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Abstract

The arithmetic-geometric index is a newly proposed degree-ba-
sed graph invariant in mathematical chemistry. We give a sharp
upper bound on the value of this invariant for connected chemical
graphs of given order and size and characterize the connected chem-
ical graphs that reach the bound. We also prove that the removal
of the constraint that extremal chemical graphs must be connected
does not allow to increase the upper bound.
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1 Introduction

In mathematical chemistry, and more specifically in chemical graph the-

ory, topological indices are values that characterize a graph representing a

molecule. This value is correlated with some properties of said molecule.

One largely studied class of such indices is composed of degree-based in-

variants. A well known example of these is the Randić index, proposed

by Randić [15] in 1975. Following the interest in this index, many others

were later introduced. Of interest here is the arithmetic-geometric index

proposed in 2015 by Shegehalli and Kanabur [17]. Let G be a graph with

edge set E and let du and dv be the degrees of the endpoints of an edge

uv ∈ E. The arithmetic-geometric index AG(G) of G, is defined as

AG(G) =
∑
uv∈E

du + dv

2
√
dudv

.

Shegehalli and Kanabur [17,18] give the value of this index for some fami-

lies of graphs. The summand in the above formula is the ratio between the

arithmetic and geometric means of du and dv. If we replace each summand

by its inverse, we obtain another graph invariant called the reciprocal of

AG and also known as the geometric-arithmetic index. It was introduced in

2009 by Vukičević and Furtula [22] and studied for example in [1,2,5,16].

In the past few year, an interest in the arithmetic-geometric index

emerged in mathematical chemistry. The AG index of graphene, identified

as the most conductive material for electromagnetic interference shield-

ing [20], was determined in [19]. Using the AG index, Zheng et al. [24]

and Guo and Gao [8] study extremal properties of the spectral radius and

energy of arithmetic-geometric matrix. In addition, Vujošević et al. [21]

have characterized the chemical trees with maximum arithmetic-geometric

index value.

Also, the relationship between the arithmetic-geometric index and

other topological indices of interest in chemistry is studied, for example

in [3, 4, 9, 11, 13]. In particular, it is of interest to determine relations be-

tween a topological index and its reciprocal [10]. Gutman [9] showed that

AG and its reciprocal (the geometric-arithmetic index GA) will have similar
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predictive values in QSPR and QSAR applications. Hence, results on AG

or on its reciprocal can both be useful for such applications. Note however

that for fixed order and size, a graph maximizing AG is not necessarily a

graph minimizing its reciprocal. For example, the results presented in this

paper show that the unique graph of order 6 and size 8 maximizing AG is

the graph G1 depicted in Figure 1, but this graph does not minimize GA

among graphs of order 6 and size 8. Indeed, the graph G2 in Figure 1 has

GA(G2) =
8
3

√
8 < 18

5 + 16
7

√
3 = GA(G1).

G1 G2

Figure 1. Graphs maximising AG do not necessarily minimize GA.

Several papers have focused on extremal properties of the arithmetic-

geometric index. For example, some lower and upper bounds on AG are

given in [4]. Also, lower bounds for graphs of fixed size (i.e., number of

edges) are provided in [21], while an upper bound for graphs with fixed size

and order (i.e., number of vertices) is established in [21]. Upper bounds for

graphs of fixed size and fixed minimum and maximum degrees are given

in [13]. The maximum value of the arithmetic-geometric index of graphs of

fixed order is known for unicyclic graphs [23], bicyclic graphs [14], bipartite

graphs and trees [21].

In this paper, we prove the following upper bound on the value of the

arithmetic index of a connected chemical graphs G of order n and size m:

AG(G) ≤ 2n+ 5m

6
+


0 if 2m− n ≡ 0 mod 3,
3√
2
− 13

6 if 2m− n ≡ 1 mod 3,
21
4
√
3
− 37

12 if 2m− n ≡ 2 mod 3.

We show that with the exception of 22 (n,m) pairs, the bound is sharp,

and we characterize the connected chemical graphs of order n and size

m ≥ n− 1 that reach the bound. We also prove that no better value can

be obtained by removing the constraint that the graph must be connected.

Note that for m = n−1, this gives a characterization of extremal chemical
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trees of fixed order n. While such a characterization is given in [21], we

show that their result is not valid for 7 values of n.

In the next section we fix some notations, while Section 3 is devoted to

observations that will motivate our characterization of connected chemi-

cal graphs with maximum arithmetic-geometric index value. Lemmas are

proved in Section 4 and then used in Section 5 to prove the main theorem.

2 Notations

For basic notions of graph theory that are not defined here, we refer to

Diestel [7]. Let G = (V,E) be a simple undirected graph. The order

n = |V | of G is its number of vertices and the size m = |E| of G is its

number of edges. We write G ≃ H if G and H are isomorphic. The degree

of v, denoted dv is the number of edges incident to v, and we say that v is

isolated if dv = 0.

A chemical graph is a graph whose vertices have degree at most 4. The

arithmetic-geometric index AG(G) of a graph G can be seen as a sum of

costs on the edges of G. In particular, if we deal with chemical graphs,

there is a limited number of possible values for the costs since they are

computed from the degrees of the endpoints of the edges. Let ci,j = i+j
2
√
ij

be the cost of an edge with endpoints of degree i and j. The 4 × 4 cost

matrix CAG associated with the arithmetic-geometric index of chemical

graphs is

CAG =



1 3
2
√
2

2√
3

5
4

3
2
√
2

1 5
2
√
6

3
2
√
2

2√
3

5
2
√
6

1 7
4
√
3

5
4

3
2
√
2

7
4
√
3

1


≈


1.0000 1.0607 1.1547 1.2500

1.0607 1.0000 1.0206 1.0607

1.1547 1.0206 1.0000 1.0104

1.2500 1.0607 1.0104 1.0000

 .

For a chemical graph G, let ni(G) (i = 0, . . . , 4) be the number of

vertices of degree i and let xi,j(G) (1 ≤ i ≤ j ≤ 4) be the number of edges

with extremities of degrees i and j in G. Then, since CAG is symmetric, we
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have

AG(G) =
∑

1≤i≤j≤4

ci,j xi,j(G).

In what follows, we say that a chemical graph G is extremal if AG(G) ≥
AG(G′) for all chemical graphs G′ with the same order and the same size

as G.

3 Preliminaries

We begin this section with the definition of a class of chemical graphs

which, as we will see, contains most of the extremal chemical graphs of

order n and size m.

Definition 1. Gn,m is the set of chemical graphs of order n and size m,

and such that n0(G) = 0, n2(G) + n3(G) ≤ 1 and all edges have at least

one endpoint of degree 4.

For example, using Nauty geng [12] or PHOEG [6] to enumerate all

chemical graphs having order n and size m, it can be observed that there

is only one graph Gn,m in Gn,m for (n,m) = (5, 4), (6, 10), (7, 7), (7, 9),

(8, 9), (9, 8), (9, 9) and (11, 11), and there are two graphs in G12,11, one

connected and one non-connected (see also Table 3 at the end of the paper).

These graphs are shown in Figure 2 and they were chosen because they

will appear in the proofs of the next sections.

G7,7 G8,9 G9,9

  the only graph 

in    6,10

G6,10

  the only graph 

in    7,7

  the only graph 

in    8,9

  the only connected

  graph in    12,11

  the only non-connected

graph in    12,11

  the only graph 

in    9,9

G11,11

  the only graph 

in    11,11

G7,9

  the only graph 

in    7,9

G9,8

  the only graph 

in    9,8

G5,4

  the only graph 

in    5,4

Figure 2. Examples of graphs in Gn,m for some pairs (n,m).

If all edges of a chemical graph G have at least one endpoint of degree 4,

then AG(G) = c1,4n1(G)+2c2,4n2(G)+3c3,4n3(G)+(m−n1(G)−2n2(G)−
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3n3(G)) and since 2m = n1(G) + 2n2(G) + 3n3(G) + 4n4(G), we have

AG(G) = c1,4n1(G) + 2c2,4n2(G) + 3c3,4n3(G) + 4n4(G)−m

= c1,4n1(G) + 2c2,4n2(G) + 3c3,4n3(G) + 4n4(G)

− 1
2 (n1(G) + 2n2(G) + 3n3(G) + 4n4(G))

= 3
4n1(G) + ( 3√

2
− 1)n2(G) + ( 21

4
√
3
− 3

2 )n3(G) + 2n4(G).

For a pair (n,m) of integers, let Tn,m be the set of quadruplets (t1, t2, t3, t4)

of positive integers such that
∑4

i=1 ti = n and
∑4

i=1 iti = 2m. Hence, we

have 2m−n = t2+2t3+3t4. Note that T1,0 = ∅ since
∑4

i=1 ti ≤
∑4

i=1 iti.

For (t1, t2, t3, t4) ∈ Tn,m, let f(t1, t2, t3, t4) be defined as

f(t1, t2, t3, t4) =
3
4 t1 + ( 3√

2
− 1)t2 + ( 21

4
√
3
− 3

2 )t3 + 2t4.

Clearly, if G is a chemical graph of order n and size m, with no isolated

vertex and in which all edges have at least one endpoint of degree 4, then

(n1(G), n2(G), n3(G), n4(G)) belongs to Tn,m and we have observed above

that

AG(G) = f(n1(G), n2(G), n3(G), n4(G)).

Let (t1, t2, t3, t4) be a quadruplet in Tn,m with t2 + t3 ≤ 1:

• if t2 = 1 then t3 = 0, which means that 2m − n = 3t4 + 1 and

2m = t1 + 2 + 4(n− t1 − 1), or equivalently, t1 = 4n−2m−2
3 ;

• if t3 = 1 then t2 = 0, which means that 2m − n = 3t4 + 2 and

2m = t1 + 3 + 4(n− t1 − 1), or equivalently, t1 = 4n−2m−1
3 ;

• if t2 = t3 = 0, then 2m − n = 3t4 and 2m = t1 + 4(n − t1), or

equivalently, t1 = 4n−2m
3 .

Hence in all cases, we deduce the following property.

Property 1. If (t1, t2, t3, t4) is a quadruplet in Tn,m with t2+ t3 ≤ 1, then

• t1 = ⌊ 4n−2m
3 ⌋

• t2 =

{
1 if 2m− n ≡ 1 mod 3

0 otherwise



797

• t3 =

{
1 if 2m− n ≡ 2 mod 3

0 otherwise

• t4 = ⌊ 2m−n
3 ⌋.

Corollary 1. There is at most one quadruplet (t1, t2, t3, t4) in Tn,m with

t2 + t3 ≤ 1.

Corollary 2. If G is a graph in Gn,m, then the quadruplet (t1, t2, t3, t4) =

(n1(G), n2(G), n3(G), n4(G)) is the unique one in Tn,m with t2 + t3 ≤ 1.

Proof. Let G be a graph in Gn,m. Then
∑4

i=1 ni(G) = n and
∑4

i=1 ini(G)

= 2m, which means that (t1, t2, t3, t4) = (n1(G), n2(G), n3(G), n4(G)) is a

quadruplet in Tn,m with t2 + t3 ≤ 1. By Corollary 1, it is unique.

Some connected extremal chemical graphs have all edges with at least

one endpoint of degree 4, but have n0(G) > 0 or n2(G)+n3(G) > 1. Seven

examples are shown in Figure 3 and we will prove that there are no other

ones.

H5,7 H5,9 H6,7 H7,8 H8,8H6,9H1,0

Figure 3. Seven connected extremal chemical graphs with all edges
having at least one endpoint of degree 4 and with n0(G) > 0
or n2(G) + n3(G) > 1.

Also, some connected extremal chemical graphs have at least one edge

with no endpoint of degree 4. Fifteen examples are shown in Figure 4 and

we will prove that there are no other ones.

For each pair (n,m) such that Hn,m appears in Figure 3 or 4, we can

enumerate all chemical graphs having order n and size m, using again

Nauty geng [12] or PHOEG [6]. Table 1 gives the number of such graphs

and it is therefore easy to verify that the following property holds.

Property 2. The 22 graphs in Figures 3 and 4 are the only extremal

graphs of their order and size.

The next property relates quadruplets in Tn,m with connected graphs

in Gn,m. Note that a connected chemical graph of order n has m edges,

with n− 1 ≤ m ≤ min{2n, n(n−1)
2 }.
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H3,3H3,2H2,1 H4,4 H4,5 H5,5 H5,6H4,6

H6,6 H6,8 H10,9H6,5 H7,6

H4,3 H5,8

Figure 4. Fifteen connected extremal chemical graphs with at least one
edge having no endpoint of degree 4.

Table 1. Number N of chemical graphs for some orders n and sizes m.

n 1 2 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 8 10
m 0 1 2 3 3 4 5 6 5 6 7 8 9 5 6 7 8 9 6 8 8 9
N 1 1 1 1 3 2 1 1 6 6 4 2 1 14 20 22 20 15 38 82 188 883

Property 3. Let n and m be two positive integers such that n− 1 ≤ m ≤
min{2n, n(n−1)

2 } and (n,m) is not one of the 22 pairs for which there is

a graph Hn,m in Figure 3 or 4. If (t1, t2, t3, t4) ∈ Tn,m and t2 + t3 ≤ 1,

then Gn,m contains at least one connected graph G with ni(G) = ti (i =

1, 2, 3, 4).

Proof. Consider a pair (n,m) of positive integers such that n − 1 ≤ m ≤
min{2n, n(n−1)

2 } and let (t1, t2, t3, t4) be any quadruplet in Tn,m. Note

that n ≥ 2 since T1,0 = ∅. According to Property 1 and Corollary 2, a

graph in Gn,m with ni(G) = ti (i = 1, 2, 3, 4) must have

• n1(G) = ⌊ 4n−2m
3 ⌋

• n2(G) =

{
1 if 2m− n ≡ 1 mod 3

0 otherwise

• n3(G) =

{
1 if 2m− n ≡ 2 mod 3

0 otherwise

• n4(G) = ⌊ 2m−n
3 ⌋.

Moreover, in order to impose that all edges in G have at least one endpoint

of degree 4, we must have

• x1,1(G) = x1,2(G) = x1,3(G) = x2,2(G) = x2,3(G) = x3,3(G) = 0,
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• x1,4(G)=n1(G), x2,4(G)=2n2(G), x3,4(G)=3n3(G),

x4,4(G)=m−n1(G)−2n2(G)−3n3(G).

The following algorithm builds such a connected graph G, where Vi (i =

1, . . . , 4) is the set of vertices of degree i in G. It is illustrated in Figure 5.

1. Start from a graph of order n and size 0. Put ni(G) vertices in Vi,

i = 1, . . . , 4;

2. if 2m − n ≡ 1 mod 3 then connect the vertex in V2 to 2 vertices in

V4;

3. if 2m − n ≡ 2 mod 3 then connect the vertex in V3 to 3 vertices in

V4;

4. add n4(G)−n2(G)−2n3(G)−1 edges that link pairs of vertices in V4

so that the graph induced by V2 ∪ V3 ∪ V4 is a tree;

5. add m − n1(G) − n2(G) − n3(G) − n4(G) + 1 edges that link pairs

of vertices in V4 so that no vertex in V4 is incident to more than 4

edges;

6. add edges linking each vertex of V1 to a vertex of V4 so that every

vertex in V4 has degree 4.

Steps 2 and 3 add the required number of edges with one endpoint of degree

4 and the other of degree 2 or 3, and Step 6 adds the required number of

edges with one endpoint of degree 4 and the other of degree 1. Step 4 adds

n4(G)−n2(G)−2n3(G)−1 edges linking pairs of vertices in V4, while Step

5 adds m−n1(G)−n2(G)−n3(G)−n4(G)+1 such edges. In total we will

therefore have m−n1(G)−2n2(G)−3n3(G) edges linking pairs of vertices

of V4, which is the required number of edges with both endpoints of degree

4. It remains to prove that such a construction is always possible. For this

purpose, the following constraints must be satisfied :

• 2n2(G) ≤ n4(G) and 3n3(G) ≤ n4(G) to ensure that Steps 2 and 3

can be performed;

• m−n1(G)−2n2(G)−3n3(G) ≤ n4(G)(n4(G)−1)
2 to avoid creating par-

allel edges in Steps 4 and 5;
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• n1(G) ≤ 4n4(G), to ensure that Step 6 can be performed.

It is easy to check that these conditions are satisfied for all pairs (n,m)

with n ≤ 13 and n− 1 ≤ m ≤ min{2n, n(n−1)
2 }, except for the 22 pairs for

which we have a graph Hn,m in Figures 3 or 4. So assume n ≥ 14. We

then have

• n4(G) ≥ 2m−n−2
3 ≥ n−4

3 > 3 ≥ max{2n2(G), 3n3(G)} (since n1(G)+

n2(G) ≤ 1).

• n4(G)(n4(G)−1)

2
−x4,4(G) ≥ 1

2

(
2m−n−2

3

(
2m−n−2

3
−1

))

−
(
m−4n−2m−2

3

)
=

4m(m− n− 11) + n2 + 31n− 2

18

≥ 4(n−1)(n−1−n−11)+n2+31n−2

18

=
n2 − 17n+ 46

18
> 0.

• 4n4(G)− n1(G) ≥ 4(2m−n)
3 − 4n−2m+2

3 = 10m−8n−2
3 ≥ 10(n−1)−8n−2

3

= 2n
3 − 4 > 0.

In summary, G has the right number of edges of each type and thanks

to Step 4, it is connected.

The algorithm in the above proof is illustrated in Figure 5 for n =

m = 17. In such a case, we have n1(G) = 11, n2(G) = 0, n3(G) = 1,

n4(G) = 5 and x4,4(G) = 3. In Step 1, we have represented the vertices

of V1 with the white color, while the vertex in V3 is grey and the vertices

in V4 are black. Step 3 links the grey vertex to 3 black vertices. Step 4

adds 2 edges between black vertices. Step 5 adds the last edge between

two black vertices and Step 6 adds the edges between the white and the

black vertices. Notice that Step 4 was crucial to obtain a connected graph.

Indeed another set of 3 edges linking black vertices could have produced a

non-connected graph in Gn,m as illustrated at the bottom right of Figure 5.

The main objective of this paper is to prove the following theorem.
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Step 1
Step 3 Step 4

Step 5 Step 6 a non-connected graph in

Figure 5. Illustration of the algorithm in the proof of Theorem 1

Theorem 1. Let G be a connected chemical graph of order n and size m.

If G is extremal, then either G is one of the 22 graphs Hn,m of Figures 3

and 4, or G belongs to Gn,m.

To prove this theorem, we need some tools which are given in the next

section.

4 Tools

Lemma 1. Let G be a connected extremal chemical graph. Assume that

G has a vertex u of degree 2 where v and w are its two neighbors.

(a) If v and w are nonadjacent, then none of them has degree 3.

(b) If v and w are adjacent, dv≥3 and dw≤3, then no vertex nonadjacent

to w has degree 2 or 3.

Proof.

(a) Assume that v and w are nonadjacent, and that one of them, say v,

has degree 3. Let G′ be the graph obtained from G by replacing uw

with vw. Then, with i = dw and j = dx, where x is any neighbor of

v other than u, we have

AG(G′)−AG(G) ≥ c1,4 − c2,3 + min
i=1,...4

(c4,i − c2,i) + 2 min
j=1,...4

(c4,j−c3,j)

≈ 0.1479 > 0.

(b) Assume that v and w are adjacent with dv ≥ 3 and dw ≤ 3, and let

x be a vertex nonadjacent to w such that dx = 2 or 3. Let G′ be the

graph obtained from G by replacing uw with xw. Then, with i = dv,

j = dw, k = dx and ℓ = dy, where y is any neighbor of x, we have
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AG(G′)−AG(G) ≥ min
i=3,4

(c1,i − c2,i)

+ min
k=2,3

(
min
j=2,3

(cj,k+1−cj,2)+k min
ℓ=1,...,4

(cℓ,k+1−cℓ,k)

)
≈ 0.0128 > 0.

In both cases, G′ is connected and AG(G′) > AG(G), which means that G

is not an extremal, connected chemical graph, a contradiction.

Lemma 2. A connected extremal chemical graph does not contain a chain

v1, v2, . . . , vr as partial subgraph with v1 nonadjacent to vr−1 and v2 non-

adjacent to vr in G and with dv1 < dvr , dv2 ≤ 3, and dvr−1 = 4.

Proof. Let G′ be the graph obtained from G by replacing the edges v1, v2
and vr−1, vr by v1, vr−1 and v2, vr. Then, with dv1

= i, dv2 = j and

dvr = k, we have

AG(G′)− AG(G) ≥ min
i=1,2,3

min
j=2,3

min
k=i+1,...,4

(ci,4 + cj,k − ci,j − c4,k) ≈ 0.0207 > 0.

Since G′ is connected and AG(G′) > AG(G), this means that G is not an

extremal, connected chemical graph, a contradiction.

The next lemmas have a label (i, j) with i < j to indicate that they

state that a connected extremal chemical graph G has xi,j(G) = 0, with a

few exceptions.

Lemma (1,1). The only connected extremal chemical graph G with

x1,1(G) > 0 is H2,1.

Proof. Let G be a connected extremal chemical graph with two adjacent

vertices of degree 1. Since G is connected, it does not contain any other

vertex, which means that G ≃ H2,1.

Lemma (2,2). The only connected extremal chemical graphs G with

x2,2(G)>0 are H3,3, H4,4 and H5,5.

Proof. Let u and v be two adjacent vertices of degree 2 in a connected

extremal chemical graph G.
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• Assume that u and v have a common neighbor w. If w has degree

2, then G ≃ H3,3. So suppose w has degree at least 3. We know

from Lemma 1(b) that all other vertices in the graph have degree

1 or 4. If they have all degree 1, then G ≃ H4,4 (if w has degree

3) or G ≃ H5,5 (if w has degree 4). So assume w is adjacent to a

vertex x of degree 4. If x is adjacent to a vertex y ̸= w of degree 4,

then Lemma 2 with the partial chain u, v, w, x, y contradicts the fact

that G is a connected extremal chemical graph. Hence, all neighbors

y ̸= w of x have degree 1. Similarly, if w has a second neighbor z of

degree 4, then all neighbors of z, except w, have degree 1. There are

therefore only three possible cases:

– if w has degree 3 then AG(G) ≈ 7.80 < 8.12 ≈ AG(G7,7) (see

Figure 2);

– if w has degree 4 and a neighbor of degree 1, then AG(G) ≈
9.12 < 9.24 ≈ AG(H8,8) (see Figure 3);

– if w has degree 4 and a second neighbor of degree 4, then

AG(G) ≈ 12.62 < 12.78 ≈ AG(G11,11) (see Figure 2);

In all cases G is not a connected extremal chemical graph, a contra-

diction.

• Assume that u and v have no common neighbor. Let x ̸= v (resp.

y ̸= u) be the second neighbor of u (resp. v). Let G′ be the graph

obtained from G by replacing xu with xv. Then, with i = dx and

j = dy, we have

AG(G′)− AG(G) ≥ c1,3 − c2,2 + min
i=1,...4

(c3,i − c2,i) + min
j=1,...4

(c3,j − c2,j)

≈ 0.0541 > 0.

Hence, G is not extremal, a contradiction.

Lemma (1,2). The only connected extremal chemical graphs G with

x1,2(G) > 0 are H3,2 and H6,5.

Proof. Let G be a connected extremal chemical graph with two adjacent

vertices u and v such that du = 1 and dv = 2, and let w be the other
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neighbor of v. If w has degree 1 then G ≃ H3,2. We know from Lemma

(2,2) that w does not have degree 2, and from Lemma 1(a) that w does

not have degree 3. Hence, dw = 4. If w has three neighbors of degree 1,

then G ≃ H6,5; otherwise, w has a neighbor x ̸= v of degree at least 2 and

Lemma 2 with the partial chain u, v, w, x contradicts the fact that G is a

connected extremal chemical graph.

Lemma (3,3). The only connected extremal chemical graphs G with

x3,3(G) > 0 are H4,5, H4,6, H5,8 and H6,8.

Proof. Let G be a connected extremal chemical graph with two adjacent

vertices u and v of degree 3. Let us first show that all vertices x ̸= u, v are

either adjacent to both u and v, or to neither. If this is not the case then,

we consider two cases.

• If u and v have a common neighbor w, then let x ̸= v be a vertex

adjacent to u but not to v, and let y ̸= u be a vertex adjacent to v

but not to u. Then G is not extremal. Indeed, let G′ be the graph

obtained from G by replacing xu with xv. Then, with i = dx, j = dy
and k = dw, we have

AG(G′)− AG(G) ≥ c2,4 − c3,3 + min
i=1,2,3,4

(c4,i−c3,i)

+ min
j=1,2,3,4

(c4,j−c3,j) + min
k=2,3,4

(c4,k+c2,k−2c3,k)

≈ 0.0593 > 0.

• If u and v have no common neighbor, then there are two possible

cases.

– if all neighbors x ̸= u, v of u and v have degree 1, then G is not

extremal since AG(G) ≈ 5.62 < 5.87 ≈ AG(H6,5) (see Figure 4);

– if at least one of u, v, say u, has a neighbor x ̸= v of degree

at least 2, then G is not extremal. Indeed, let y be the other

neighbor of u and let G′ be the graph obtained from G by

replacing yu with yv. Then, with i = dx, j = dy and k = dz,
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where z is any neighbor of v other than u, we have

AG(G′)−AG(G) ≥ c2,4−c3,3 + min
i=2,3,4

(c2,i−c3,i)

+ min
j=1,2,3,4

(c4,j−c3,j) + 2 min
k=1,2,3,4

(c4,k−c3,k)

≈ 0.0089 > 0.

Hence, let x, y the the two common neighbors of u and v. We next show

that at least one of x, y has degree 4, or G is H4,5 or H4,6.

• If x has degree 3, then x is adjacent to y since xu is an edge linking

two vertices of degree 3 and we have seen that this implies that y

cannot be adjacent to exactly one of u, x. Hence, either G ≃ H4,6,

or y has degree 4.

• If x has degree 2, then we know from the previous case that y is of

degree 2 or 4. Hence, either G ≃ H4,5, or y has degree 4.

So, without loss of generality, assume dx = 4. Let W = V \ {u, v, x, y}
where V is the vertex set of G. Assume that W contains at least one

vertex w in W of degree at least 3.

• If dw = 4, then let z be a vertex adjacent to w but not to x and let

G′ be the graph obtained from G by replacing the edges ux and wz

by uw and xz. Clearly, AG(G′) = AG(G), which means that G′ is also

a connected extremal chemical graph. But u and v are two adjacent

vertices in G′, and they are both of degree 3, while x is adjacent to

u but not to v. We have shown above that this is impossible.

• If dw = 3, then w is adjacent to x. Indeed, if this is not the case,

then let z be any vertex in W adjacent to w and let G′ be the graph

obtained from G by replacing the edges ux and wz by uz and xw.

Clearly, AG(G′) = AG(G) and u, v are two adjacent vertices of degree

3 in G′ with z adjacent to u but not to v, a contradiction. Moreover,

all neighbors of w in W are adjacent to x. Indeed, assume that a

vertex z ∈ W is adjacent to w but not to x. Then dz ≤ 2 (since

vertices of degree 3 in W are adjacent to x and no vertex in W has

degree 4), and Lemma 2 with the partial chain z, w, x, u shows that

G is not extremal, a contradiction. In summary, we have shown that
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w can have only one neighbor in W (else x would be of degree at

least 5), which means that w is adjacent to y. We know from Lemma

1(b) that the neighbor z of w in W cannot be of degree 2 (since u

has degree 3 and is not adjacent to w). Hence, dz = 3, which means

that w, x and y are its three neighbors (as z, x, y are the 3 neighbors

of w). Hence, AG(G) ≈ 10.08 < 10.28 ≈ AG(G6,10) (see Figure 2), a

contradiction.

Hence, all vertices in W have degree 1 or 2. At least one vertex in W has

degree 2, else

• if dy = 3, then x is adjacent to y since uy is an edge linking two

vertices of degree 3 and we have seen that this implies that x cannot

be adjacent to exactly one of u, y. Hence, AG(G) ≈ 7.28 < 7.36 ≈
AG(H5,7) (see Figure 3);

• if dy = 4, then eitherG ≃ H6,8, or AG(G) ≈ 10.04 < 10.12 ≈ AG(G8,9)

(see Figure 2).

So let z be a vertex of degree 2 in W . We know from Lemmas (2,2)

and (1,2) that z is adjacent to x and y, which implies that y has degree 4,

else u and y are two adjacent vertices of degree 3 and z is adjacent to y

but not to u, which is impossible. There are therefore three possible cases:

• if W has two vertices of degree 2, then AG(G) ≈ 9.28 < 9.40 ≈
AG(H6,9) (see Figure 3);

• if W has one vertex of degree 2 and x is not adjacent to y, then

AG(G) ≈ 9.66 < 9.78 ≈ AG(G7,9) (see Figure 2);

• if W has one vertex of degree 2 and x is adjacent to y, then G ≃
H5,8.

Lemma (1,3). The only connected extremal chemical graphs G with

x1,3(G) > 0 are H4,3, H4,4, H6,6, H7,6 and H10,9.

Proof. Let G be a connected extremal chemical graph with two adjacent

vertices u and v such that du = 1 and dv = 3. If v has a neighbor w of

degree 2, we know from Lemma 1(a) that the second neighbor x of w is
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adjacent to v. Then, either G ≃ H4,4 or it follows from Lemmas (2,2) and

(3,3) that dx = 4. If x has two neighbors of degree 1, then G ≃ H6,6, else

x has a neighbor y ̸= v, w such that dy ≥ 2, and Lemma 2 with the partial

chain u, v, x, y shows that G is not extremal, a contradiction.

So assuming that G is not H4,4 or H6,6, we know that no neighbor of v

has degree 2. It then follows from Lemma (3,3) that they all have degree

1 or 4. If v has a neighbor x of degree 4, then all neighbors y ̸= v of x that

are also not adjacent to v have degree 1, else Lemma 2 with the partial

chain u, v, x, y shows that G is not extremal. Hence there are only 4 cases:

• if all neighbors of v have degree 1, then G ≃ H4,3;

• if v has only one neighbor of degree 4, then G ≃ H7,6;

• if v has two non-adjacent neighbors of degree 4, then G ≃ H10,9;

• if v has two adjacent neighbors of degree 4, then AG(G) ≈ 9.18 <

9.24 ≈ AG(H8,8) (see Figure 3).

Lemma (2,3). The only connected extremal chemical graphs G with

x2,3(G) > 0 are H4,4, H4,5, H5,6 and H6,6.

Proof. Let G be a connected extremal chemical graph with two adjacent

vertices u and v such that du = 2 and dv = 3. We know from Lemma

1(a) that the second neighbor w of u is adjacent to v. If G is not equal to

H4,4 or H4,5, it follows from Lemmas (2,2) and (3,3) that w has degree 4.

Also, it follows from Lemmas (1,3) and (3,3) that if G is not H6,6, then

the third neighbor x ̸= u,w of v has degree 2 or 4.

• If dx = 2, then x is adjacent to w since, by Lemma 1(a), the second

neighbor of x must be adjacent to v. It follows from Lemma 1(b)

that all vertices other than u, v, w, x have degree 1 or 4. Hence, the

fourth neighbor y ̸= u, v, x of w has degree 1 or 4. If dy = 1 then

G ≃ H5,6. If dy = 4, then there are two cases:

– if y has 3 neighbors of degree 1, then AG(G) ≈ 9.92 < 10.12 ≈
AG(G8,9) (see Figure 2);

– if y has a neighbor z ̸= w of degree 4, then Lemma 2 with

the partial chain u, v, w, y, z shows that G is not extremal, a

contradiction.
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• If dx = 4, then let y ̸= v, w be a neighbor of x. It follows from

Lemmas 1(b) and 2 with the partial chain u, v, x, y that dy = 1. Let

G′ be the graph obtained from G by replacing the edges uw and xy

by ux and wy. Clearly, AG(G′) = AG(G), which means that G′ is

also a connected extremal chemical graph and since w is now the

neighbor of v of degree 4 that is not adjacent to u, this means that

all neighbors of w different from v, x have degree 1. Hence,

– if w is adjacent to x then AG(G) ≈ 8.85 < 8.86 ≈ AG(H7,8) (see

Figure 3);

– if w is not adjacent to x then AG(G) ≈ 10.35 < 10.5 ≈ AG(G9,9)

(see Figure 2).

5 Characterization of extremal chemical

graphs

In this section, we characterize extremal chemical graphs of order n and

size m ≥ n−1. We first consider the connected extremal chemical graphs,

and then the non-connected ones. We conclude the section with a property

of extremal chemical graphs or order n and size m ≤ n− 2.

We start with the proof of Theorem 1 that states that a connected ex-

tremal chemical graph of order n and size m necessarily belongs to Gn,m,

except for 22 pairs (n,m).

Proof of Theorem 1. Observe first that if (t1, t2, t3, t4) is a quadruplet

in Tn,m with t2 + t3 > 1. Then there is (s1, s2, s3, s4) ∈ Tn,m such that

s2 + s3 < t2 + t3 and f(s1, s2, s3, s4) > f(t1, t2, t3, t4). Indeed:

• If t2 ≥ 2 then set s1 = t1 + 1, s2 = t2 − 2, s3 = t3 + 1 and s4 = t4.

We have,
∑4

i=1 si =
∑4

i=1 ti = n and
∑4

i=1 isi =
∑4

i=1 iti = 2m,

which means that (s1, s2, s3, s4) ∈ Tn,m. Moreover,

f(s1, s2, s3, s4)− f(t1, t2, t3, t4) = c1,4 − 4c2,4 + 3c3,4 ≈ 0.0384 > 0.

• if t3 ≥ 2 then set s1 = t1, s2 = t2+1, s3 = t3−2 and s4 = t4+1. We
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have
∑4

i=1 si =
∑4

i=1 ti = n and
∑4

i=1 isi =
∑4

i=1 iti = 2m, which

means that (s1, s2, s3, s4) ∈ Tn,m. Moreover,

f(s1, s2, s3, s4)− f(t1, t2, t3, t4) = 2c2,4 − 6c3,4 + 4 ≈ 0.0591 > 0.

• if t2 ≥ 1 and t3 ≥ 1, then set s1 = t1 + 1, s2 = t2 − 1, s3 = t3 − 1

and s4 = t4 + 1. Hence,
∑4

i=1 si =
∑4

i=1 ti = n and
∑4

i=1 isi =∑4
i=1 iti = 2m, which means that (s1, s2, s3, s4) ∈ Tn,m. Moreover,

f(s1, s2, s3, s4)−f(t1, t2, t3, t4) = c1,4−2c2,4−3c3,4+4 ≈ 0.0975 > 0.

Note that if s2 + s3 > 1, then we can repeat the same reasoning. We

can therefore conclude that if (t1, t2, t3, t4) is a quadruplet in Tn,m with

t2 + t3 > 1, then there is (s1, s2, s3, s4) ∈ Tn,m such that s2 + s3 ≤ 1 and

f(s1, s2, s3, s4) > f(t1, t2, t3, t4).

So let G be a connected extremal chemical graph of order n and size

m, and suppose that G is not one of the 22 graphs of Figures 3 and 4. It

follows from the lemmas of the previous section that all edges in G have

at least one endpoint of degree 4. Since n0(G) = 0 (else G ≃ H1,0), we

have AG(G) = f(n1(G), n2(G), n3(G), n4(G)). We have shown above that

if n2(G) + n3(G) > 1, then there is a quadruplet (s1, s2, s3, s4) in Tn,m

such that s2+s3 ≤ 1 and f(s1, s2, s3, s4) > f(n1(G), n2(G), n3(G), n4(G)).

Hence, if n2(G) + n3(G) > 1, then it follows from Property 3 that there

is a connected chemical graph G′ in Gn,m with AG(G′) = f(s1, s2, s3, s4) >

f(n1(G), n2(G), n3(G), n4(G)) = AG(G), a contradiction. We can there-

fore conclude that n2(G) + n3(G) ≤ 1, which implies that G belongs to

Gn,m.

It follows from Theorem 1 and Corollary 2 that if 1 ≤ n− 1 ≤ m and

(n,m) is not a pair for which there is a graph Hn,m in Figure 3 or 4 and

if there exists a connected extremal graph of order n and size m, then all

graphs in Gn,m are extremal and their arithmetic-geometric index is easy

to compute since we know the number of edges with endpoints of degree i

and j for all 1 ≤ i ≤ j ≤ 4. We can therefore state the following corollary.
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Corollary 3. Let G be a connected extremal chemical graph. If G is not

one of the 22 graphs Hn,m in Figure 3, then AG(G) = UBn,m, where

UBn,m =
2n+ 5m

6
+


0 if 2m− n ≡ 0 mod 3,
3√
2
− 13

6 if 2m− n ≡ 1 mod 3,
21
4
√
3
− 37

12 if 2m− n ≡ 2 mod 3.

Proof. Theorem 1 shows that G belongs to Gn,m. Let us compute AG(G).

• If 2m − n ≡ 0 mod 3, then 4n − 2m ≡ 0 mod 3, which means that

n1(G)= 4n−2m
3 , n2(G)=n3(G)=0 and n4(G)= 2m−n

3 . Hence, AG(G) =
3
4
4n−2m

3 + 2 2m−n
3 = 2n+5m

6 .

• If 2m−n ≡ 1 mod 3, then 4n−2m ≡ 2 mod 3, which means that

n1(G)= 4n−2m−2
3 , n2(G)=1, n3(G)=0 and n4(G)= 2m−n−1

3 . Hence,

AG(G) = 3
4
4n−2m−2

3 + ( 3√
2
− 1) + 2 2m−n−1

3 = 2n+5m−13
6 + 3√

2
.

• If 2m−n ≡ 2 mod 3, then 4n−2m ≡ 1 mod 3, which means that

n1(G)= 4n−2m−1
3 , n2(G)=0, n3(G)=1 and n4(G)= 2m−n−2

3 . Hence,

AG(G) = 3
4
4n−2m−1

3 + ( 21
4
√
3
− 3

2 ) + 2 2m−n−2
3 = 2n+5m

6 + 21
4
√
3
− 37

12 .

As shown in Table 2, if (n,m) is one of the pairs for which there is a

graph Hn,m in Figure 3 or 4, then AG(Hn,m) < UBn,m. Hence, the con-

nected graphs in Gn,m are the only connected chemical graphs G of order

n and size m with AG(G) = UBn,m. The sharp upper bound AG(Hn,m) for

the 22 pairs (n,m) that are exceptions is slightly smaller than UBn,m. We

give in Table 2 the values of this upper bound as well as the differences

between UBn,m and AG(Hn,m). We observe that the largest difference is 1
2

while the smallest is approximately equal to 0.0384.

When m = n− 1, Corollary 3 gives an upper bound for chemical trees.

More precisely, if T is a chemical tree of order n, then

AG(T ) ≤ UBn,n−1 =
7n− 5

6
+


0 if n ≡ 2 mod 3,
3√
2
− 13

6 if n ≡ 0 mod 3,
21
4
√
3
− 37

12 if n ≡ 1 mod 3.

and this bound is reached for all n, except for n = 1, 2, 3, 4, 6, 7, 10 since
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Table 2. Sharp upper bound AG(Hn,m) on the arithmetic-geometric in-
dex of graphs of order n and size m, for the 22 pairs (n,m)
not included in Corollary 3, and difference with UBn,m.

n m AG(Hn,m) UBn,m − AG(Hn,m)
1 0 0 − 11

4 + 21
4
√
3

≈ 0.2811

2 1 1 1
2 ≈ 0.5000

3 2 3√
2

1
2 ≈ 0.5000

3 3 3 1
2 ≈ 0.5000

4 3 6√
3

3
4 − 3

4
√
3

≈ 0.3170

4 4 1 + 2√
3
+ 5√

6
3
2 + 3√

2
− 2√

3
− 5√

6
≈ 0.4254

4 5 1 + 10√
6

9
2 − 10√

6
≈ 0.4175

4 6 6 − 11
4 + 21

4
√
3

≈ 0.2811

5 5 7
2 + 3√

2
− 3

4 − 3√
2
+ 21

4
√
3

≈ 0.1598

5 6 5
4 + 3√

2
+ 7

4
√
3
+ 5√

6
13
4 − 7

4
√
3
− 5√

6
≈ 0.1984

5 7 1 + 9√
2

13
2 − 9√

2
≈ 0.1360

5 8 2 + 3√
2
+ 7√

3
13
4 − 3√

2
− 7

4
√
3

≈ 0.1183

5 9 3 + 21
2
√
3

4 + 3√
2
− 21

2
√
3

≈ 0.0591

6 5 15
4 + 3√

2
1
4 ≈ 0.2500

6 6 5
2 + 3

2
√
2
+ 15

4
√
3
+ 5

2
√
6

9
2 − 3

2
√
2
− 15

4
√
3
− 5

2
√
6

≈ 0.2537

6 7 7
2 + 6√

2
5
4 − 6√

2
+ 21

4
√
3

≈ 0.0384

6 8 9
2 + 7√

3
2 + 3√

2
− 7√

3
≈ 0.0799

6 9 17
4 + 3√

2
+ 21

4
√
3

21
4 − 3√

2
− 21

4
√
3

≈ 0.0976

7 6 15
4 + 4√

3
+ 7

4
√
3

1
2 − 1

2
√
3

≈ 0.2113

7 8 5
2 + 9√

2
13
2 − 9√

2
≈ 0.1360

8 8 5 + 6√
2

5
4 − 6√

2
+ 21

4
√
3

≈ 0.0384

10 9 15
2 + 11

2
√
3

1
4 − 1

4
√
3

≈ 0.1057

H1,0, H2,1, H3,2, H4,3, H6,5, H7,6 and H10,9 appear in Figure 4. The same

upper bound is given in [21], but the authors did not mention the 7 excep-

tions. For example, they state that when n ≡ 1 mod 3, there are n−1
3 − 1

vertices of degree 4, and one vertex of degree 3 that must be adjacent to

vertices of degree 4. This is clearly impossible for n = 1, 4, 7 and 10.

We now show that if we remove the constraint that extremal chemical

graphs must be connected, then no better value of AG can be obtained.
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Theorem 2. Let G be a non-connected chemical graph of order n and size

m ≥ n− 1. If G is extremal, then G belongs to Gn,m.

Proof. Assume that the theorem is not valid and let G be a non-connected

extremal chemical graph of order n and size m ≥ n − 1 that is a coun-

terexample with the smallest number of connected components. It follows

from Property 2 that (n,m) is not one of the 22 pairs for which there is

a graph Hn,m in Figure 3 or 4. Let G1, . . . , Gk (k ≥ 2) be the connected

components of G, and let Ni and Mi be the order and the size of Gi,

respectively. Clearly, AG(G) =
∑k

i=1 AG(Gi). Hence, since G is extremal,

every Gi is a connected extremal graph of order Ni and size Mi. At least

one Gi, say G1, contains a cycle C. If C contains an edge xy with dx = 4

and dy ≥ 3 then:

• if G2 contains only one vertex z then let G′ be the graph obtained

from G by replacing the edge xy by the edge xz. Since y belongs

to a cycle, at least one of its neighbors z ̸= x has degree at least 2.

Hence, with i = dy, j = dz and k = du, where u is any neighbor of

y other than x and w, we have

AG(G′)−AG(G) ≥ c1,4 + min
i=3,4

(
min

j=2,3,4
(ci−1,j−ci,j)− c4,i

)
+ min

i=3,4

(
(i−2) min

k=1,2,3,4
(ci−1,k−ci,k)

)
≈ 0.0193 > 0.

Hence G is not extremal, a contradiction.

• if G2 contains at least two vertices, then consider any edge zw in

G2 and assume without loss of generality that dz ≤ dw. Let G′ be

the graph obtained from G by replacing the edges xy and zw by the

edges xz and yw. Then, with i = dy, j = dz and k = dw, we have

AG(G′)−AG(G) ≥ min
i=3,4

min
j=1,2,3,4

min
k=j,...,4

(c4,j + ci,k − c4,i − cj,k) = 0.

Moreover, all cases where AG(G′) = AG(G) have dx = dw or/and

dy = dz. Hence, G′ has a smaller number of connected components

than G, while ni(G) = ni(G
′) for 0 ≤ i ≤ 4 and xi,j(G) = xi,j(G

′)
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for 1 ≤ i ≤ j ≤ 4. It follows that G′ is also extremal, and either both

of G and G′ belong to Gn,m, or none of them. If G′ is connected,

then we know from Theorem 1 that G′ (and hence also G) belongs to

Gn,m, which means that G is not a counterexample to the theorem, a

contradiction. If G′ is not connected, then G is not a counterexample

to the theorem with the smallest number of connected components,

a contradiction.

Note that if G1 belongs to GN1,M1 , then the cycle C contains two

adjacent vertices of degree 4 (since vertices of degree 1 do not belong to a

cycle and there is at most one vertex of degree 2 or 3 in G1). Also, the 8

graphs H5,6, H5,7, H5,8, H5,9, H6,6, H6,7, H6,8, H6,9, in Figures 3 and 4

which have a cycle and an edge linking a vertex of degree 4 to a vertex of

degree at least 3, have such an edge in a cycle. Hence, x3,4(Gi)+x4,4(Gi) =

0 for all connected components Gi of G with a cycle.

Suppose now that G2 contains an edge xy with dx = 4 and dy ≥ 3.

Consider any edge zw on C and assume without loss of generality that

dz ≤ dw. Let G
′ be the graph obtained from G by replacing the edges xy

and zw by the edges xz and yw. Then, with i = dy, j = dz and k = dw,

we have

AG(G′)−AG(G) ≥ min
i=3,4

min
j=2,3,4

min
k=j,...,4

(c4,j + ci,k − c4,i − cj,k) = 0.

As above, the only cases where AG(G′) = AG(G) have dx = dw or/and

dy = dz. Hence, either G is not a counterexample to the theorem, or it is

not a counterexample with the smallest number of connected components,

a contradiction.

Hence, we know that x3,4(G) + x4,4(G) = 0. We now prove that no

connected component of G can have more than 9 vertices. So assume G

has a connected component H of order N ≥ 10 and size M . We know

from Theorem 1 that there are two possible cases:

• if H is one of the 22 graphs in Figures 3 and 4, then H ≃ H10,9,

which implies x3,4(G)≥x3,4(H)=2, a contradiction.

• if H belongs to GN,M , then n3(H) = 0 else x3,4(G) ≥ x3,4(H) = 3,
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Hence,

x4,4(H) ≥ m− n1(H)− 2 ≥
⌈
m− 4n− 2m

3
− 2
⌉
=
⌈5m− 4n− 6

3

⌉
.

The four cases here below show that x3,4(G) + x4,4(G) ≥ x3,4(H) +

x4,4(H) ≥ 1, a contradiction.

– If M = N − 1 = 9 then x3,4(H) = 2.

– If M = N − 1 = 10, then x4,4(H) = 2.

– If M = N − 1 ≥ 11, then x4,4(H) ≥ ⌈N−11
3 ⌉ ≥ 1.

– If M ≥ N ≥ 10 then x4,4(H) ≥ N−6
3 > 1.

We thus know that 3 ≤ N1 ≤ 9, N1 ≤ M1 ≤ min{2N1,
N1(N1−1)

2 } and

G1 has no edge linking a vertex of degree 4 to a vertex of degree at least 3.

It is easy to check that there are exactly 7 such graphs, namely, H3,3, H4,4,

H4,5, H4,6, H5,5, H7,8 and H8,8 (see Figures 3 and 4). Also, 1 ≤ N2 ≤ 9,

N2 − 1 ≤ M2 ≤ min{2N2,
N2(N2−1)

2 } and G2 has no edge linking a vertex

of degree 4 to a vertex of degree at least 3. There are only 14 such graphs,

namely, the 7 graphs mentioned above, and H1,0, H2,1, H3,2, H4,3, G5,4,

H6,5 and G9,8 (see Figures 2, 3 and 4).

Let in,m be equal to AG(G), whereG is any connected extremal chemical

graph of order n and size m. It is easy to check by enumeration that

iN1,M1
+ iN2,M2

< iN1+N2,M1+M2
for the 7 pairs (N1,M1) and the 14

pairs (N2,M2). Hence by removing G1 and G2 and replacing these two

connected components of G by a connected extremal chemical graph of

order N1+N2 and size M1+M2, one gets a graph G′ with AG(G) < AG(G′),

which means that G is not extremal, a contradiction.

Corollary 2 shows that all graphs in Gn,m have the same AG value,

which means that they are all extremal if (n,m) is not a pair appear-

ing in Figures 3 or 4. Hence, putting together Property 2 and Theorems

1 and 2, we get the following characterization of extremal chemical graphs.

Theorem (Characterization of extremal chemical graphs). A chemical

graph G of order n and size m ≥ n− 1 is extremal if and only if G is one
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of the 22 graphs in Figures 3 and 4 or G belongs to Gn,m.

We indicate in Table 3 the number of connected and non-connected

extremal chemical graphs of order n and size m for 1 ≤ n ≤ 14 and

n − 1 ≤ m ≤ min{2n, n(n−1)
2 }. For example, for n = 12 and m = 11, we

see that there are exactly one connected and one non-connected extremal

chemical graph and these two graphs are represented at the bottom of

Figure 2. The 22 pairs (n,m) for whichHn,m is the only extremal graph are

shown in gray boxes. We observe that the number of connected extremal

chemical graphs grows exponentially, but not in a monotonic way.

The proof of Theorem 2 shows that if a non-connected chemical graphG

contains a cycle, then there is a chemical graph G′ having fewer connected

components than G and such that AG(G) ≤ AG(G′). This leads to the

following corollary.

Corollary 4. For all n and m with 0 ≤ m ≤ n − 2 there is a chemical

forest G∗ which is a disjoint union of extremal chemical trees and such

that AG(G) ≤ AG(G∗) for all chemical graphs G of order n and size m.

6 Conclusion

We have determined a sharp upper bound on the value of the arithmetic-

geometric index of chemical graphs of order n and size m ≥ n− 1, and we

have characterized the chemical graphs that reach the bound. This allows,

for example, to characterize extremal chemical trees as well as extremal

unicyclic or bicyclic chemical graphs. For m ≤ n − 2, we have shown

that there is an extremal chemical graph or order n and size m which is a

disjoint union of extremal chemical trees.

Acknowledgment : The authors would like to thank Pierre Hauweele for
his help.
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Table 3. Number of connected and non-connected extremal chemical
graphs of order n and size m for 1 ≤ n ≤ 14 and n−1 ≤ m ≤
min{2n, n(n−1)

2
}

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
0 1 0
1 1 0
2 1 0
3 1 0 1 0
4 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 0 1 0
7 1 0 1 0 1 0 1 0
8 1 0 1 0 1 0 1 0 1 0
9 1 0 1 0 1 0 1 0 1 0 1 0

10 1 0 1 0 1 0 1 0 1 0 2 0 1 0
11 1 0 1 0 2 0 3 0 1 0 1 0 1 1
12 1 0 2 0 4 0 2 0 4 0 6 0 2 0 1 0
13 2 0 3 0 10 0 12 0 4 0 5 1 7 1 2 1
14 2 0 8 0 17 0 8 1 21 1 23 1 5 1 3 1
15 7 0 9 0 47 0 58 1 14 1 27 2 27 3
16 6 0 37 0 77 0 31 1 113 2 111 4 18 2
17 28 0 35 0 249 0 303 3 59 4 159 11
18 16 0 198 0 399 0 134 2 684 8 625 20
19 126 0 154 0 1550 1 1786 9 298 11
20 59 1 1246 1 2395 1 707 7 4620 40
21 719 1 845 1 10801 4 11855 36
22 265 1 8789 3 16433 6 4399 20
23 4721 3 5440 4 83399 19
24 1544 3 68804 12 125829 28
25 35678 11 40399 14
26 10778 8 590342 55
27 300361 45
28 88168 25
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R. Škrekovski, Arithmetic–geometric index and its relations with
geometric–arithmetic index, Appl. Math. Comput. 391 (2021)
#125706.
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