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Abstract

The Randić index is a popular topological graph index that mea-
sures the extent of branching of a graph. It has many applications
in chemistry and network data analysis. In this paper, we study
the limiting distribution of the Randić index in a random geomet-
ric graph. We prove that the centered and scaled Randić index
converges in law to an infinite sum of functions of independent chi-
square random variables. It is interesting that the limiting distribu-
tion is not the standard normal distribution as in the Erdös-Rényi
random graph case. However, the Randić index of the random geo-
metric graph is asymptotically the same as the Erdös-Rényi random
graph.

1 Introduction

A network or graph consists of a set of nodes or vertices and a set of

edges. Edges in a graph represent interactions between nodes. Networks

are widely used to understand many real-world problems [7,21]. Networks

can be employed to investigate the relationship between papers, authors,

and scientific work [23]. In biology, network is used to detect gene-gene

interactions [9]. In sociology, networks are used to model relationships
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among social actors and study dependence structures among social units

[22].

The Randić index is a summary statistic that measures the extent of

branching of a network [4, 24, 25]. It has been used to understand quanti-

tative structure-property and structure-activity relations in chemistry and

pharmocology [25, 26]. The Randić index also finds many applications in

network data analysis. For example, it is used to measure how hetero-

geneous the degrees of the nodes are [14, 15]. It is also used to measure

robustness of networks [11,12] and quantify similarity of networks [15,16].

Moreover, the Randić index has many interesting mathematical proper-

ties [5, 6, 8, 10,18].

One of the important research topics is to study the Randić index

in random graphs. Recently, [1, 19, 20] perform simulation studies of the

Randić index in the Erdős-Rényi random graph and a random geometric

graph. It is observed that the Randić index is approximately equal to

one half of the number of nodes in the graph [1, 19, 20]. [2] conduct a

simulation study of the relationship between the Randić index and the

Shannon entropy in a random geometric graph. [28, 29] derives the limit

and asymptotic distribution of the Randić index in a heterogeneous Erdős-

Rényi random graph.

In this paper, we are interested in limiting distribution of the Randić

index of a random geometric graph. In this random geometric graph,

each node is independently assigned a position in the unit sphere and an

edge exists between two nodes if and only if their distance is less than

some pre-specified constant. The random geometric graph can capture

the dependence structure and inherent geometric features of many real

networks [13, 17]. Due to dependence of edges, it is more challenging to

theoretically analyze the Randić index of the random geometric graph. We

prove that the centered and scaled Randić index converges in distribution

to an infinite sum of functions of independent chi-square random variables.

This result is different from that in the Erdős-Rényi random graph, where

the limiting distribution is the standard normal distribution [29]. More-

over, we show that the Randić index is asymptotically equal to one half of

the number of nodes in the random geometric graph, which is the same as
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in the Erdős-Rényi random graph [28,29]. In this sense, the Randić index

itself cannot detect geometry in a network, but its limiting distribution

can be used to detect geometry. This highlights the necessity to study

asymptotic properties of the Randić index in random graphs.

The structure of the article is as follows. In Section 2 we present the

main results. In Section 3, we present the proof.

Notation: We adopt the Bachmann–Landau notation throughout this

paper. Let an and bn be two positive sequences. Denote an = Θ(bn) if

c1bn ≤ an ≤ c2bn for some positive constants c1, c2. Denote an = ω(bn)

if limn→∞
an

bn
= ∞. Denote an = O(bn) if an ≤ cbn for some positive

constants c. Denote an = o(bn) if limn→∞
an

bn
= 0. Let Xn, X be random

variables. Then Xn ⇒ X means Xn converges in distribution to X as n

goes to infinity. Denote Xn = OP (an) if Xn

an
is bounded in probability.

Denote Xn = oP (an) if Xn

an
converges to zero in probability as n goes to

infinity. Let E[X] and V ar(X) denote the expectation and variance of a

random variable X respectively. P[E] denote the probability of an event E.

exp(x) denote the exponential function ex. For positive integer n, denote

[n] = {1, 2, . . . , n}. Given a finite set E, |E| represents the number of

elements in E, EC represents the complement of the set E. For a positive

integers i, j, k, i ̸= j ̸= k means i ̸= j, j ̸= k, k ̸= i. Given positive integer

t,
∑

i1 ̸=i2 ̸=...̸=it
means summation over all integers i1, i2, . . . , it in [n] such

that |{i1, i2, . . . , it}| = t.
∑

i1<i2<···<it
means summation over all integers

i1, i2, . . . , it in [n] such that i1 < i2 < · · · < it. I[E] is the indicator

function of an event E, that is, I[E] = 1 if E occurs, I[E] = 0 otherwise.

2 Main result

Given a positive integer n, an undirected graph on V = [n] is a pair G =

(V, E), where E is a set of edges. An edge e ∈ E is a subset of V such that

|e| = 2. The elements in V are called nodes or vertices of the graph. A

graph can be conveniently represented as an adjacency matrix A, where

Aij = 1 if {i, j} is an edge, Aij = 0 otherwise and Aii = 0. Since graph

G is undirected, the adjacency matrix A is symmetric. The degree di of

vertex i is the number of edges that connect it, that is, di =
∑

j Aij .
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If Aij(1 ≤ i < j ≤ n) are random variables, the graph is said to be

random. The most popular random graph is the well-known Erdős-Rényi

random graph, where Aij(1 ≤ i < j ≤ n) are independent Bernoulli

random variables with success probability p. Next we introduce a variant

of the Erdős-Rényi random graph–the random geometric graph, which is

relevant to the modelling of real networks with geometry and dependence

structures [13,17].

Definition 1. Let n,m be positive integers and r be a positive real num-

ber. Let X = (X1, . . . , Xn) be a vector of independent and uniformly

distributed random variables on the unit sphere Sm. The random geomet-

ric graph G(n,m, r) is defined as follows:

Aij = I[||Xi −Xj ||2 ≤ r], i < j

where Aji = Aij for 1 ≤ i < j ≤ n and Aii = 0 for i = 1, 2, . . . , n.

In G(n,m, r), the vector X models the latent position of each node in

the unit sphere. The presence of an edge between two nodes depends on

their distance. If the distance between two nodes is less than r, then an

edge exists between them. The parameter r models the sparsity of the

random graph. Larger r produces a graph with more edges and smaller r

leads to a graph with less edges. If r ≥ 2, then the graph is the complete

graph, that is, there is an edge between every pair of nodes. If r = 0, then

there is no edge in the graph. Due to the random latent position vector X,

Aij(1 ≤ i < j ≤ n) are not independent. It is therefore more difficult to

study properties of G(n,m, r) than the Erdős-Rényi random graph. More

general random geometric graphs can be found in [13,17].

Definition 2. The Randić index of a graph G = (V, E) is defined as [24]

Rn =
∑

{i,j}∈E

1√
didj

, (1)

The Randić index in random graphs has been widely studied [1, 3, 19,

20,28,29]. Especially, [28,29] derives the limit and asymptotic distribution

of the Randić index in a heterogeneous Erdős-Rényi random graph. It is
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shown that the scaled and centered Randić index converges in distribution

to the standard normal distribution [28,29].

In this paper, we study limiting distribution of the Randić index in the

random geometric graph G(n,m, r).

Theorem 1. For the random geometric graph G(n,m, r) with fixed m and

constant r ∈ (0, 1), we have

16µ3 (Rn − E[Rn]) ⇒
∞∑
j=1

λj(Z
2
j − 1),

as n goes to infinity, where

E[Rn] =
n

2

(
1 +O

(
1

n

))
,

µ = P(||X1 − X2||2 ≤ r), Zj are independent standard normal random

variables and λj are the eigenvalues of the kernel function g(x1, x2) defined

as

g(x1, x2) = 2E
[
I[d(x1, X3) ≤ r]I[d(X3, X4) ≤ r]I[d(X4, x2) ≤ r]

]
−2µE

[
I[d(x1, X3) ≤ r]I[d(X3, x2) ≤ r]

]
.

Moreover,

Rn =
n

2
(1 + oP (1)) .

Remark. Let F be the uniform distribution on Sm and L2(Sm, F ) be the

space of square-integrable functions. For a symmetric function f(x1, x2) ∈
L2(Sm, F ), define an operator T as

T (g)(x) =

∫
Sm

f(x, y)g(y)dF (y), g ∈ L2(Sm, F ).

The eigen-vectors gi and eigen-values λi of T is defined as

T (gi) = λigi.

According to Theorem 1, the centered and scaled Randić index of the
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random geometric graph G(n,m, r) converges in distribution to an infinite

sum of functions of independent chi-square random variables. However, in

the Erdős-Rényi random graph, the centered and scaled Randić index con-

verges in distribution to the standard normal distribution [29]. This result

signifies the difference between the random geometric graph G(n,m, r) and

the Erdős-Rényi random graph.

Moreover, the Randić index of the random geometric graph G(n,m, r)

is asymptotically equal to n
2 , that is,

Rn =
n

2
(1 + oP (1)) .

This result theoretically confirms the empirical observation obtained in

[1]. Note that the Randić index in the Erdős-Rényi random graph is also

asymptotically equal to n
2 [28, 29]. In this sense, the Randić index itself

cannot distinguish the random geometric graph G(n,m, r) from the Erdős-

Rényi random graph. However, its limiting distribution can detect the

geometry in a network. This highlights the necessity to study limiting

distribution of the Randić index in random graphs.

Due to the dependence of edges in the random geometric graph G(n,m,

r), the proof of Theorem 1 is more challenging than in the Erdős-Rényi

random graph case. Our proof strategy is to express Rn as a sum of

leading term and reminder term, followed by showing the leading term

is a degenerate U-statistic and the reminder term is negligible. Since the

limiting distribution of degenerate U-statistic is known [27], then the proof

is complete.

3 Proof

For given indices i < j, denote di(j) = 1 +
∑

l/∈{i,j} Ail and dj(i) = 1 +∑
l/∈{i,j} Ajl. For convenience, we still write di(j) as di. Then the Randić

index of a graph G can be written as

Rn =
∑
i<j

Aij√
didj

. (2)
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Before prove Theorem 1, we provide a lemma first.

Lemma 1. Let an = log n and ϵn = (log n)−3. For the random geometric

graph G(n,m, r), we have

P(d1d2 < ϵnn
2µ2) = e−

nµ
an

(1+o(1)).

Proof of Lemma 1. Recall that we denote di(j) = 1 +
∑

l/∈{i,j} Ail and

dj(i) = 1+
∑

l/∈{i,j} Ajl, and we still write di(j) as di for convenience. Note

that ∑
l/∈{i,j}

Ail

 ∑
l/∈{i,j}

Ajl

 =
∑

k,l/∈{i,j},k ̸=l

AikAjl +
∑

k/∈{i,j}

AikAjk.

Simple algebra yields

didj = (1 +
∑

k/∈{i,j}

Aik)(1 +
∑

k/∈{i,j}

Ajk)

= 1 +
∑

k/∈{i,j}

Aik +
∑

k/∈{i,j}

Ajk

+
∑

k,l/∈{i,j},k ̸=l

AikAjl +
∑

k/∈{i,j}

AikAjk. (3)

Then

P(d1d2 < ϵnn
2µ2) ≤ P

 ∑
k,l/∈{1,2},k ̸=l

A1kA2l < ϵnn
2µ2


≤ P

 n
an∑
k=3

n∑
l= n

an
+1

A1kA2l < ϵnn
2µ2

 . (4)

We claim that A1k (3 ≤ k ≤ n) are independent. To see this, we use

the moment generating function to prove that A13, A14 are independent.

Since X1, X2, . . . , Xn are independent and uniformly distributed on sphere

Sm, then

P
(
||X1 −Xi||2 ≤ r

∣∣X1

)
= µ, i ∈ {2, 3, 4, . . . , n}.
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The joint moment generating function of A13, A14 is equal to

E
[
et1A13+t2A14

]
= E

[
E
[
et1I[||X1−X3||2≤r]

∣∣X1

]
E
[
et2I[||X1−X4||2≤r]

∣∣X1

] ]
= E

[
(et1µ+ 1− µ)[(et2µ+ 1− µ)

]
= E

[
et1A13

]
E
[
et2A14

]
, t1, t2 ∈ R. (5)

Hence A13, A14 are independent. Similarly, we can prove A1k (3 ≤ k ≤ n)

are independent.

Moreover, A1k (3 ≤ k ≤ n/an) are independent of A2l (n/an + 1 ≤
l ≤ n). Let S be a subset of {3, 4, . . . , n

an
} and δn = (log n)−1. Denote

A1S = {A1k|k ∈ S}. Then

P

 n
an∑
k=3

n∑
l= n

an
+1

A1kA2l < ϵnn
2µ2



=

nδn
an∑
t=1

∑
|S|=t

P

 n
an∑
k=3

n∑
l= n

an
+1

A1kA2l < ϵnn
2µ2

∣∣∣A1S = 1, A1SC = 0


×P(A1S = 1, A1SC = 0)

+

n
an∑

t=nδn
an

+1

∑
|S|=t

P

 n
an∑
k=3

n∑
l= n

an
+1

A1kA2l < ϵnn
2µ2

∣∣∣A1S = 1, A1SC = 0


×P(A1S = 1, A1SC = 0)

≤

nδn
an∑
t=1

∑
|S|=t

P(A1S = 1, A1SC = 0)

+

n
an∑

t=nδn
an

+1

∑
|S|=t

P

 n
an∑
k=3

n∑
l= n

an
+1

A1kA2l < ϵnn
2µ2

∣∣∣A1S = 1, A1SC = 0

 .

(6)

Note that for t ≤ n
an

, we have

∑
|S|=t

P(A1S = 1, A1SC = 0) =

( n
an

t

)
µt(1− µ)

n
an

−t ≤ ef(t),
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where

f(t) = t log
n

an
− t log t+ t+ t logµ+

(
n

an
− t

)
log(1− µ).

The derivative of f(t) is equal to

f ′(t) = log
nµ

an(1− µ)
− log t.

Recall that f(t) is increasing if f ′(t) ≥ 0, and f(t) is decreasing if f ′(t) ≤ 0.

When t ≤ nµ
an(1−µ) , it is easy to verify that f ′(t) ≥ 0. Hence f(t) is

increasing if t ≤ nµ
an(1−µ) . Then for t ≤ nδn

an
< nµ

an(1−µ) , we have

f(t) ≤ f

(
nδn
an

)
≤ n

an
δn log

µ

δn(1− µ)
+

nδn
an

− n

an
µ = − n

an
µ(1 + o(1)).

Hence

nδn
an∑
t=1

∑
|S|=t

P(A1S = 1, A1SC = 0) ≤ e−
nµ
an

(1+o(1)). (7)

On the other hand, given nδn
an

≤ t ≤ n
an

and |S| = t, we have

P

 n
an∑
k=3

n∑
l= n

an
+1

A1kA2l < ϵnn
2µ2
∣∣∣A1S = 1, A1SC = 0


= P

 n∑
l= n

an
+1

A2l <
ϵnn

2µ2

t


≤ P

 n∑
l= n

an
+1

A2l <
ϵnnanµ

2

δn

 . (8)

Let k be a non-negative integer less than ϵnnanµ
2

δn
. Then

P

 n∑
l= n

an
+1

A2l = k

 =

(
n(1− 1

an
)

k

)
µk(1− µ)n(1−

1
an

)−k ≤ eg(k),
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where

g(k) = k log

(
n

(
1− 1

an

))
− k log k + k + k logµ

+

(
n

(
1− 1

an

)
− k

)
log(1− µ).

The derivative of g(k) is equal to

g′(k) = log
n
(
1− 1

an

)
µ

1− µ
− log k.

Then g(k) is increasing if k ≤ n(1− 1
an
)µ

1−µ . For k ≤ ϵnnanµ
2

δn
<

n(1− 1
an
)µ

1−µ , we

have

g(k) ≤ g

(
ϵnnanµ

2

δn

)
≤ ϵnnanµ

2

δn
log

1

µ(1− µ) ϵnan

δn

+
ϵnnanµ

2

δn
− nµ

(
1− 1

an

)
= −nµ(1 + o(1)).

Then

P

 n∑
l= n

an
+1

A2l = k

 =

(
n(1− 1

an
)

k

)
µk(1− µ)n(1−

1
an

)−k

≤ e−nµ(1+o(1)).

Hence,

P

 n∑
l= n

an
+1

A2l <
ϵnnanµ

2

δn

 ≤ ϵnnanµ
2

δn
e−nµ(1+o(1)) = e−nµ(1+o(1)). (9)

By (4), (6)-(9), the proof is complete.

Proof of Theorem 1: For convenience, we denote Āij = Aij − E[Aij ],

µ = E[Aij ] and let bn = E[di] = 1 + (n − 2)µ. Given i < j, denote
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d̄i =
∑

k/∈{i,j} Āij . By (3), we have

E[didj ] = 1 + 2(n− 2)µ+ (n− 2)(n− 3)µ2 + (n− 2)µ2

= 1 + 2(n− 2)µ+ (n− 2)2µ2

= E[di]E[dj ]. (10)

By (10), straightforward calculation yields

didj − E[didj ] = didj − E[di]E[dj ]

= d̄id̄j + d̄iE[dj ] + E[di]d̄j . (11)

By Taylor expansion, we have

Rn =
∑
i<j

Aij√
E[didj ]

− 1

2

∑
i<j

Aij(didj − E[didj ])(
E[didj ]

) 3
2

+
3

8

∑
i<j

Aij(didj − E[didj ])2(
E[didj ]

) 5
2

− 5

16

∑
i<j

Aij(didj − E[didj ])3

Z
7
2
ij

, (12)

where Zij is between didj and E[didj ]. Then

Rn − E[Rn]

=
∑
i<j

Āij√
E[didj ]

− 1

2

∑
i<j

Aij(didj − E[didj ])− E[Aij(didj − E[didj ])](
E[didj ]

) 3
2

+
3

8

∑
i<j

Aij(didj − E[didj ])2 − E[Aij(didj − E[didj ])2](
E[didj ]

) 5
2

− 5

16

∑
i<j

Aij(didj − E[didj ])3

Z
7
2
ij

+
5

16
E
[∑

i<j

Aij(didj − E[didj ])3

Z
7
2
ij

]
, (13)

Next we isolate the leading terms in (13).

Consider the last two terms of (13) first. Let ϵn = (log n)−3 as
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in Lemma 1. It is easy to get

E

∣∣∣∣∣∑
i<j

Aij(didj − E[didj ])3

Z
7
2
ij

∣∣∣∣∣


≤ E

∑
i<j

Aij |didj − E[didj ]|3

Z
7
2
ij

I[Zij ≥ ϵnn
2]


+E

∑
i<j

Aij |didj − E[didj ]|3

Z
7
2
ij

I[Zij < ϵnn
2]

 . (14)

By a similar argument as in Lemma 3.2 of [30], we have E[d̄2si ] = O(ns)

for positive integer s. By (11) and the Cauchy-Schwarz inequality, one has

E
[∣∣didj − E[didj ]

∣∣3] ≤ 33
(
E[|d̄3i d̄3j |] + E[|d̄3i |]b3n + E[|d̄3j |]b3n

)
≤ 33

(√
E[d̄6i ]E[d̄6j ] +

√
E[d̄6i ]b

3
n +

√
E[d̄6j ]b

3
n

)
= O

(
n3

√
n3
)
.

Hence

E

∑
i<j

Aij |didj − E[didj ]|3

Z
7
2
ij

I[Zij ≥ ϵnn
2]

 ≤
∑
i<j

E
[
|didj − E[didj ]|3

]
ϵ

7
2
nn7

= O

(
1

√
nϵ

7
2
n

)
. (15)

Suppose Zij < ϵnn
2. Note that ϵnn

2 = o(n2) and E[didj ] = Θ(n2). If

Zij < didj , then Zij cannot be between didj and E[didj ]. Hence Zij ≥
didj . Moreover, didj ≥ 1. Then by Lemma 1, we get

E

∑
i<j

Aij |didj − E[didj ]|3

Z
7
2
ij

I[Zij < ϵnn
2]


≤ E

∑
i<j

Aij |didj − E[didj ]|3I[didj < ϵnn
2]





779

≤ n5 max
i<j

P(didj < ϵnn
2)

= e−
nµ

log n (1+o(1)). (16)

Combining (14), (15) and (16) yields

−
∑
i<j

Aij(didj − E[didj ])3

Z
7
2
ij

+ E
[∑

i<j

Aij(didj − E[didj ])3

Z
7
2
ij

]
= oP (1). (17)

Now consider the first two terms of (13). By (10) and (11), we

have

∑
i<j

Aij(didj − E[didj ])(
E[didj ]

) 3
2

=
∑
i<j

Aij d̄id̄j
b3n

+
∑
i<j

Aij(d̄i + d̄j)

b2n
. (18)

Since Aij is independent of d̄i given Xi, then

E[Aij d̄i] = E
[
E[Aij |Xi]E[d̄i|Xi]

]
= 0

and

E

∑
i<j

Aij(d̄i + d̄j)

b2n

 = 0.

Moreover, simple algebra yields

∑
i<j

Aij(d̄i + d̄j)

b2n
=
∑
i<j

Āij(d̄i + d̄j)

b2n
+
∑
i<j

µ(d̄i + d̄j)

b2n
. (19)

It is easy to verify that

∑
i<j

µ(d̄i + d̄j)

b2n
=

2(n− 2)µ

bn

∑
i<j

Āij

bn
. (20)

Note that

E


∑

i<j

Āij

bn

2
 = O (1) .
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Then ∑
i<j

Āij

bn
− (n− 2)µ

bn

∑
i<j

Āij

bn
=

1

bn

∑
i<j

Āij

bn
= OP

(
1

n

)
. (21)

The first term of (19) is equal to

∑
i<j

Āij(d̄i + d̄j)

b2n
=

2

b2n

∑
i<j<k

(ĀijĀik + ĀjiĀjk + ĀkiĀkj). (22)

The first term of (18) can be written as

∑
i<j

Aij d̄id̄j
b3n

=
1

2b3n

∑
i ̸=j ̸=k ̸=l

ĀijĀikĀjl +
1

2b3n

∑
i ̸=j ̸=k

ĀijĀikĀjk

+
µ

2b3n

∑
i̸=j ̸=k ̸=l

ĀikĀjl +
µ

2b3n

∑
i ̸=j ̸=k

ĀikĀjk.

Then

∑
i<j

Aij d̄id̄j
b3n

− E

∑
i<j

Aij d̄id̄j
b3n


=

1

2b3n

∑
i ̸=j ̸=k ̸=l

ĀijĀikĀjl +
1

2b3n

∑
i ̸=j ̸=k

(
ĀijĀikĀjk − E[ĀijĀikĀjk]

)
+

µ

2b3n

∑
i̸=j ̸=k ̸=l

ĀikĀjl +
µ

2b3n

∑
i ̸=j ̸=k

ĀikĀjk. (23)

We show the last three terms of (23) are oP (1). Note that

E


 1

b3n

∑
i̸=j ̸=k

ĀikĀjk

2
 =

1

b6n

∑
i ̸=j ̸=k

i1 ̸=j1 ̸=k1

E
[
ĀikĀjkĀi1k1

Āj1k1

]
.

If i ̸∈ {i1, j1, k1}, then Xi is independent of Xk, Xj , Xi1 , Xj1 , Xk1
. Recall

that E
[
Āik|Xk

]
= 0. Then

E
[
ĀikĀjkĀi1k1Āj1k1

]
= E

[
E
[
Āik|Xk

]
ĀjkĀi1k1Āj1k1

]
= 0.
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Hence i ∈ {i1, j1, k1}. Similarly, j ∈ {i1, j1, k1}. Since |ĀikĀjkĀi1k1Āj1k1 |
≤ 1, then

E


 1

b3n

∑
i ̸=j ̸=k

ĀikĀjk

2
 = O

(
n4

b6n

)
= O

(
1

n2

)
. (24)

Similarly, it is easy to get

E


 1

b3n

∑
i̸=j ̸=k ̸=l

ĀikĀjl

2
 = O

(
1

n2

)
. (25)

The second moment of the second term of (23) is equal to

E


 1

b3n

∑
i ̸=j ̸=k

(
ĀijĀikĀjk − E[ĀijĀikĀjk]

)2


=
1

b6n

∑
i̸=j ̸=k

i1 ̸=j1 ̸=k1

E
[(
ĀijĀikĀjk − E[ĀijĀikĀjk]

)
×
(
Āi1j1Āi1k1

Āj1k1
− E[Āi1j1Āi1k1

Āj1k1
]
)]
.

If {i, j, k} ∩ {i1, j1, k1} = ∅, then ĀijĀikĀjk and Āi1j1Āi1k1
Āj1k1

are

independent. Hence

E
[(
ĀijĀikĀjk − E[ĀijĀikĀjk]

)
×
(
Āi1j1Āi1k1Āj1k1 − E[Āi1j1Āi1k1Āj1k1 ]

)]
= 0.

Then |{i, j, k, i1, j1, k1}| ≤ 5 and

E


 1

b3n

∑
i ̸=j ̸=k

(
ĀijĀikĀjk − E[ĀijĀikĀjk]

)2
 = O

(
1

n

)
. (26)
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Based on (18)-(26), we get

∑
i<j

Aij√
E[didj ]

− 1

2

∑
i<j

Aij(didj − E[didj ])(
E[didj ]

) 3
2

= − 1

b2n

∑
i<j<k

(ĀijĀik + ĀjiĀjk + ĀkiĀkj)−
1

4b3n

∑
i ̸=j ̸=k ̸=l

ĀijĀikĀjl

+OP

(
1√
n

)
. (27)

Now consider the third term of (13). By (10) and (11), we have

∑
i<j

Aij(didj − E[didj ])2(
E[didj ]

) 5
2

=
∑
i<j

Aij d̄
2
i d̄

2
j

b5n
+
∑
i<j

2Aij d̄id̄j(d̄i + d̄j)bn
b5n

+
∑
i<j

Aij(d̄i + d̄j)
2b2n

b5n
. (28)

Note that 0 ≤ Aij ≤ 1. By the Cauchy-Schwarz inequality, one has

E

∑
i<j

Aij d̄
2
i d̄

2
j

b5n

 ≤
∑
i<j

√
E[d̄4i ]E[d̄4j ]

b5n
= O

(
1

n

)
, (29)

E

∑
i<j

∣∣∣∣Aij d̄
2
i d̄jbn
b5n

∣∣∣∣
 ≤

∑
i<j

√
E[d̄4i ]E[d̄2j ]

b4n
= O

(
1√
n

)
. (30)

Then the first two terms of (28) are oP (1).

Now we study the third term of (28). Straightforward calculation yields

∑
i<j

Aij(d̄i + d̄j)
2b2n

b5n

=
∑
i ̸=j

Aij d̄
2
i

b3n
+
∑
i ̸=j

Aij d̄id̄j
b3n

=
∑
i ̸=j

Āij d̄
2
i

b3n
+
∑
i ̸=j

Āij d̄id̄j
b3n

+
∑
i ̸=j

µd̄2i
b3n

+
∑
i̸=j

µd̄id̄j
b3n

. (31)
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Next we get the leading terms of (31). Note that

∑
i ̸=j

µd̄2i − E[µd̄2i ]
b3n

=
∑

i ̸=j ̸=k ̸=l

µĀikĀil

b3n
+
∑

i ̸=j ̸=k

µĀ2
ik − E[µĀ2

ik]

b3n
. (32)

It is easy to get

∑
i ̸=j ̸=k ̸=l

µĀikĀil

b3n
=

(n− 3)µ

bn

∑
i̸=k ̸=l

ĀikĀil

b2n
, (33)

E


 ∑

i ̸=j ̸=k

µ(Ā2
ik − E[Ā2

ik])

b3n

2
 = O

(
1

n2

)
, (34)

∑
i ̸=j

µd̄id̄j
b3n

=
∑

i ̸=j ̸=k ̸=l

µĀikĀjl

b3n
+
∑

i ̸=j ̸=k

µĀikĀjk

b3n
= OP

(
1

n

)
, (35)

∑
i ̸=j

Āij d̄
2
i

b3n
=

∑
i ̸=j ̸=k ̸=l

ĀijĀikĀil

b3n
+
∑

i̸=j ̸=k

ĀijĀ
2
ik

b3n
= OP

(
1√
n

)
, (36)

∑
i ̸=j

Āij d̄id̄j
b3n

=
∑

i̸=j ̸=k ̸=l

ĀijĀikĀjl

b3n
+
∑

i ̸=j ̸=k

ĀijĀikĀjk

b3n
. (37)

By (13), (17), (27), (28)-(37), we get

Rn − E[Rn] =
1

8

∑
i ̸=j ̸=k ̸=l

ĀijĀikĀjl

b3n
− 1

8

∑
i ̸=j ̸=k

ĀijĀik

b2n
+ oP (1).(38)

Next we derive the asymptotic distribution of the first two terms of

(38) by showing the first two terms of (38) is a degenerate U-statistic. Let

d(X1, X2) = ||X1 −X2||2,

h1(X1, X2, X3, X4) =
(
I[d(X1, X3) ≤ r]− µ

)(
I[d(X3, X4) ≤ r]− µ

)
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×
(
I[d(X4, X2) ≤ r]− µ

)
+
(
I[d(X1, X4) ≤ r]− µ

)(
I[d(X4, X3) ≤ r]− µ

)
×
(
I[d(X3, X2) ≤ r]− µ

)
+
(
I[d(X1, X2) ≤ r]− µ

)(
I[d(X2, X4) ≤ r]− µ

)
×
(
I[d(X4, X3) ≤ r]− µ

)
+
(
I[d(X1, X4) ≤ r]− µ

)(
I[d(X4, X2) ≤ r]− µ

)
×
(
I[d(X2, X3) ≤ r]− µ

)
+
(
I[d(X1, X2) ≤ r]− µ

)(
I[d(X2, X3) ≤ r]− µ

)
×
(
I[d(X3, X4) ≤ r]− µ

)
+
(
I[d(X1, X3) ≤ r]− µ

)(
I[d(X3, X2) ≤ r]− µ

)
×
(
I[d(X2, X4) ≤ r]− µ

)
+
(
I[d(X2, X1) ≤ r]− µ

)(
I[d(X1, X4) ≤ r]− µ

)
×
(
I[d(X4, X3) ≤ r]− µ

)
+
(
I[d(X2, X4) ≤ r]− µ

)(
I[d(X4, X1) ≤ r]− µ

)
×
(
I[d(X1, X3) ≤ r]− µ

)
+
(
I[d(X2, X1) ≤ r]− µ

)(
I[d(X1, X3) ≤ r]− µ

)
×
(
I[d(X3, X4) ≤ r]− µ

)
+
(
I[d(X2, X3) ≤ r]− µ

)(
I[d(X3, X1) ≤ r]− µ

)
×
(
I[d(X1, X4) ≤ r]− µ

)
+
(
I[d(X3, X1) ≤ r]− µ

)(
I[d(X1, X2) ≤ r]− µ

)
×
(
I[d(X2, X4) ≤ r]− µ

)
+
(
I[d(X3, X2) ≤ r]− µ

)(
I[d(X2, X1) ≤ r]− µ

)
×
(
I[d(X1, X4) ≤ r]− µ

)
,

(39)

and

h2(X1, X2, X3, X4)

=
(
I[d(X1, X2) ≤ r]− µ

)(
I[d(X2, X3) ≤ r]− µ

)



785

+
(
I[d(X1, X3) ≤ r]− µ

)(
I[d(X3, X2) ≤ r]− µ

)
+
(
I[d(X3, X1) ≤ r]− µ

)(
I[d(X1, X2) ≤ r]− µ

)
+
(
I[d(X1, X2) ≤ r]− µ

)(
I[d(X2, X4) ≤ r]− µ

)
+
(
I[d(X1, X4) ≤ r]− µ

)(
I[d(X4, X2) ≤ r]− µ

)
+
(
I[d(X2, X1) ≤ r]− µ

)(
I[d(X1, X4) ≤ r]− µ

)
+
(
I[d(X1, X3) ≤ r]− µ

)(
I[d(X3, X4) ≤ r]− µ

)
+
(
I[d(X1, X4) ≤ r]− µ

)(
I[d(X4, X3) ≤ r]− µ

)
+
(
I[d(X3, X1) ≤ r]− µ

)(
I[d(X1, X4) ≤ r]− µ

)
+
(
I[d(X2, X3) ≤ r]− µ

)(
I[d(X3, X4) ≤ r]− µ

)
+
(
I[d(X2, X4) ≤ r]− µ

)(
I[d(X4, X3) ≤ r]− µ

)
+
(
I[d(X3, X2) ≤ r]− µ

)(
I[d(X2, X4) ≤ r]− µ

)
. (40)

Then

1

8

∑
i ̸=j ̸=k ̸=l

ĀijĀikĀjl

b3n
=

(
n
4

)
4b3n

1(
n
4

) ∑
i<j<k<l

h1(Xi, Xj , Xk, Xl), (41)

and

−1

8

∑
i̸=j ̸=k

ĀijĀik

b2n
= −

(
n
4

)
4b2n(n− 3)

1(
n
4

) ∑
i<j<k<l

h2(Xi, Xj , Xk, Xl). (42)

Let h(Xi, Xj , Xk, Xl) = h1(Xi, Xj , Xk, Xl) − µh2(Xi, Xj , Xk, Xl). Com-

bining (38), (39), (40), (41) and (42) yields

Rn − E[Rn] =

(
n
4

)
4nb3n

(nUn) + oP (1), (43)

where

Un =
1(
n
4

) ∑
i<j<k<l

h(Xi, Xj , Xk, Xl).

Next we show Un is a degenerate U-statistic. It is easy verify that

E[h(X1, X2, X3, X4)] = 0,
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E[h(X1, X2, X3, X4)|X1] = 0.

Let

g(x1, x2) = E[h(X1, X2, X3, X4)|X1 = x1, X2 = x2],

g1(x1, x2) = E[h1(X1, X2, X3, X4)|X1 = x1, X2 = x2],

g2(x1, x2) = E[h2(X1, X2, X3, X4)|X1 = x1, X2 = x2].

Straightforward calculation yields

g(x1, x2)

= g1(x1, x2)− g2(x1, x2)

= 2E
[(
I[d(x1, X3) ≤ r]− µ

)(
I[d(X3, X4) ≤ r]− µ

)
×
(
I[d(X4, x2) ≤ r]− µ

)]
−2µE

[(
I[d(x1, X3) ≤ r]− µ

)(
I[d(X3, x2) ≤ r]− µ

)]
= 2E

[
I[d(x1, X3) ≤ r]I[d(X3, X4) ≤ r]I[d(X4, x2) ≤ r]

]
−2µE

[
I[d(x1, X3) ≤ r]I[d(X3, x2) ≤ r]

]
.

Since r ∈ (0, 1), there exists positive constant ϵ such that (2+ ϵ)r < 2. For

x1, x2 satisfying 2r < d(x1, x2) < (2 + ϵ)r, we have

E
[
I[d(x1, X3) ≤ r]I[d(X3, x2) ≤ r] = 0,

but

E
[
I[d(x1, X3) ≤ r]I[d(X3, X4) ≤ r]I[d(X4, x2) ≤ r]

]
> 0.

Let E = {2r < d(X1, X2) < (2 + ϵ)r}. Since

E
[
g(X1, X2)I[E] + g(X1, X2)I[E

c]
]
= E[g(X1, X2)] = 0,

then

E
[
g(X1, X2)I[E]

]
= −E

[
g(X1, X2)I[E

c]
]
.

Note that P(E) > 0 (Lemma 36 in [17]). Then the variance of g(X1, X2)
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can be bounded as follows

V ar[g(X1, X2)] = V ar
[
g(X1, X2)I[E] + g(X1, X2)I[E

c]
]

≥ 2Cov
(
g(X1, X2)I[E], g(X1, X2)I[E

c]
)

= −2E
[
g(X1, X2)I[E]

]
E
[
g(X1, X2)I[E

c]
]

= 2
(
E
[
g(X1, X2)I[E]

])2
> 0.

Hence, Un is a degenerate U-statistic. By the result in Section 5.5.2

of [27],

nUn ⇒ 6

∞∑
j=1

λj(Z
2
j − 1),

where Zj are independent standard normal random variables and λj are

the eigenvalues of the kernel function g(x1, x2). By (43) and the fact
(n4)
4nb3n

= 1
96µ3 (1 + o(1)), the proof is complete.
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Comput. Chem. 59 (2008) 127–156.

[19] C. T. Mart́ınez-Mart́ınez, J. A. Méndez-Bermúdez, J. M. Rodriguez,
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