « < 0, then the previous argument gives the converse inequality, and

we also have the statement on the equality. |
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