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bDepartamento de Matemáticas, Universidad Carlos III de Madrid,

Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
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Abstract

Let G be a graph with vertex set V and edge set E. A topological
index has the form

TI (G) =
∑
uv∈E

f (du, dv) ,

where f = f (x, y) is a pertinently chosen function which must be
symmetric and real-valued for all x, y pertaining to vertex degrees of
the graph G. Particularly interesting are the Sombor index SO and
the elliptic Sombor index ESO, induced by the functions f (x, y) =√

x2 + y2 and f (x, y) = (x+ y)
√

x2 + y2, respectively. In this
paper we solve some optimization problems for the general elliptic
Sombor index ESOα, induced by the function f(x, y) = (x+y)α(x2+
y2)α/2 (α ̸= 0), in particular on the set of graphs (respectively, trees)
with n vertices.
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1 Introduction

In what follows, G = (V,E) is a simple graph with vertex set V and edge

set E. The degree of a vertex u ∈ V is denoted by du = du (G). An edge

of the graph G, connecting a vertex of degree i and a vertex of degree

j, is called an (i, j)-edge. The number of such edges will be denoted by

mi,j = mi,j (G).

A topological index has the form

TI = TI (G) =
∑
uv∈E

f (du, dv) ,

where f = f (x, y) is a pertinently chosen function which must be sym-

metric and real-valued for all x, y pertaining to vertex degrees of the graph

G. Particularly interesting is the recently created elliptic Sombor in-

dex ESO [6], and the Sombor index SO [5], induced by the functions

f (x, y) = (x+ y)
√
x2 + y2 and f (x, y) =

√
x2 + y2, respectively. For

recent results on the Sombor index and the elliptic Sombor index we re-

fer to [1–3, 5, 8, 10, 11, 14]. Both topological indices were conceived using

geometric considerations and both showed good predictive potential [6,13].

Our main interest in this paper is to solve some optimization problems

for the general elliptic Sombor index ESOα [11], induced by the function

f(x, y) = (x + y)α(x2 + y2)α/2, α ∈ R \ {0}, in particular on the set of

graphs (respectively, trees) with n vertices.

2 Extremal problems on the elliptic Sombor

index and the general elliptic Sombor in-

dex

If a, b are arbitrary real numbers, the Gutman-Milovanović index is defined

in [7] by

Ma,b(G) =
∑

uv∈E(G)

(dudv)
a(du + dv)

b.
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This index is a natural generalization of the first Zagreb, the general second

Zagreb and the general sum-connectivity indices. This index is attracting

growing interest, see e.g. [4, 9].

Notice that M0,1 is the first Zagreb index M1, M1,0 is the second Za-

greb index M2, M−1/2,0 is the Randić index R, 2M1/2,−1 is the geometric-

arithmetic index GA, 1
2M−1/2,1 is the arithmetic-geometric index AG,

2M0,−1 is the harmonic index H, M1,1 is the second Gourava index GO2,

Mα,0 is the general second Zagreb index Mα
2 , M0,β is the general sum-

connectivity index χβ , 4M1,−2 is the harmonic-arithmetic index HA, etc.

Optimization arguments using differential calculus allows to obtain the

following result relating the general elliptic Sombor index and the Gutman-

Milovanović index.

Theorem 1. If α, β ∈ R (α ̸= 0) and G is a graph with maximum degree

∆ and minimum degree δ, then

kα,β Mβ,α(G) ≤ ESOα(G) ≤ Kα,β Mβ,α(G),

where s = −2β/α,

kα,β :=



(2δ2s+2)α/2, for α > 0, s ≥ −1,

(2∆2s+2)α/2, for α > 0, s < −1,

(2∆2s+2)α/2, for α < 0, s ≥ 0,

max
{
(∆δ)s

(
∆2 + δ2

)
, 2∆2s+2

}α/2
, for α < 0, −1 ≤ s < 0,

max
{
(∆δ)s

(
∆2 + δ2

)
, 2δ2s+2

}α/2
, for α < 0, −2 < s < −1,

(2δ2s+2)α/2, for α < 0, s ≤ −2,
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and

Kα,β :=



(2∆2s+2)α/2, for α > 0, s ≥ 0,

max
{
(∆δ)s

(
∆2 + δ2

)
, 2∆2s+2

}α/2
, for α > 0, −1 ≤ s < 0,

max
{
(∆δ)s

(
∆2 + δ2

)
, 2δ2s+2

}α/2
, for α > 0, −2 < s < −1,

(2δ2s+2)α/2, for α > 0, s ≤ −2,

(2δ2s+2)α/2, for α < 0, s ≥ −1,

(2∆2s+2)α/2, for α < 0, s < −1.

The bounds are tight and they are attained on any regular graph.

Proof. For each δ ≤ x, y ≤ ∆, define the function J : [δ,∆] × [δ,∆] → R
by

J(x, y) = (xy)s
(
x2 + y2

)
.

Thus,
∂J

∂x
(x, y) = sxs−1ys

(
x2 + y2

)
+ xsys2x

= xs−1ys
(
sx2 + sy2 + 2x2

)
= xs−1ys

(
(s+ 2)x2 + sy2

)
.

Also,
∂J

∂y
(x, y) = ys−1xs

(
(s+ 2)y2 + sx2

)
.

If s ≥ 0, then ∂J/∂x, ∂J/∂y > 0 and so,

2δ2s+2 = J(δ, δ) ≤ J(x, y) ≤ J(∆,∆) = 2∆2s+2

for any x, y ∈ [δ,∆].

If s ≤ −2, then ∂J/∂x, ∂J/∂y < 0 and so,

2∆2s+2 = J(∆,∆) ≤ J(x, y) ≤ J(δ, δ) = 2δ2s+2

for any x, y ∈ [δ,∆].
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Consider now −1 ≤ s < 0. We have s+ 2 ≥ −s and

∂J

∂x
(x, y) = xs−1ys

(
(s+ 2)x2 + sy2

)
≥ −sxs−1ys

(
x2 − y2

)
.

By symmetry, we can assume that x ≥ y. Then, ∂J/∂x ≥ 0 and so,

J(y, y) ≤ J(x, y) ≤ J(∆, y).

Let us define

a(y) = J(y, y) = 2y2s+2.

Since −1 ≤ s < 0, the function a(y) is increasing and

J(x, y) ≥ J(y, y) = a(y) ≥ a(δ) = 2δ2s+2

for any x, y ∈ [δ,∆].

Define the function

b(y) = J(∆, y) = (∆y)s
(
∆2 + y2

)
on the interval [δ,∆]. We have

b′(y) = ∆sys−1
(
(s+ 2)y2 + s∆2

)
.

Note that b′(∆) = ∆2s+12(s + 1) > 0 if −1 < s < 0. Since the function

(s+2)y2 + s∆2 has at most a zero on the interval [δ,∆], and it is positive

on (∆−ε,∆) for some ε > 0, we conclude that b is either positive on (δ,∆)

or negative on (δ, γ) and positive on (γ,∆) (for some γ ∈ (δ,∆)). In both

cases, b(y) ≤ max{b(δ), b(∆)} and so,

J(x, y) ≤ J(∆, y) = b(y) ≤ max
{
b(δ), b(∆)

}
= max

{
J(∆, δ), J(∆,∆)

}
= max

{
(∆δ)s

(
∆2 + δ2

)
, 2∆2s+2

}
for any x, y ∈ [δ,∆]. If s = −1, a similar argument gives the same inequal-

ity.
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Finally, consider the case −2 < s < −1. We have s+ 2 < −s and

∂J

∂x
(x, y) = xs−1ys

(
(s+ 2)x2 + sy2

)
< −sxs−1ys

(
x2 − y2

)
.

By symmetry, we can assume that x ≤ y. Then, ∂J/∂x < 0 and so,

J(y, y) ≤ J(x, y) ≤ J(δ, y).

Let us consider

a(y) = J(y, y) = 2y2s+2.

Since −2 < s < −1, the function a(y) is decreasing and

J(x, y) ≥ J(y, y) = a(y) ≥ a(∆) = 2∆2s+2

for any x, y ∈ [δ,∆].

Consider the function

c(y) = J(δ, y) = (δy)s
(
δ2 + y2

)
on [δ,∆]. We have

c′(y) = δsys−1
(
(s+ 2)y2 + sδ2

)
.

Note that c′(δ) = δ2s+12(s + 1) < 0. Since the function (s + 2)y2 + sδ2

has at most a zero on the interval [δ,∆], and it is negative on (δ, δ + ε)

for some ε > 0, we conclude that b is either negative on (δ,∆) or negative

on (δ, γ) and positive on (γ,∆) (for some γ ∈ (δ,∆)). In both cases,

c(y) ≤ max{c(δ), c(∆)} and so,

J(x, y) ≤ J(δ, y) = c(y) ≤ max
{
c(∆), c(δ)

}
= max

{
J(∆, δ), J(δ, δ)

}
= max

{
(∆δ)s

(
∆2 + δ2

)
, 2δ2s+2

}
for any x, y ∈ [δ,∆].



825

Let us define

as :=

2δ2s+2, for s ≥ −1,

2∆2s+2, for s < −1,

and

As :=



2∆2s+2, for s ≥ 0,

max
{
(∆δ)s

(
∆2 + δ2

)
, 2∆2s+2

}
, for − 1 ≤ s < 0,

max
{
(∆δ)s

(
∆2 + δ2

)
, 2δ2s+2

}
, for − 2 < s < −1,

2δ2s+2, for s ≤ −2.

Consequently,

as ≤ (xy)s
(
x2 + y2

)
= J(x, y) ≤ As

for every s ∈ R and δ ≤ x, y ≤ ∆. If α > 0, then

aα/2s ≤ (xy)sα/2
(
x2 + y2

)α/2 ≤ Aα/2
s ,

a
α/2
−2β/α ≤ (xy)−β

(
x2 + y2

)α/2 ≤ A
α/2
−2β/α,

and if α < 0, then we obtain the converse inequalities. Note that

kα,β =

a
α/2
−2β/α, for α > 0,

A
α/2
−2β/α, for α < 0,

Kα,β =

A
α/2
−2β/α, for α > 0,

a
α/2
−2β/α, for α < 0.

Hence,

kα,β ≤ (xy)−β
(
x2 + y2

)α/2 ≤ Kα,β ,

for every α, β ∈ R (α ̸= 0) and δ ≤ x, y ≤ ∆. Thus,

kα,β(dudv)
β(du + dv)

α ≤ (du + dv)
α
(
d2u + d2v

)α/2 ≤ Kα,β(dudv)
β(du + dv)

α,

for every α, β ∈ R (α ̸= 0) and uv ∈ E(G). Therefore,

kα,β Mβ,α(G) ≤ ESOα(G) ≤ Kα,β Mβ,α(G).
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Finally, we are going to show that the bounds are tight and they are

attained on any regular graph. If G is a δ-regular graph with m edges,

then ∆ = δ, kα,β = Kα,β = (2δ2s+2)α/2 = 2α/2δsα+α = 2α/2δ−2β+α and

kα,β Mβ,α(G) = 2α/2δ−2β+αδ2β2αδαm = 2αδα2α/2δαm = ESOα(G).

Since M0,1 is the first Zagreb index M1,
1
2M−1/2,1 is the arithmetic-

geometric index AG, M1,1 is the second Gourava index GO2, M0,α is the

general sum-connectivity index χα, Theorem 1 has the following conse-

quence.

Corollary 1. If α ∈ R \ {0} and G is a graph with maximum degree ∆

and minimum degree δ, then

kα χα(G) ≤ ESOα(G) ≤ Kα χα(G),
√
2 δM1(G) ≤ ESO(G) ≤

√
2∆M1(G),

√
2

∆
GO2(G) ≤ ESO(G) ≤

√
2

δ
GO2(G),

2
√
2 δ2AG(G) ≤ ESO(G) ≤ 2

√
2∆2AG(G),

where

kα :=

2α/2δα, for α > 0,

2α/2∆α, for α < 0,
Kα :=

2α/2∆α, for α > 0,

2α/2δα, for α < 0.

The bounds are tight and they are attained on any regular graph.

Consider any topological index defined as

TI(G) =
∑

uv∈E(G)

f(du, dv), (1)

where f(x, y) is any non-negative symmetric function f : Z+ × Z+ →
[0,∞).

We say that the index TI defined by (1) belongs to F1 if f is a positive

function that is strictly increasing in each variable.
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Considering the index TI in these classes allows to study many indices

in a unified way.

It is clear that TI ∈ F1 for:

• f(x, y) = (xa + ya)−1 with a < 0 (variable inverse sum deg index),

• f(x, y) = logax + logay with a > 0 (variable sum lodeg index, for

graphs without isolated edges),

• f(x, y) = ax + ay with a > 1 (variable sum exdeg index),

• f(x, y) = xa−1 + ya−1 with a > 1 (variable first Zagreb index),

• f(x, y) = (xy)a with a > 0 (variable second Zagreb index),

• f(x, y) = (x+ y)a with a > 0 (variable sum connectivity index),

• f(x, y) = x+y+xy and f(x, y) = x2y+xy2 (first and second Gourava

indices, respectively),

• f(x, y) = (x+ y + xy)2 and f(x, y) = (x2y + xy2)2 (first and second

hyper-Gourava indices, respectively),

• f(x, y) = (xy)α(x+ y)β with α, β > 0 (Gutman-Milovanović index),

• f(x, y) =
√
x2 + y2 (Sombor index),

• f(x, y) = (x+ y)
√
x2 + y2 (elliptic Sombor index),

• f(x, y) = (x + y)α(x2 + y2)α/2 with α > 0 (general elliptic Sombor

index).

Given an integer n ≥ 2, let G(n) (respectively, Gc(n)) be the set of

graphs (respectively, connected graphs) with n vertices. In [12] appear the

two following results.

Proposition 2. Consider TI ∈ F1 and an integer n ≥ 2.

(1) The only graph that maximizes the TI index in Gc(n) or G(n) is

the complete graph Kn.

(2) If a graph minimizes the TI index in Gc(n), then it is a tree.

(3) If n is even, then the only graph that minimizes the TI index in

G(n) is the union of n/2 paths P2. If n is odd, then the only graph that

minimizes the TI index in G(n) is the union of (n− 3)/2 paths P2 with a

path P3.

Corollary 2. Let G be a graph with n vertices and TI ∈ F1.

(1) Then,

TI(G) ≤ 1

2
n(n− 1)f(n− 1, n− 1),
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and the equality in the bound is attained if and only if G is the complete

graph Kn.

(2) If n is even, then

TI(G) ≥ 1

2
nf(1, 1),

and the equality in the bound is attained if and only if G is the union of

n/2 path graphs P2.

(3) If n is odd, then

TI(G) ≥ 1

2
(n− 3)f(1, 1) + 2f(1, 2) ,

and the equality in the bound is attained if and only if G is the union of

(n− 3)/2 path graphs P2 and a path graph P3.

Since TI = ESOα if f(x, y) = (x+y)α(x2+y2)α/2, we have ESOα ∈ F1

for every α > 0. Hence, Proposition 2 and Corollary 2 have the following

consequences.

Proposition 3. Consider α > 0 and an integer n ≥ 2.

(1) The only graph that maximizes ESOα in Gc(n) or G(n) is the com-

plete graph Kn.

(2) If a graph minimizes ESOα in Gc(n), then it is a tree.

(3) If n is even, then the only graph that minimizes ESOα in G(n) is

the union of n/2 paths P2. If n is odd, then the only graph that minimizes

ESOα in G(n) is the union of (n− 3)/2 paths P2 with a path P3.

Proposition 4. Let G be a graph with n vertices and α > 0.

(1) Then,

ESOα(G) ≤
√
2n(n− 1)3,

and the equality in the bound is attained if and only if G is the complete

graph Kn.

(2) If n is even, then

ESOα(G) ≥
√
2n,
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and the equality in the bound is attained if and only if G is the union of

n/2 path graphs P2.

(3) If n is odd, then

ESOα(G) ≥
√
2 (n− 3) + 6

√
5 ,

and the equality in the bound is attained if and only if G is the union of

(n− 3)/2 path graphs P2 and a path graph P3.

We are going to show two graph transformations that allow to obtain

graphs with smaller ESOα.

We need some previous results.

Lemma 1. Let 0 < a < 1 < A. If h : R → R is defined by h(α) =

2− aα −Aα and h(1) > 0, then h(α) > 0 for every α ∈ (0, 1].

Proof. We have h′(α) = −aα log a−Aα logA = 0 if and only if

(
A

a

)α
=

− log a

logA
⇐⇒ α =

log − log a
logA

log A
a

=: α1.

Hence, h′ > 0 on (−∞, α1) and h′ < 0 on (α1,∞).

Since limt→−∞ h(t) = −∞, h(0) = 0, h(1) > 0 and limt→∞ h(t) = −∞,

we have h(α) > 0 for every α ∈ (0, 1].

Proposition 5. Let G be a graph of n vertices and 0 < α ≤ 1. Assume

that the vertices u, v, w, x ∈ V (G) satisfy the following properties: uv,wx

are different pendent edges (although it is possible to have w = v) with

dv ≥ 3 and 2 ≤ dw ≤ dv. Let G′ be the graph with n vertices obtained

form G by deleting the edge uv and adding a pendent edge to x. Then,

ESOα(G
′) < ESOα(G).

Proof. Assume first that w ̸= v.
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Since du = 1, a computation gives

ESOα(G)− ESOα(G
′)

=
∑

z∈N(v)\{u}

(dv + dz)
α(d2v + d2z)

α/2 + (dv + 1)α(d2v + 1)α/2

+ (dw + 1)α(d2w + 1)α/2 −
∑

z∈N(v)\{u}

(dv − 1 + dz)
α((dv − 1)2 + d2z)

α/2

− 3α5α/2 − (dw + 2)α(d2w + 4)α/2

> (dv + 1)α(d2v + 1)α/2 + (dw + 1)α(d2w + 1)α/2

− 3α5α/2 − (dw + 2)α(d2w + 4)α/2.

If dw = 2, since dv ≥ 3, we obtain

ESOα(G)− ESOα(G
′)

> (dv + 1)α(d2v + 1)α/2 + (dw + 1)α(d2w + 1)α/2

− 3α5α/2 − (dw + 2)α(d2w + 4)α/2

= (dv + 1)α(d2v + 1)α/2 + 3α5α/2 − 3α5α/2 − 8α2α/2

≥ 4α10α/2 − 8α2α/2 = 4α2α/2
(
5α/2 − 2α

)
> 0.

Now, we are going to prove that the function

g(t) = 2(t+ 1)α(t2 + 1)α/2 − (t+ 2)α(t2 + 4)α/2

is increasing on [0,∞) for any 0 < α ≤ 1.

Let us check first that

2(t+ 1)α−1(t2 + 1)α/2 > (t+ 2)α−1(t2 + 4)α/2
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for t ≥ 0 and 0 < α ≤ 1. We have

4t2 + 4 > t2 + 4 ⇒ 2 >

√
t2 + 4

t2 + 1
⇒

log
(
2 t+2

t+1

)
log
(

t+2
t+1

√
t2+4
t2+1

) > 1 ≥ α ⇒ 2
t+ 2

t+ 1
>

(
t+ 2

t+ 1

√
t2 + 4

t2 + 1

)α

⇒

2(t+ 1)α−1(t2 + 1)α/2 > (t+ 2)α−1(t2 + 4)α/2

for t ≥ 0 and 0 < α ≤ 1.

Let us check now that

2t(t+ 1)α(t2 + 1)α/2−1 ≥ t(t+ 2)α(t2 + 4)α/2−1

for t ≥ 0 and 0 < α ≤ 1. We have

2t+ 2 > t+ 2 ⇒ 2 >
t+ 2

t+ 1
⇒

log
(
2 t2+4

t2+1

)
log
(

t+2
t+1

√
t2+4
t2+1

) > 1 ≥ α ⇒ 2
t2 + 4

t2 + 1
>

(
t+ 2

t+ 1

√
t2 + 4

t2 + 1

)α

⇒

2(t+ 1)α(t2 + 1)α/2−1 > (t+ 2)α(t2 + 4)α/2−1 ⇒

2t(t+ 1)α(t2 + 1)α/2−1 ≥ t(t+ 2)α(t2 + 4)α/2−1

for t ≥ 0 and 0 < α ≤ 1.

Since

2(t+ 1)α−1(t2 + 1)α/2 > (t+ 2)α−1(t2 + 4)α/2,

2t(t+ 1)α(t2 + 1)α/2−1 ≥ t(t+ 2)α(t2 + 4)α/2−1,

for t ≥ 0 and 0 < α ≤ 1, we have

g′(t) = 2α(t+ 1)α−1(t2 + 1)α/2 + 2αt(t+ 1)α(t2 + 1)α/2−1

− α(t+ 2)α−1(t2 + 4)α/2 − αt(t+ 2)α(t2 + 4)α/2−1 > 0

for every t ≥ 0 and 0 < α ≤ 1 and so, g is increasing on [0,∞).
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If dw ≥ 3, we have g(dw) ≥ g(3) and

ESOα(G)− ESOα(G
′)

> (dv + 1)α(d2v + 1)α/2 + (dw + 1)α(d2w + 1)α/2

− 3α5α/2 − (dw + 2)α(d2w + 4)α/2

≥ 2(dw + 1)α(d2w + 1)α/2 − 3α5α/2 − (dw + 2)α(d2w + 4)α/2

≥ 2 · 4α10α/2 − 3α5α/2 − 5α13α/2

= 4α10α/2

(
2−

(
3

4
√
2

)α
−

(
5
√
13

4
√
10

)α)
=: 4α10α/2h(α).

Since

h(1) = 2− 3

4
√
2
− 5

√
13

4
√
10

> 0,

Lemma 1 gives that h(α) > 0 for every α ∈ (0, 1], and we conclude that

ESOα(G)− ESOα(G
′) > 0 for any α ∈ (0, 1].

Assume now that w = v. A computation gives

ESOα(G)− ESOα(G
′)

=
∑

z∈N(v)\{u,x}

(dv + dz)
α(d2v + d2z)

α/2 + 2(dv + 1)α(d2v + 1)α/2

−
∑

z∈N(v)\{u,x}

(dv − 1 + dz)
α((dv − 1)2 + d2z)

α/2

− 3α5α/2 − (dv + 1)α((dv − 1)2 + 4)α/2

> 2(dv + 1)α(d2v + 1)α/2 − 3α5α/2 − (dv + 1)α((dv − 1)2 + 4)α/2

> 2(dv + 1)α(d2v + 1)α/2 − 3α5α/2 − (dv + 2)α(d2v + 4)α/2.

Since dv ≥ 3, the previous argument implies

ESOα(G)− ESOα(G
′)

> 2(dv + 1)α(d2v + 1)α/2 − 3α5α/2 − (dv + 2)α(d2v + 4)α/2

≥ 2 · 4α10α/2 − 3α5α/2 − 5α13α/2 > 0

for any α ∈ (0, 1].
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Lemma 2. Let 0 < a < 1 < A with aA < 1 and let H : R → R be the

function defined by H(α) = aα + Aα − 2. Then, there exists α0 > 0 such

that H < 0 on (0, α0) and H ≥ 0 otherwise.

Proof. We have H ′(α) = aα log a+Aα logA = 0 if and only if

(
A

a

)α
=

− log a

logA
⇐⇒ α =

log − log a
logA

log A
a

=: α1.

Since aA < 1, we conclude that logA < − log a and so, α1 > 0. Hence,

H ′ < 0 on (−∞, α1) and H ′ > 0 on (α1,∞).

Since limt→−∞ H(t) = ∞, H(0) = 0, H ′(α0) = 0 and limt→∞ H(t) =

∞, there exists a unique positive zero α0 of H and there is no negative

zero of H.

Consequently, H < 0 on (0, α0) and H ≥ 0 otherwise.

Definition 1. Let α0 be the unique positive solution of the equation(
5
√
13

8
√
2

)α
+

(
3
√
5

8
√
2

)α
= 2.

Lemma 3. This constant α0 belongs to the interval (0, 1) and the function

H(α) =

(
5
√
13

8
√
2

)α
+

(
3
√
5

8
√
2

)α
− 2

satisfies H < 0 on (0, α0) and H ≥ 0 on [α0,∞).

Proof. This function H is the one in Lemma 2, with

a =
3
√
5

8
√
2
, A =

5
√
13

8
√
2

.

Since

aA =
3
√
5

8
√
2

5
√
13

8
√
2

=
15
√
65

128
< 1,

Lemma 2 gives that H(α) < 0 for any 0 < α < α0 and H(α) ≥ 0 for every
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α ≥ α0. Since

H(1) =
5
√
13

8
√
2

+
3
√
5

8
√
2
− 2 > 0,

we have 0 < α0 < 1.

An induced path with vertices u1, u2, . . . , un (n ≥ 3) of a graph G is

called a pendent path at u1 of G, if du2 = · · · = dun−1 = 2 and dun = 1

(there is no requirement on the degree of u1).

Proposition 6. Let α ≥ α0 and let G be a graph of n vertices with two

pendent paths P and Q, such that P starts at a vertex v with dv ≥ 3. Let

G′ be the graph with n vertices obtained form G by deleting P and pasting

it at the pendent vertex in Q. Then, ESOα(G
′) < ESOα(G).

Proof. Let u be the vertex in P which is incident to v. Since dv ≥ 3 and

du = 2, a computation gives

ESOα(G)− ESOα(G
′)

=
∑

z∈N(v)\{u}

(dv + dz)
α(d2v + d2z)

α/2 + (dv + 2)α(d2v + 4)α/2 + 3α5α/2

−
∑

z∈N(v)\{u}

(dv − 1 + dz)
α((dv − 1)2 + d2z)

α/2 − 8α2α/2 − 8α2α/2

> (dv + 2)α(d2v + 4)α/2 + 3α5α/2 − 2 · 8α2α/2

≥ 5α13α/2 + 3α5α/2 − 2 · 8α2α/2

= 8α2α/2

((
5
√
13

8
√
2

)α
+

(
3
√
5

8
√
2

)α
− 2

)
= 8α2α/2H(α),

where H is the function in Lemma 3. Hence, H(α) ≥ 0 for every α ≥ α0.

Therefore, ESOα(G)− ESOα(G
′) > 0 for any α ≥ α0.

Motivated by Proposition 3, we are going to optimize ESOα on the set

T (n) of trees with n vertices. The corresponding results for ESO appear

in [6].
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Theorem 7. Consider an integer n ≥ 2 and α ≥ α0. The only graph that

minimizes ESOα in T (n) is the path graph Pn, and every tree T ∈ T (n)

satisfies

ESOα(T ) ≥ (n− 3)
(
8
√
2
)α

+ 2
(
3
√
5
)α

.

Proof. If f(x, y) = (x+ y)α(x2 + y2)α/2, the general elliptic Sombor index

of any graph G is

ESOα(G) =
∑

uv∈E(G)

f(du, dv).

Hence,

ESOα(Pn) = (n− 3)f(2, 2) + 2f(1, 2) = (n− 3)
(
8
√
2
)α

+ 2
(
3
√
5
)α

.

Note that if {du, dv} ̸= {1, 2}, then f(du, dv) > f(2, 2): it suffices to

check that f(1, 3) > f(2, 2), and this holds since
√
10 > 2

√
2 implies

f(1, 3) =
(
4
√
10
)α

>
(
8
√
2
)α

= f(2, 2).

Consider any tree T ∈ T (n) that is not the path graph Pn, let E1,2 be

the set of edges in E(T ) with incident vertices of degrees 1 and 2, and let

m1,2 be the cardinality of the set E1,2.

If m1,2 ≤ 2, then

ESOα(T ) =
∑

uv∈E(G)\E1,2

f(du, dv) +
∑

uv∈E1,2

f(1, 2)

> (n− 1−m1,2)f(2, 2) +m1,2f(1, 2)

≥ (n− 3)f(2, 2) + 2f(1, 2) = ESOα(Pn).

Assume now that m1,2 ≥ 3. For each e ∈ E1,2, let us denote by e∗ the

closest edge to e with incident vertices of degrees 2 and d(e) ≥ 3. Denote

by E∗
1,2 the set {e∗ ∈ E(T ) : e ∈ E1,2}. One can check that the map

M : E1,2 → E∗
1,2 defined by M(e) = e∗, is one to one.
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Lemma 3 implies that(
5
√
13

8
√
2

)α
+

(
3
√
5

8
√
2

)α
≥ 2 ,(

3
√
5
)α

+
(
5
√
13
)α

≥ 2
(
8
√
2
)α

,

f(1, 2) + f(2, 3) ≥ 2f(2, 2) .

Hence,

ESOα(T ) =
∑

uv∈E(G)\(E1,2∪E∗
1,2)

f(du, dv) +
∑

uv∈E1,2

f(1, 2) +
∑

uv∈E∗
1,2

f(du, dv)

≥ (n− 1− 2m1,2)f(2, 2) +m1,2f(1, 2) +m1,2f(2, 3)

= (n− 1− 2m1,2)f(2, 2) + 2f(1, 2) + (m1,2 − 2)f(1, 2)

+ 2f(2, 3) + (m1,2 − 2)f(2, 3)

> (n+ 1− 2m1,2)f(2, 2) + 2f(1, 2) + (m1,2 − 2)(f(1, 2) + f(2, 3))

≥ (n+ 1− 2m1,2)f(2, 2) + 2f(1, 2) + 2(m1,2 − 2)f(2, 2)

= (n− 3)f(2, 2) + 2f(1, 2) = ESOα(Pn).

Proposition 3 and Theorem 7 have the following consequence.

Theorem 8. Consider an integer n ≥ 2 and α ≥ α0. The only graph that

minimizes ESOα in Gc(n) is the path graph Pn, and every graph G ∈ Gc(n)

satisfies

ESOα(G) ≥ (n− 3)
(
8
√
2
)α

+ 2
(
3
√
5
)α

.

Note that since α0 < 1 by Lemma 3, Theorem 7 holds for ESO.

Theorem 9. Consider an integer n ≥ 2 and α ∈ R.
(1) If α > 0, then the only graph that maximizes ESOα in T (n) is the

star graph Sn, and every tree T ∈ T (n) satisfies

ESOα(T ) ≤ (n− 1)nα
(
n2 − 2n+ 2

)α/2
.

(2) If α < 0, then the only graph that minimizes ESOα in T (n) is the
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star graph Sn, and every tree T ∈ T (n) satisfies

ESOα(T ) ≥ (n− 1)nα
(
n2 − 2n+ 2

)α/2
.

Proof. Assume that α > 0.

Consider any tree T ∈ T (n) and any uv ∈ E(T ). Since T is a tree,

there is no vertex w with wu,wv ∈ E(T ) (T is triangle free). Hence,

du + dv ≤ n and so, d2u + d2v ≤ (n− 1)2 + 1; also, d2u + d2v = (n− 1)2 + 1 if

and only if {du, dv} = {n− 1, 1}. Hence,

(du + dv)
√

d2u + d2v ≤ n
√
(n− 1)2 + 1 ,

(du + dv)
α(d2u + d2v)

α/2 ≤ nα((n− 1)2 + 1)α/2,

and the equality is attained if and only if (du, dv) = (n−1, 1) or viceversa.

Consequently,

ESOα(T ) =
∑

uv∈E(G)

(du + dv)
α(d2u + d2v)

α/2

≤
∑

uv∈E(G)

nα((n− 1)2 + 1)α/2 = ESOα(Sn)

and the equality is attained if and only if (du, dv) = (n− 1, 1) or viceversa

for every edge in E(T ), i.e., T is the star graph Sn.

If α < 0, then the previous argument gives the converse inequality, and

we also have the statement on the equality.
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AKCE Int. J. Graphs Comb. 17 (2020) 74–85.

[8] H. Liu, L. You, Y. Huang, Z. Tang, On extremal Sombor indices
of chemical graphs, and beyond, MATCH Commun. Math. Comput.
Chem. 89 (2023) 415–436.
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