Optimization Problems for General Elliptic Sombor Index

Juan Rada $\mathrm{^{a,*},\,Jos\acute{e}~M.\,~Rodríguez}^{b},\,$ José M. Sigarreta $\mathrm{^{c}}$

^a Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia b Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain c Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, 39650 Acalpulco Gro., Mexico pablo.rada@udea.edu.co, jomaro@math.uc3m.es,

jsmathguerrero@gmail.com

(Received August 14, 2024)

Abstract

Let G be a graph with vertex set V and edge set E . A topological index has the form

$$
TI(G) = \sum_{uv \in E} f(d_u, d_v),
$$

where $f = f(x, y)$ is a pertinently chosen function which must be symmetric and real-valued for all x, y pertaining to vertex degrees of the graph G. Particularly interesting are the Sombor index \mathcal{SO} and the elliptic Sombor index $\mathcal{E} \mathcal{S} \mathcal{O}$, induced by the functions $f(x, y) =$ $\sqrt{x^2 + y^2}$ and $f(x, y) = (x + y) \sqrt{x^2 + y^2}$, respectively. In this paper we solve some optimization problems for the general elliptic Sombor index $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}$, induced by the function $f(x, y) = (x+y)^{\alpha}(x^2+y)$ $(y^2)^{\alpha/2}$ ($\alpha \neq 0$), in particular on the set of graphs (respectively, trees) with *n* vertices.

[∗]Corresponding author.

1 Introduction

In what follows, $G = (V, E)$ is a simple graph with vertex set V and edge set E. The degree of a vertex $u \in V$ is denoted by $d_u = d_u(G)$. An edge of the graph G , connecting a vertex of degree i and a vertex of degree j, is called an (i, j) -edge. The number of such edges will be denoted by $m_{i,j} = m_{i,j} (G).$

A topological index has the form

$$
TI = TI(G) = \sum_{uv \in E} f(d_u, d_v),
$$

where $f = f(x, y)$ is a pertinently chosen function which must be symmetric and real-valued for all x, y pertaining to vertex degrees of the graph G. Particularly interesting is the recently created elliptic Sombor index $\mathcal{E} \mathcal{S} \mathcal{O}$ [\[6\]](#page-19-1), and the Sombor index $\mathcal{S} \mathcal{O}$ [\[5\]](#page-19-2), induced by the functions $f(x,y) = (x+y)\sqrt{x^2+y^2}$ and $f(x,y) = \sqrt{x^2+y^2}$, respectively. For recent results on the Sombor index and the elliptic Sombor index we refer to $[1–3, 5, 8, 10, 11, 14]$ $[1–3, 5, 8, 10, 11, 14]$ $[1–3, 5, 8, 10, 11, 14]$ $[1–3, 5, 8, 10, 11, 14]$ $[1–3, 5, 8, 10, 11, 14]$ $[1–3, 5, 8, 10, 11, 14]$ $[1–3, 5, 8, 10, 11, 14]$. Both topological indices were conceived using geometric considerations and both showed good predictive potential [\[6,](#page-19-1)[13\]](#page-19-7).

Our main interest in this paper is to solve some optimization problems for the general elliptic Sombor index \mathcal{ESO}_{α} [\[11\]](#page-19-5), induced by the function $f(x,y) = (x+y)^{\alpha}(x^2+y^2)^{\alpha/2}, \alpha \in \mathbb{R} \setminus \{0\},\$ in particular on the set of graphs (respectively, trees) with n vertices.

2 Extremal problems on the elliptic Sombor index and the general elliptic Sombor index

If a, b are arbitrary real numbers, the Gutman-Milovanović index is defined in [\[7\]](#page-19-8) by

$$
M_{a,b}(G) = \sum_{uv \in E(G)} (d_u d_v)^a (d_u + d_v)^b.
$$

This index is a natural generalization of the first Zagreb, the general second Zagreb and the general sum-connectivity indices. This index is attracting growing interest, see e.g. [\[4,](#page-19-9) [9\]](#page-19-10).

Notice that $M_{0,1}$ is the first Zagreb index M_1 , $M_{1,0}$ is the second Zagreb index M_2 , $M_{-1/2,0}$ is the Randić index R , $2M_{1/2,-1}$ is the geometricarithmetic index GA , $\frac{1}{2}M_{-1/2,1}$ is the arithmetic-geometric index AG , $2M_{0,-1}$ is the harmonic index H, $M_{1,1}$ is the second Gourava index GO_2 , $M_{\alpha,0}$ is the general second Zagreb index M_2^{α} , $M_{0,\beta}$ is the general sumconnectivity index χ_{β} , $4M_{1,-2}$ is the harmonic-arithmetic index HA, etc.

Optimization arguments using differential calculus allows to obtain the following result relating the general elliptic Sombor index and the Gutman-Milovanović index.

Theorem 1. If $\alpha, \beta \in \mathbb{R}$ ($\alpha \neq 0$) and G is a graph with maximum degree $Δ$ and minimum degree δ, then

$$
k_{\alpha,\beta} M_{\beta,\alpha}(G) \leq \mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G) \leq K_{\alpha,\beta} M_{\beta,\alpha}(G),
$$

where $s = -2\beta/\alpha$,

$$
k_{\alpha,\beta} := \begin{cases} (2\delta^{2s+2})^{\alpha/2}, & \text{for } \alpha > 0, s \ge -1, \\ (2\Delta^{2s+2})^{\alpha/2}, & \text{for } \alpha > 0, s < -1, \\ (2\Delta^{2s+2})^{\alpha/2}, & \text{for } \alpha < 0, s \ge 0, \\ \max\{(\Delta\delta)^{s}(\Delta^{2} + \delta^{2}), 2\Delta^{2s+2}\}^{\alpha/2}, & \text{for } \alpha < 0, -1 \le s < 0, \\ \max\{(\Delta\delta)^{s}(\Delta^{2} + \delta^{2}), 2\delta^{2s+2}\}^{\alpha/2}, & \text{for } \alpha < 0, -2 < s < -1, \\ (2\delta^{2s+2})^{\alpha/2}, & \text{for } \alpha < 0, s \le -2, \end{cases}
$$

$$
K_{\alpha,\beta} := \begin{cases} (2\Delta^{2s+2})^{\alpha/2}, & \text{for } \alpha > 0, s \ge 0, \\ \max\left\{(\Delta\delta)^{s}(\Delta^{2} + \delta^{2}), 2\Delta^{2s+2}\right\}^{\alpha/2}, & \text{for } \alpha > 0, -1 \le s < 0, \\ \max\left\{(\Delta\delta)^{s}(\Delta^{2} + \delta^{2}), 2\delta^{2s+2}\right\}^{\alpha/2}, & \text{for } \alpha > 0, -2 < s < -1, \\ (2\delta^{2s+2})^{\alpha/2}, & \text{for } \alpha > 0, s \le -2, \\ (2\delta^{2s+2})^{\alpha/2}, & \text{for } \alpha < 0, s \ge -1, \\ (2\Delta^{2s+2})^{\alpha/2}, & \text{for } \alpha < 0, s < -1. \end{cases}
$$

The bounds are tight and they are attained on any regular graph.

Proof. For each $\delta \leq x, y \leq \Delta$, define the function $J : [\delta, \Delta] \times [\delta, \Delta] \to \mathbb{R}$ by

$$
J(x,y) = (xy)^{s}(x^{2} + y^{2}).
$$

Thus,

$$
\frac{\partial J}{\partial x}(x,y) = sx^{s-1}y^s(x^2 + y^2) + x^s y^s 2x
$$

$$
= x^{s-1}y^s(sx^2 + sy^2 + 2x^2)
$$

$$
= x^{s-1}y^s((s+2)x^2 + sy^2).
$$

Also,

$$
\frac{\partial J}{\partial y}(x,y) = y^{s-1}x^s\big((s+2)y^2 + sx^2\big).
$$

If $s \geq 0$, then $\partial J/\partial x$, $\partial J/\partial y > 0$ and so,

$$
2\delta^{2s+2} = J(\delta, \delta) \le J(x, y) \le J(\Delta, \Delta) = 2\Delta^{2s+2}
$$

for any $x, y \in [\delta, \Delta]$.

If $s\leq -2,$ then $\partial J/\partial x, \partial J/\partial y<0$ and so,

$$
2\Delta^{2s+2} = J(\Delta, \Delta) \le J(x, y) \le J(\delta, \delta) = 2\delta^{2s+2}
$$

for any $x, y \in [\delta, \Delta]$.

Consider now $-1 \leq s < 0$. We have $s + 2 \geq -s$ and

$$
\frac{\partial J}{\partial x}(x,y) = x^{s-1}y^s((s+2)x^2 + sy^2)
$$

\n
$$
\ge -sx^{s-1}y^s(x^2 - y^2).
$$

By symmetry, we can assume that $x \geq y$. Then, $\partial J/\partial x \geq 0$ and so, $J(y, y) \leq J(x, y) \leq J(\Delta, y).$

Let us define

$$
a(y) = J(y, y) = 2y^{2s+2}.
$$

Since $-1 \leq s < 0$, the function $a(y)$ is increasing and

$$
J(x, y) \ge J(y, y) = a(y) \ge a(\delta) = 2\delta^{2s+2}
$$

for any $x, y \in [\delta, \Delta]$.

Define the function

$$
b(y) = J(\Delta, y) = (\Delta y)^{s} (\Delta^{2} + y^{2})
$$

on the interval $[\delta, \Delta]$. We have

$$
b'(y) = \Delta^{s} y^{s-1} ((s+2)y^{2} + s\Delta^{2}).
$$

Note that $b'(\Delta) = \Delta^{2s+1}2(s+1) > 0$ if $-1 < s < 0$. Since the function $(s+2)y^2 + s\Delta^2$ has at most a zero on the interval $[\delta, \Delta]$, and it is positive on $(\Delta - \varepsilon, \Delta)$ for some $\varepsilon > 0$, we conclude that b is either positive on (δ, Δ) or negative on (δ, γ) and positive on (γ, Δ) (for some $\gamma \in (\delta, \Delta)$). In both cases, $b(y) \leq \max\{b(\delta), b(\Delta)\}\$ and so,

$$
J(x, y) \leq J(\Delta, y) = b(y) \leq \max \{b(\delta), b(\Delta)\}
$$

$$
= \max \{J(\Delta, \delta), J(\Delta, \Delta)\}
$$

$$
= \max \{(\Delta \delta)^s (\Delta^2 + \delta^2), 2\Delta^{2s+2}\}
$$

for any $x, y \in [\delta, \Delta]$. If $s = -1$, a similar argument gives the same inequality.

Finally, consider the case $-2 < s < -1$. We have $s + 2 < -s$ and

$$
\frac{\partial J}{\partial x}(x,y) = x^{s-1}y^s((s+2)x^2 + sy^2)
$$

<
$$
< -sx^{s-1}y^s(x^2 - y^2).
$$

By symmetry, we can assume that $x \leq y$. Then, $\partial J/\partial x < 0$ and so, $J(y, y) \leq J(x, y) \leq J(\delta, y).$

Let us consider

$$
a(y) = J(y, y) = 2y^{2s+2}.
$$

Since $-2 < s < -1$, the function $a(y)$ is decreasing and

$$
J(x, y) \ge J(y, y) = a(y) \ge a(\Delta) = 2\Delta^{2s+2}
$$

for any $x, y \in [\delta, \Delta]$.

Consider the function

$$
c(y) = J(\delta, y) = (\delta y)^{s} (\delta^{2} + y^{2})
$$

on $[\delta, \Delta]$. We have

$$
c'(y) = \delta^s y^{s-1} ((s+2)y^2 + s\delta^2).
$$

Note that $c'(\delta) = \delta^{2s+1}2(s+1) < 0$. Since the function $(s+2)y^2 + s\delta^2$ has at most a zero on the interval $[\delta, \Delta]$, and it is negative on $(\delta, \delta + \varepsilon)$ for some $\varepsilon > 0$, we conclude that b is either negative on (δ, Δ) or negative on (δ, γ) and positive on (γ, Δ) (for some $\gamma \in (\delta, \Delta)$). In both cases, $c(y) \leq \max\{c(\delta), c(\Delta)\}\$ and so,

$$
J(x, y) \leq J(\delta, y) = c(y) \leq \max \left\{ c(\Delta), c(\delta) \right\}
$$

$$
= \max \left\{ J(\Delta, \delta), J(\delta, \delta) \right\}
$$

$$
= \max \left\{ (\Delta \delta)^s (\Delta^2 + \delta^2), 2\delta^{2s+2} \right\}
$$

for any $x, y \in [\delta, \Delta]$.

Let us define

$$
a_s := \begin{cases} 2\delta^{2s+2}, & \text{for } s \ge -1, \\ 2\Delta^{2s+2}, & \text{for } s < -1, \end{cases}
$$

and

$$
A_s := \begin{cases} 2\Delta^{2s+2}, & \text{for } s \ge 0, \\ \max\left\{ (\Delta\delta)^s (\Delta^2 + \delta^2), 2\Delta^{2s+2} \right\}, & \text{for } -1 \le s < 0, \\ \max\left\{ (\Delta\delta)^s (\Delta^2 + \delta^2), 2\delta^{2s+2} \right\}, & \text{for } -2 < s < -1, \\ 2\delta^{2s+2}, & \text{for } s \le -2. \end{cases}
$$

Consequently,

$$
a_s \le (xy)^s (x^2 + y^2) = J(x, y) \le A_s
$$

for every $s\in\mathbb{R}$ and $\delta\leq x,y\leq\Delta.$ If $\alpha>0,$ then

$$
a_s^{\alpha/2} \le (xy)^{s\alpha/2} (x^2 + y^2)^{\alpha/2} \le A_s^{\alpha/2},
$$

$$
a_{-2\beta/\alpha}^{\alpha/2} \le (xy)^{-\beta} (x^2 + y^2)^{\alpha/2} \le A_{-2\beta/\alpha}^{\alpha/2},
$$

and if $\alpha < 0$, then we obtain the converse inequalities. Note that

$$
k_{\alpha,\beta} = \begin{cases} a_{-2\beta/\alpha}^{\alpha/2}, & \text{for } \alpha > 0, \\ A_{-2\beta/\alpha}^{\alpha/2}, & \text{for } \alpha < 0, \end{cases} \qquad K_{\alpha,\beta} = \begin{cases} A_{-2\beta/\alpha}^{\alpha/2}, & \text{for } \alpha > 0, \\ a_{-2\beta/\alpha}^{\alpha/2}, & \text{for } \alpha < 0. \end{cases}
$$

Hence,

$$
k_{\alpha,\beta} \le (xy)^{-\beta} (x^2 + y^2)^{\alpha/2} \le K_{\alpha,\beta},
$$

for every $\alpha, \beta \in \mathbb{R}$ $(\alpha \neq 0)$ and $\delta \leq x, y \leq \Delta$. Thus,

$$
k_{\alpha,\beta}(d_u d_v)^{\beta}(d_u + d_v)^{\alpha} \le (d_u + d_v)^{\alpha}(d_u^2 + d_v^2)^{\alpha/2} \le K_{\alpha,\beta}(d_u d_v)^{\beta}(d_u + d_v)^{\alpha},
$$

for every $\alpha, \beta \in \mathbb{R}$ $(\alpha \neq 0)$ and $uv \in E(G)$. Therefore,

$$
k_{\alpha,\beta} M_{\beta,\alpha}(G) \leq \mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G) \leq K_{\alpha,\beta} M_{\beta,\alpha}(G).
$$

Finally, we are going to show that the bounds are tight and they are attained on any regular graph. If G is a δ -regular graph with m edges, then $\Delta = \delta$, $k_{\alpha,\beta} = K_{\alpha,\beta} = (2\delta^{2s+2})^{\alpha/2} = 2^{\alpha/2}\delta^{s\alpha+\alpha} = 2^{\alpha/2}\delta^{-2\beta+\alpha}$ and

$$
k_{\alpha,\beta} M_{\beta,\alpha}(G) = 2^{\alpha/2} \delta^{-2\beta+\alpha} \delta^{2\beta} 2^{\alpha} \delta^{\alpha} m = 2^{\alpha} \delta^{\alpha} 2^{\alpha/2} \delta^{\alpha} m = \mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G).
$$

 \blacksquare

Since $M_{0,1}$ is the first Zagreb index M_1 , $\frac{1}{2}M_{-1/2,1}$ is the arithmeticgeometric index AG, $M_{1,1}$ is the second Gourava index GO_2 , $M_{0,\alpha}$ is the general sum-connectivity index χ_{α} , Theorem [1](#page-2-0) has the following consequence.

Corollary 1. If $\alpha \in \mathbb{R} \setminus \{0\}$ and G is a graph with maximum degree Δ and minimum degree δ , then

$$
k_{\alpha} \chi_{\alpha}(G) \leq \mathcal{ESO}_{\alpha}(G) \leq K_{\alpha} \chi_{\alpha}(G),
$$

$$
\sqrt{2} \delta M_1(G) \leq \mathcal{ESO}(G) \leq \sqrt{2} \Delta M_1(G),
$$

$$
\frac{\sqrt{2}}{\Delta} GO_2(G) \leq \mathcal{ESO}(G) \leq \frac{\sqrt{2}}{\delta} GO_2(G),
$$

$$
2\sqrt{2} \delta^2 AG(G) \leq \mathcal{ESO}(G) \leq 2\sqrt{2} \Delta^2 AG(G),
$$

where

$$
k_{\alpha} := \begin{cases} 2^{\alpha/2} \delta^{\alpha}, & \text{for } \alpha > 0, \\ 2^{\alpha/2} \Delta^{\alpha}, & \text{for } \alpha < 0, \end{cases} \qquad K_{\alpha} := \begin{cases} 2^{\alpha/2} \Delta^{\alpha}, & \text{for } \alpha > 0, \\ 2^{\alpha/2} \delta^{\alpha}, & \text{for } \alpha < 0. \end{cases}
$$

The bounds are tight and they are attained on any regular graph.

Consider any topological index defined as

$$
TI(G) = \sum_{uv \in E(G)} f(d_u, d_v),\tag{1}
$$

where $f(x, y)$ is any non-negative symmetric function $f : \mathbb{Z}^+ \times \mathbb{Z}^+ \to$ $[0, \infty)$.

We say that the index TI defined by [\(1\)](#page-7-0) belongs to \mathcal{F}_1 if f is a positive function that is strictly increasing in each variable.

Considering the index TI in these classes allows to study many indices in a unified way.

It is clear that $TI \in \mathcal{F}_1$ for:

• $f(x, y) = (x^a + y^a)^{-1}$ with $a < 0$ (variable inverse sum deg index),

• $f(x, y) = \log^a x + \log^a y$ with $a > 0$ (variable sum lodeg index, for graphs without isolated edges),

- $f(x, y) = a^x + a^y$ with $a > 1$ (variable sum exdeg index),
- $f(x, y) = x^{a-1} + y^{a-1}$ with $a > 1$ (variable first Zagreb index),
- $f(x, y) = (xy)^a$ with $a > 0$ (variable second Zagreb index),
- $f(x, y) = (x + y)^a$ with $a > 0$ (variable sum connectivity index),

• $f(x, y) = x + y + xy$ and $f(x, y) = x^2y + xy^2$ (first and second Gourava indices, respectively),

• $f(x, y) = (x + y + xy)^2$ and $f(x, y) = (x^2y + xy^2)^2$ (first and second hyper-Gourava indices, respectively),

- $f(x, y) = (xy)^{\alpha}(x + y)^{\beta}$ with $\alpha, \beta > 0$ (Gutman-Milovanović index),
- $f(x, y) = \sqrt{x^2 + y^2}$ (Sombor index),
- $f(x, y) = (x + y)\sqrt{x^2 + y^2}$ (elliptic Sombor index),

• $f(x,y) = (x+y)^{\alpha}(x^2+y^2)^{\alpha/2}$ with $\alpha > 0$ (general elliptic Sombor index).

Given an integer $n > 2$, let $\mathcal{G}(n)$ (respectively, $\mathcal{G}_c(n)$) be the set of graphs (respectively, connected graphs) with n vertices. In [\[12\]](#page-19-11) appear the two following results.

Proposition 2. Consider $TI \in \mathcal{F}_1$ and an integer $n \geq 2$.

(1) The only graph that maximizes the TI index in $\mathcal{G}_c(n)$ or $\mathcal{G}(n)$ is the complete graph K_n .

(2) If a graph minimizes the TI index in $\mathcal{G}_c(n)$, then it is a tree.

(3) If n is even, then the only graph that minimizes the TI index in $\mathcal{G}(n)$ is the union of $n/2$ paths P_2 . If n is odd, then the only graph that minimizes the TI index in $\mathcal{G}(n)$ is the union of $(n-3)/2$ paths P_2 with a path P_3 .

Corollary 2. Let G be a graph with n vertices and $TI \in \mathcal{F}_1$.

 (1) Then,

$$
TI(G) \le \frac{1}{2} n(n-1)f(n-1, n-1),
$$

and the equality in the bound is attained if and only if G is the complete $graph K_n$.

 (2) If n is even, then

$$
TI(G) \ge \frac{1}{2} n f(1,1),
$$

and the equality in the bound is attained if and only if G is the union of $n/2$ path graphs P_2 .

(3) If n is odd, then

$$
TI(G) \ge \frac{1}{2}(n-3)f(1,1) + 2f(1,2),
$$

and the equality in the bound is attained if and only if G is the union of $(n-3)/2$ path graphs P_2 and a path graph P_3 .

Since $TI = \mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}$ if $f(x, y) = (x+y)^{\alpha} (x^2+y^2)^{\alpha/2}$, we have $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha} \in \mathcal{F}_1$ for every $\alpha > 0$. Hence, Proposition [2](#page-8-1) and Corollary 2 have the following consequences.

Proposition 3. Consider $\alpha > 0$ and an integer $n \geq 2$.

(1) The only graph that maximizes \mathcal{ESO}_{α} in $\mathcal{G}_{c}(n)$ or $\mathcal{G}(n)$ is the complete graph K_n .

(2) If a graph minimizes \mathcal{ESO}_{α} in $\mathcal{G}_{c}(n)$, then it is a tree.

(3) If n is even, then the only graph that minimizes $\mathcal{E}S\mathcal{O}_{\alpha}$ in $\mathcal{G}(n)$ is the union of $n/2$ paths P_2 . If n is odd, then the only graph that minimizes \mathcal{ESO}_{α} in $\mathcal{G}(n)$ is the union of $(n-3)/2$ paths P_2 with a path P_3 .

Proposition 4. Let G be a graph with n vertices and $\alpha > 0$.

 (1) Then,

$$
\mathcal{ESO}_{\alpha}(G) \leq \sqrt{2} n(n-1)^3,
$$

and the equality in the bound is attained if and only if G is the complete $graph K_n$.

 (2) If n is even, then

$$
\mathcal{ESO}_{\alpha}(G) \geq \sqrt{2}n,
$$

and the equality in the bound is attained if and only if G is the union of $n/2$ path graphs P_2 .

(3) If n is odd, then

$$
\mathcal{ESO}_{\alpha}(G) \ge \sqrt{2}(n-3) + 6\sqrt{5},
$$

and the equality in the bound is attained if and only if G is the union of $(n-3)/2$ path graphs P_2 and a path graph P_3 .

We are going to show two graph transformations that allow to obtain graphs with smaller \mathcal{ESO}_{α} .

We need some previous results.

Lemma 1. Let $0 < a < 1 < A$. If $h : \mathbb{R} \to \mathbb{R}$ is defined by $h(\alpha) =$ $2 - a^{\alpha} - A^{\alpha}$ and $h(1) > 0$, then $h(\alpha) > 0$ for every $\alpha \in (0, 1]$.

Proof. We have $h'(\alpha) = -a^{\alpha} \log a - A^{\alpha} \log A = 0$ if and only if

$$
\left(\frac{A}{a}\right)^{\alpha} = \frac{-\log a}{\log A} \qquad \Longleftrightarrow \qquad \alpha = \frac{\log \frac{-\log a}{\log A}}{\log \frac{A}{a}} =: \alpha_1.
$$

Hence, $h' > 0$ on $(-\infty, \alpha_1)$ and $h' < 0$ on (α_1, ∞) .

Since $\lim_{t\to-\infty} h(t) = -\infty$, $h(0) = 0$, $h(1) > 0$ and $\lim_{t\to\infty} h(t) = -\infty$, we have $h(\alpha) > 0$ for every $\alpha \in (0, 1]$.

Proposition 5. Let G be a graph of n vertices and $0 < \alpha < 1$. Assume that the vertices $u, v, w, x \in V(G)$ satisfy the following properties: uv, wx are different pendent edges (although it is possible to have $w = v$) with $d_v \geq 3$ and $2 \leq d_w \leq d_v$. Let G' be the graph with n vertices obtained form G by deleting the edge uv and adding a pendent edge to x . Then, $\mathcal{ESO}_{\alpha}(G') < \mathcal{ESO}_{\alpha}(G).$

Proof. Assume first that $w \neq v$.

Since $d_u = 1$, a computation gives

$$
\mathcal{ESO}_{\alpha}(G) - \mathcal{ESO}_{\alpha}(G')
$$

=
$$
\sum_{z \in N(v) \setminus \{u\}} (d_v + d_z)^{\alpha} (d_v^2 + d_z^2)^{\alpha/2} + (d_v + 1)^{\alpha} (d_v^2 + 1)^{\alpha/2}
$$

+
$$
(d_w + 1)^{\alpha} (d_w^2 + 1)^{\alpha/2} - \sum_{z \in N(v) \setminus \{u\}} (d_v - 1 + d_z)^{\alpha} ((d_v - 1)^2 + d_z^2)^{\alpha/2}
$$

-
$$
3^{\alpha} 5^{\alpha/2} - (d_w + 2)^{\alpha} (d_w^2 + 4)^{\alpha/2}
$$

>
$$
(d_v + 1)^{\alpha} (d_v^2 + 1)^{\alpha/2} + (d_w + 1)^{\alpha} (d_w^2 + 1)^{\alpha/2}
$$

-
$$
3^{\alpha} 5^{\alpha/2} - (d_w + 2)^{\alpha} (d_w^2 + 4)^{\alpha/2}.
$$

If $d_w = 2$, since $d_v \geq 3$, we obtain

$$
\mathcal{E}S\mathcal{O}_{\alpha}(G) - \mathcal{E}S\mathcal{O}_{\alpha}(G')
$$

> $(d_v + 1)^{\alpha}(d_v^2 + 1)^{\alpha/2} + (d_w + 1)^{\alpha}(d_w^2 + 1)^{\alpha/2}$
 $- 3^{\alpha}5^{\alpha/2} - (d_w + 2)^{\alpha}(d_w^2 + 4)^{\alpha/2}$
= $(d_v + 1)^{\alpha}(d_v^2 + 1)^{\alpha/2} + 3^{\alpha}5^{\alpha/2} - 3^{\alpha}5^{\alpha/2} - 8^{\alpha}2^{\alpha/2}$
 $\geq 4^{\alpha}10^{\alpha/2} - 8^{\alpha}2^{\alpha/2} = 4^{\alpha}2^{\alpha/2} (5^{\alpha/2} - 2^{\alpha}) > 0.$

Now, we are going to prove that the function

$$
g(t) = 2(t+1)^{\alpha}(t^2+1)^{\alpha/2} - (t+2)^{\alpha}(t^2+4)^{\alpha/2}
$$

is increasing on $[0, \infty)$ for any $0 < \alpha \leq 1$.

Let us check first that

$$
2(t+1)^{\alpha-1}(t^2+1)^{\alpha/2} > (t+2)^{\alpha-1}(t^2+4)^{\alpha/2}
$$

for $t\geq 0$ and $0<\alpha\leq 1.$ We have

$$
4t^2 + 4 > t^2 + 4 \Rightarrow 2 > \sqrt{\frac{t^2 + 4}{t^2 + 1}} \Rightarrow
$$

$$
\frac{\log(2 \frac{t+2}{t+1})}{\log(\frac{t+2}{t+1}\sqrt{\frac{t^2+4}{t^2+1}})} > 1 \ge \alpha \Rightarrow 2\frac{t+2}{t+1} > \left(\frac{t+2}{t+1}\sqrt{\frac{t^2+4}{t^2+1}}\right)^{\alpha} \Rightarrow
$$

$$
2(t+1)^{\alpha-1}(t^2+1)^{\alpha/2} > (t+2)^{\alpha-1}(t^2+4)^{\alpha/2}
$$

for $t\geq 0$ and $0<\alpha\leq 1.$

Let us check now that

$$
2t(t+1)^{\alpha}(t^2+1)^{\alpha/2-1} \ge t(t+2)^{\alpha}(t^2+4)^{\alpha/2-1}
$$

for $t \geq 0$ and $0 < \alpha \leq 1$. We have

$$
2t + 2 > t + 2 \Rightarrow 2 > \frac{t+2}{t+1} \Rightarrow
$$

\n
$$
\frac{\log(2 \frac{t^2+4}{t^2+1})}{\log(\frac{t+2}{t+1}\sqrt{\frac{t^2+4}{t^2+1}})} > 1 \ge \alpha \Rightarrow 2 \frac{t^2+4}{t^2+1} > (\frac{t+2}{t+1}\sqrt{\frac{t^2+4}{t^2+1}})^{\alpha} \Rightarrow
$$

\n
$$
2(t+1)^{\alpha}(t^2+1)^{\alpha/2-1} > (t+2)^{\alpha}(t^2+4)^{\alpha/2-1} \Rightarrow
$$

\n
$$
2t(t+1)^{\alpha}(t^2+1)^{\alpha/2-1} \ge t(t+2)^{\alpha}(t^2+4)^{\alpha/2-1}
$$

for $t \geq 0$ and $0 < \alpha \leq 1$.

Since

$$
2(t+1)^{\alpha-1}(t^2+1)^{\alpha/2} > (t+2)^{\alpha-1}(t^2+4)^{\alpha/2},
$$

\n
$$
2t(t+1)^{\alpha}(t^2+1)^{\alpha/2-1} \ge t(t+2)^{\alpha}(t^2+4)^{\alpha/2-1},
$$

for $t \geq 0$ and $0 < \alpha \leq 1$, we have

$$
g'(t) = 2\alpha(t+1)^{\alpha-1}(t^2+1)^{\alpha/2} + 2\alpha t(t+1)^{\alpha}(t^2+1)^{\alpha/2-1}
$$

$$
-\alpha(t+2)^{\alpha-1}(t^2+4)^{\alpha/2} - \alpha t(t+2)^{\alpha}(t^2+4)^{\alpha/2-1} > 0
$$

for every $t \geq 0$ and $0 < \alpha \leq 1$ and so, g is increasing on $[0, \infty)$.

If $d_w \geq 3$, we have $g(d_w) \geq g(3)$ and

$$
\mathcal{E}S\mathcal{O}_{\alpha}(G) - \mathcal{E}S\mathcal{O}_{\alpha}(G')
$$

> $(d_v + 1)^{\alpha}(d_v^2 + 1)^{\alpha/2} + (d_w + 1)^{\alpha}(d_w^2 + 1)^{\alpha/2}$
 $- 3^{\alpha}5^{\alpha/2} - (d_w + 2)^{\alpha}(d_w^2 + 4)^{\alpha/2}$
 $\geq 2(d_w + 1)^{\alpha}(d_w^2 + 1)^{\alpha/2} - 3^{\alpha}5^{\alpha/2} - (d_w + 2)^{\alpha}(d_w^2 + 4)^{\alpha/2}$
 $\geq 2 \cdot 4^{\alpha}10^{\alpha/2} - 3^{\alpha}5^{\alpha/2} - 5^{\alpha}13^{\alpha/2}$
 $= 4^{\alpha}10^{\alpha/2} \left(2 - \left(\frac{3}{4\sqrt{2}}\right)^{\alpha} - \left(\frac{5\sqrt{13}}{4\sqrt{10}}\right)^{\alpha}\right)$
 $=: 4^{\alpha}10^{\alpha/2}h(\alpha).$

Since

$$
h(1) = 2 - \frac{3}{4\sqrt{2}} - \frac{5\sqrt{13}}{4\sqrt{10}} > 0,
$$

Lemma [1](#page-10-0) gives that $h(\alpha) > 0$ for every $\alpha \in (0,1]$, and we conclude that $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G) - \mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G') > 0$ for any $\alpha \in (0, 1]$.

Assume now that $w = v$. A computation gives

$$
\mathcal{ESO}_{\alpha}(G) - \mathcal{ESO}_{\alpha}(G')
$$

=
$$
\sum_{z \in N(v)\backslash \{u,x\}} (d_v + d_z)^{\alpha} (d_v^2 + d_z^2)^{\alpha/2} + 2(d_v + 1)^{\alpha} (d_v^2 + 1)^{\alpha/2}
$$

-
$$
\sum_{z \in N(v)\backslash \{u,x\}} (d_v - 1 + d_z)^{\alpha} ((d_v - 1)^2 + d_z^2)^{\alpha/2}
$$

-
$$
3^{\alpha} 5^{\alpha/2} - (d_v + 1)^{\alpha} ((d_v - 1)^2 + 4)^{\alpha/2}
$$

>
$$
2(d_v + 1)^{\alpha} (d_v^2 + 1)^{\alpha/2} - 3^{\alpha} 5^{\alpha/2} - (d_v + 1)^{\alpha} ((d_v - 1)^2 + 4)^{\alpha/2}
$$

>
$$
2(d_v + 1)^{\alpha} (d_v^2 + 1)^{\alpha/2} - 3^{\alpha} 5^{\alpha/2} - (d_v + 2)^{\alpha} (d_v^2 + 4)^{\alpha/2}.
$$

Since $d_v \geq 3$, the previous argument implies

$$
\mathcal{E}\mathcal{S}\mathcal{O}_{\alpha}(G) - \mathcal{E}\mathcal{S}\mathcal{O}_{\alpha}(G')
$$

> 2(d_v + 1)^α(d_v² + 1)^{α/2} - 3^α5^{α/2} - (d_v + 2)^α(d_v² + 4)^{α/2}
≥ 2 · 4^α10^{α/2} - 3^α5^{α/2} - 5^α13^{α/2} > 0

Ш

for any $\alpha \in (0,1]$.

Lemma 2. Let $0 < a < 1 < A$ with $aA < 1$ and let $H : \mathbb{R} \to \mathbb{R}$ be the function defined by $H(\alpha) = a^{\alpha} + A^{\alpha} - 2$. Then, there exists $\alpha_0 > 0$ such that $H < 0$ on $(0, \alpha_0)$ and $H \geq 0$ otherwise.

Proof. We have $H'(\alpha) = a^{\alpha} \log a + A^{\alpha} \log A = 0$ if and only if

$$
\left(\frac{A}{a}\right)^{\alpha} = \frac{-\log a}{\log A} \quad \iff \quad \alpha = \frac{\log \frac{-\log a}{\log A}}{\log \frac{A}{a}} =: \alpha_1.
$$

Since $aA < 1$, we conclude that $\log A < -\log a$ and so, $\alpha_1 > 0$. Hence, $H' < 0$ on $(-\infty, \alpha_1)$ and $H' > 0$ on (α_1, ∞) .

Since $\lim_{t\to-\infty} H(t) = \infty$, $H(0) = 0$, $H'(\alpha_0) = 0$ and $\lim_{t\to\infty} H(t) =$ ∞ , there exists a unique positive zero α_0 of H and there is no negative zero of H.

Consequently, $H < 0$ on $(0, \alpha_0)$ and $H \geq 0$ otherwise.

Definition 1. Let α_0 be the unique positive solution of the equation

$$
\left(\frac{5\sqrt{13}}{8\sqrt{2}}\right)^{\alpha} + \left(\frac{3\sqrt{5}}{8\sqrt{2}}\right)^{\alpha} = 2.
$$

Lemma 3. This constant α_0 belongs to the interval $(0, 1)$ and the function

$$
H(\alpha) = \left(\frac{5\sqrt{13}}{8\sqrt{2}}\right)^{\alpha} + \left(\frac{3\sqrt{5}}{8\sqrt{2}}\right)^{\alpha} - 2
$$

satisfies $H < 0$ on $(0, \alpha_0)$ and $H \geq 0$ on (α_0, ∞) .

Proof. This function H is the one in Lemma [2,](#page-14-0) with

$$
a = \frac{3\sqrt{5}}{8\sqrt{2}},
$$
 $A = \frac{5\sqrt{13}}{8\sqrt{2}}.$

Since

$$
aA = \frac{3\sqrt{5}}{8\sqrt{2}} \frac{5\sqrt{13}}{8\sqrt{2}} = \frac{15\sqrt{65}}{128} < 1,
$$

Lemma [2](#page-14-0) gives that $H(\alpha) < 0$ for any $0 < \alpha < \alpha_0$ and $H(\alpha) \geq 0$ for every

 $\alpha \geq \alpha_0$. Since

$$
H(1) = \frac{5\sqrt{13}}{8\sqrt{2}} + \frac{3\sqrt{5}}{8\sqrt{2}} - 2 > 0,
$$

we have $0 < \alpha_0 < 1$.

An induced path with vertices u_1, u_2, \ldots, u_n $(n \geq 3)$ of a graph G is called a pendent path at u_1 of G, if $d_{u_2} = \cdots = d_{u_{n-1}} = 2$ and $d_{u_n} = 1$ (there is no requirement on the degree of u_1).

Proposition 6. Let $\alpha \geq \alpha_0$ and let G be a graph of n vertices with two pendent paths P and Q, such that P starts at a vertex v with $d_v \geq 3$. Let G′ be the graph with n vertices obtained form G by deleting P and pasting it at the pendent vertex in Q. Then, $\mathcal{ESO}_{\alpha}(G') < \mathcal{ESO}_{\alpha}(G)$.

Proof. Let u be the vertex in P which is incident to v. Since $d_v \geq 3$ and $d_u = 2$, a computation gives

$$
\mathcal{ESO}_{\alpha}(G) - \mathcal{ESO}_{\alpha}(G')
$$
\n
$$
= \sum_{z \in N(v) \setminus \{u\}} (d_v + d_z)^{\alpha} (d_v^2 + d_z^2)^{\alpha/2} + (d_v + 2)^{\alpha} (d_v^2 + 4)^{\alpha/2} + 3^{\alpha} 5^{\alpha/2}
$$
\n
$$
- \sum_{z \in N(v) \setminus \{u\}} (d_v - 1 + d_z)^{\alpha} ((d_v - 1)^2 + d_z^2)^{\alpha/2} - 8^{\alpha} 2^{\alpha/2} - 8^{\alpha} 2^{\alpha/2}
$$
\n
$$
> (d_v + 2)^{\alpha} (d_v^2 + 4)^{\alpha/2} + 3^{\alpha} 5^{\alpha/2} - 2 \cdot 8^{\alpha} 2^{\alpha/2}
$$
\n
$$
\geq 5^{\alpha} 13^{\alpha/2} + 3^{\alpha} 5^{\alpha/2} - 2 \cdot 8^{\alpha} 2^{\alpha/2}
$$
\n
$$
= 8^{\alpha} 2^{\alpha/2} \left(\left(\frac{5\sqrt{13}}{8\sqrt{2}} \right)^{\alpha} + \left(\frac{3\sqrt{5}}{8\sqrt{2}} \right)^{\alpha} - 2 \right)
$$
\n
$$
= 8^{\alpha} 2^{\alpha/2} H(\alpha),
$$

where H is the function in Lemma [3.](#page-14-1) Hence, $H(\alpha) \geq 0$ for every $\alpha \geq \alpha_0$. Therefore, $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G) - \mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G') > 0$ for any $\alpha \geq \alpha_0$.

Motivated by Proposition [3,](#page-9-0) we are going to optimize $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}$ on the set $\mathcal{T}(n)$ of trees with *n* vertices. The corresponding results for $\mathcal{E} \mathcal{S} \mathcal{O}$ appear in [\[6\]](#page-19-1).

Theorem 7. Consider an integer $n \geq 2$ and $\alpha \geq \alpha_0$. The only graph that minimizes $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}$ in $\mathcal{T}(n)$ is the path graph P_n , and every tree $T \in \mathcal{T}(n)$ satisfies

$$
\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(T) \ge (n-3) \left(8\sqrt{2}\right)^{\alpha} + 2\left(3\sqrt{5}\right)^{\alpha}.
$$

Proof. If $f(x, y) = (x + y)^{\alpha}(x^2 + y^2)^{\alpha/2}$, the general elliptic Sombor index of any graph G is

$$
\mathcal{ESO}_{\alpha}(G) = \sum_{uv \in E(G)} f(d_u, d_v).
$$

Hence,

$$
\mathcal{ESO}_{\alpha}(P_n) = (n-3)f(2,2) + 2f(1,2) = (n-3)\left(8\sqrt{2}\right)^{\alpha} + 2\left(3\sqrt{5}\right)^{\alpha}.
$$

Note that if $\{d_u, d_v\} \neq \{1, 2\}$, then $f(d_u, d_v) > f(2, 2)$: it suffices to check that $f(1,3) > f(2,2)$, and this holds since $\sqrt{10} > 2$ √ 2 implies

$$
f(1,3) = \left(4\sqrt{10}\right)^{\alpha} > \left(8\sqrt{2}\right)^{\alpha} = f(2,2).
$$

Consider any tree $T \in \mathcal{T}(n)$ that is not the path graph P_n , let $E_{1,2}$ be the set of edges in $E(T)$ with incident vertices of degrees 1 and 2, and let $m_{1,2}$ be the cardinality of the set $E_{1,2}$.

If $m_{1,2} \leq 2$, then

$$
\mathcal{ESO}_{\alpha}(T) = \sum_{uv \in E(G) \backslash E_{1,2}} f(d_u, d_v) + \sum_{uv \in E_{1,2}} f(1,2)
$$

> $(n-1-m_{1,2})f(2,2) + m_{1,2}f(1,2)$
 $\ge (n-3)f(2,2) + 2f(1,2) = \mathcal{ESO}_{\alpha}(P_n).$

Assume now that $m_{1,2} \geq 3$. For each $e \in E_{1,2}$, let us denote by e^* the closest edge to e with incident vertices of degrees 2 and $d(e) \geq 3$. Denote by $E_{1,2}^*$ the set $\{e^* \in E(T) : e \in E_{1,2}\}$. One can check that the map $M: E_{1,2} \to E_{1,2}^*$ defined by $M(e) = e^*$, is one to one.

Lemma [3](#page-14-1) implies that

$$
\left(\frac{5\sqrt{13}}{8\sqrt{2}}\right)^{\alpha} + \left(\frac{3\sqrt{5}}{8\sqrt{2}}\right)^{\alpha} \ge 2,
$$

$$
\left(3\sqrt{5}\right)^{\alpha} + \left(5\sqrt{13}\right)^{\alpha} \ge 2\left(8\sqrt{2}\right)^{\alpha},
$$

$$
f(1,2) + f(2,3) \ge 2f(2,2).
$$

Hence,

$$
\mathcal{ESO}_{\alpha}(T) = \sum_{uv \in E(G)\backslash (E_{1,2}\cup E_{1,2}^*)} f(d_u, d_v) + \sum_{uv \in E_{1,2}} f(1,2) + \sum_{uv \in E_{1,2}^*} f(d_u, d_v)
$$

\n
$$
\ge (n - 1 - 2m_{1,2})f(2,2) + m_{1,2}f(1,2) + m_{1,2}f(2,3)
$$

\n
$$
= (n - 1 - 2m_{1,2})f(2,2) + 2f(1,2) + (m_{1,2} - 2)f(1,2)
$$

\n
$$
+ 2f(2,3) + (m_{1,2} - 2)f(2,3)
$$

\n
$$
> (n + 1 - 2m_{1,2})f(2,2) + 2f(1,2) + (m_{1,2} - 2)(f(1,2) + f(2,3))
$$

\n
$$
\ge (n + 1 - 2m_{1,2})f(2,2) + 2f(1,2) + 2(m_{1,2} - 2)f(2,2)
$$

\n
$$
= (n - 3)f(2,2) + 2f(1,2) = \mathcal{ESO}_{\alpha}(P_n).
$$

Proposition [3](#page-9-0) and Theorem [7](#page-16-0) have the following consequence.

Theorem 8. Consider an integer $n \geq 2$ and $\alpha \geq \alpha_0$. The only graph that minimizes $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}$ in $\mathcal{G}_c(n)$ is the path graph P_n , and every graph $G \in \mathcal{G}_c(n)$ satisfies

$$
\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(G) \ge (n-3) \left(8\sqrt{2}\right)^{\alpha} + 2\left(3\sqrt{5}\right)^{\alpha}.
$$

Note that since $\alpha_0 < 1$ by Lemma [3,](#page-14-1) Theorem [7](#page-16-0) holds for $\mathcal{E} \mathcal{S} \mathcal{O}$.

Theorem 9. Consider an integer $n \geq 2$ and $\alpha \in \mathbb{R}$.

(1) If $\alpha > 0$, then the only graph that maximizes $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}$ in $\mathcal{T}(n)$ is the star graph S_n , and every tree $T \in \mathcal{T}(n)$ satisfies

$$
\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(T) \le (n-1) n^{\alpha} (n^2 - 2n + 2)^{\alpha/2}.
$$

(2) If α < 0, then the only graph that minimizes $\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}$ in $\mathcal{T}(n)$ is the

star graph S_n , and every tree $T \in \mathcal{T}(n)$ satisfies

$$
\mathcal{E} \mathcal{S} \mathcal{O}_{\alpha}(T) \ge (n-1) n^{\alpha} (n^2 - 2n + 2)^{\alpha/2}.
$$

Proof. Assume that $\alpha > 0$.

Consider any tree $T \in \mathcal{T}(n)$ and any $uv \in E(T)$. Since T is a tree, there is no vertex w with $wu, wv \in E(T)$ (T is triangle free). Hence, $d_u + d_v \le n$ and so, $d_u^2 + d_v^2 \le (n-1)^2 + 1$; also, $d_u^2 + d_v^2 = (n-1)^2 + 1$ if and only if $\{d_u, d_v\} = \{n - 1, 1\}$. Hence,

$$
(d_u + d_v)\sqrt{d_u^2 + d_v^2} \le n\sqrt{(n-1)^2 + 1},
$$

$$
(d_u + d_v)^{\alpha} (d_u^2 + d_v^2)^{\alpha/2} \le n^{\alpha} ((n-1)^2 + 1)^{\alpha/2},
$$

and the equality is attained if and only if $(d_u, d_v) = (n-1, 1)$ or viceversa. Consequently.

$$
\mathcal{ESO}_{\alpha}(T) = \sum_{uv \in E(G)} (d_u + d_v)^{\alpha} (d_u^2 + d_v^2)^{\alpha/2}
$$

$$
\leq \sum_{uv \in E(G)} n^{\alpha} ((n-1)^2 + 1)^{\alpha/2} = \mathcal{ESO}_{\alpha}(S_n)
$$

and the equality is attained if and only if $(d_u, d_v) = (n-1, 1)$ or viceversa for every edge in $E(T)$, i.e., T is the star graph S_n .

If α < 0, then the previous argument gives the converse inequality, and we also have the statement on the equality.

References

- [1] M. Chen, Y. Zhu, Extremal unicyclic graphs of Sombor index, Appl. *Math. Comput.* 463 (2024) $\#128374$.
- [2] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) $\#126018$.
- [3] C. Espinal, I. Gutman, J. Rada, Elliptic Sombor index of chemical graphs, Commun. Comb. Optim., in press. doi: [https://doi.org/](https://doi.org/10.22049/cco.2024.29404.1977) [10.22049/cco.2024.29404.1977](https://doi.org/10.22049/cco.2024.29404.1977)
- [4] A. Granados, A. Portilla, Y. Quintana, E. Tourís, Bounds for the Gutman-Milovanović index and some applications, J. Math. Chem., in press. doi: <https://doi.org/10.1007/s10910-024-01677-7>.
- [5] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
- [6] I. Gutman, B. Furtula, M. Sinan Oz, Geometric approach to vertexdegree-based topological indices – Elliptic Sombor index, theory and application, *Int. J. Quantum Chem.* **2024** (2024) $\#e27346$.
- [7] I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb. 17 (2020) 74–85.
- [8] H. Liu, L. You, Y. Huang, Z. Tang, On extremal Sombor indices of chemical graphs, and beyond, MATCH Commun. Math. Comput. Chem. 89 (2023) 415–436.
- [9] E. Molina, J. M. Rodríguez, J. M. Sigarreta, S. J. Torralbas, On the Gutman-Milovanović index and chemical applications, *submitted*.
- [10] J. Rada, J. M. Rodríguez, J. M. Sigarreta, On integral Sombor indices, Appl. Math. Comput. 452 (2023) $\#128036$.
- [11] J. Rada, J. M. Rodríguez, J. M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput. 475 (2024) #128756.
- [12] J. Rada, J. M. Rodríguez, J. M. Sigarreta, Optimization problems for variable Randić type lodeg index and other indices, MATCH Commun. Math. Comput. Chem. 91 (2024) 741–767.
- [13] I. Redžepović, Chemical applicability of Sombor indices: survey, J. Serb. Chem. Soc. 86 (2021) 445–457.
- [14] S. Shetty, K. Bhat, Sombor index of hypergraphs, MATCH Commun. Math. Comput. Chem. 91 (2024) 235–254.