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Abstract

Hamming distance is a highly valuable quantity in computer
science. In this work, we establish the Hamming matrix H of a
graph G, H(G). This is a square matrix, where the elements of the
H(G) are Hamming distances. Also, we define the Hamming energy
of a graph, HE(G), which is a sum of the absolute eigenvalues of
H(G). Finally, we present some bounds on the HE(G) and its
predictive potential.

1 Introduction

Let G = (V,E) be a simple, undirected graph with n vertices and m

edges. Let V (G) = {v1, v2, . . . , vn} be the vertex set of G and E(G) =

{e1, e2, . . . , em} be the edge set of G. If the vertices vi and vj are adjacent

then we write vi ∼ vj and if they are not adjacent then we write vi ≁ vj .

The edge and its end vertex are said to be incident to each other. The
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degree of a vertex vi, denoted by degG(vi) is the number of edges incident

to it.

The concept of graph energy was introduced in 1978 [3]. The energy

of a graph G, E(G), is defined as the sum of the absolute values of the

eigenvalues λ1, λ2, . . . , λi, . . . , λn of adjacency matrix A, i.e.,

E(G) =

n∑
i=1

|λi|.

Also, Nikiforov [5] extended the concept of energy to all (not necessar-

ily square) matrices, defining the energy of a matrix A as the sum of

the singular values of M . Recall that the singular values of a matrix

M are equal to the square roots of the eigenvalues of the (square) ma-

trix MMT . There are a large number of results related to the energy of

a graph. Graph energy has significant applications in chemistry, for ex-

ample, in encoding information on molecular structure using topological

molecular descriptors. Topological molecular descriptors are mathematical

values calculated from a graph representation of a molecule, also known

as topological indices. These descriptors are proven to be very valuable in

chemistry. Today, they find extensive application, as can be seen in the

works [1, 2, 4, 9–11,13].

Here, we will present results related to eigenvalue estimates, which can

be found in [12].

The spectrum σ(A) of a square matrix A = [aij ]n×n is the collection

of all eigenvalues of A, i.e.,

σ(A) := {λ | det(A− λI) = 0},

and with

N := {1, 2, . . . , n},

we call

ri(A) :=
∑

j∈N\{i}
| aij |, (i ∈ N)
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the i-th deleted absolute row sum of A. Further, we set Γi(A) := {z | |z − aii| ≤ ri(A)}, i ∈ N ;

Γ(A) :=
⋃
i∈N

Γi(A),
(1)

Γi(A) is called the ith-Geršgorin disk of A, and the union of the nGeršgorin

disks is called the Geršgorin set.

Theorem 1. (Geršgorin theorem) For any A = [aij ]n×n and any λ ∈
σ(A), there is a positive integer k ∈ N such that

| λ− akk |≤ rk(A).

Consequently (from (1)), λ ∈ Γk(A), and hence, λ ∈ Γ(A). As this is true

for each λ ∈ σ(A), then

σ(A) ⊆ Γ(A).

On the other hand, let Z2 = {0, 1} and (Z2,+) be the additive group,

where + denotes addition modulo 2. For any positive integer n,

Zn
2 = {(x1, x2, . . . , xn)|x1, x2, . . . , xn ∈ Z2}.

Element of Zn
2 is an n-tuple (x1, x2, . . . , xn) written as x = x1x2 . . . xn

where every xi is either 0 or 1 and it is called a string.

Let x = x1x2 . . . xn and y = y1y2 . . . yn be the elements of Zn
2 . Then

the sum x ⊕ y is computed by adding the corresponding components of

x and y under addition modulo 2. That is, xi + yi = 0 if xi = yi and

xi + yi = 1 if xi ̸= yi , i = 1, 2, . . . , n.

The Hamming distance Hd(x, y) between the strings x = x1x2 . . . xn

and y = y1y2 . . . yn is the number of is such that xi ̸= yi, i = 1, 2, . . . , n.

Thus, Hd(x, y) is a number of positions in which x and y differ. For ex-

ample, if x = 01001 and y = 11010, Hd(x, y) = 3, see [7, 8]. Additionally,

Hamming distance is employed in various applications such as cryptogra-

phy, bioinformatics, and information retrieval, where it helps in matching

patterns or sequences by quantifying their similarity.
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2 Preliminaries

The incidence matrix of graph G is a matrix B(G) = [bij ] of order n×m,

in which bij = 1 if the vertex vi is incident to the edge ej and bij = 0,

otherwise. Denote by s(v), the row of the incidence matrix corresponding

to the vertex v. It is a string in the set Zn
2 of all n-tuples over the field

of order two. Sum of Hamming distances between all pairs of strings

generated by the incidence matrix of a graph G is denoted by HB(G) and

is called the Hamming index of G, i.e.,

HB(G) =
∑

{u,v}⊆V (G)

Hd(s(u), s(v)). (2)

Figure 1. An example graph.

Example 1. For a graph G given in Figure 1, the incidence matrix is

B(G) =


1 0 0 0

1 1 1 0

0 1 0 1

0 0 1 1

 .

Therefore, the Hamming index is HB(G) = 2 + 3 + 3 + 3 + 3 + 2 = 16.

Now, we present some important consequences for the Hamming dis-

tance, which will be utilized in this work, based on the findings from [7].

Theorem 2. (Theorem 2.1. [7]) Let G be a graph with n vertices and m

edges. Let u and v be the vertices of G and l be the number of edges which

are neither incident to u nor incident to v. Then

Hd(s(u), s(v)) =

{
m− 1− l, if u ∼ v;

m− l, if u ≁ v.
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Theorem 3. (Theorem 2.2. [7]) Let u and v be the vertices of G. Then

Hd(s(u), s(v)) =

{
degG(u) + degG(v)− 2, if u ∼ v;

degG(u) + degG(v), if u ≁ v.

Theorem 4. (Corollary 3.1. [7]) If G is a complete graph Kn, then

HB(Kn) = n(n− 1)(n− 2).

Theorem 5. (Corollary 3.2. [7]) If G is a cycle graph Cn, then HB(Cn) =

2n(n− 2).

3 Hamming matrix and its energy

In this section, we introduce the Hamming matrix and the energy derived

from a such matrix.

Specifically, the Hamming matrix of graph G, H(G) = [hij ]n×n, is

formed as a square matrix, where the elements of the square matrix are

Hamming distances, i.e.,

hij = Hd(s(vi), s(vj)).

Thus, we obtain a symmetric matrix with zeros on its main diagonal,

because hii = Hd(s(vi), s(vi)) = 0. We also obtain that it holds∑
ij

hij = 2HB(G).

Following the concept of the energy of a graph, we define the Hamming

energy of a graph G as the sum of the absolute eigenvalues of the Hamming

matrix, i.e., if λ1, λ2, . . . , λn are eigenvalues of H(G), the Hamming energy

denoted by HE(G) is

HE = HE(G) =

n∑
i=1

|λi|. (3)



718

For instance, based on Example 1, we derive the Hamming matrix

H(G) =


0 2 3 3

2 0 3 3

3 3 0 2

3 3 2 0

 .

The eigenvalues of the matrix are λ1 = −4, λ2 = −2, λ3 = −2, λ4 = 8,

therefore, the Hamming energy is

HE(G) =

4∑
i=1

|λi| = 16

and, in this case, it coincides with HB(G).

4 Some bounds on the hamming energy of a

graph

In this section, we will present some results on the Hamming energy of the

graph G and the Hamming matrix.

Theorem 6. Let G be a graph of order n with no isolated vertices. Then

HE(G) ≤ 2
√
n ·HB(G). (4)

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the Hamming matrix of

graph G. Using the inequality between the arithmetic mean and the

quadratic mean

n∑
i=1

|λi| ≤

√√√√n

n∑
i=1

λ2
i =

√
n · tr(HT (G)H(G)).

Therefore, from tr(HT (G)H(G))=
∑
ij

h2
ij we obtain
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√
n · tr(HT (G)H(G)) =

√
n ·
∑
ij

h2
ij ≤

√√√√√n ·

∑
ij

hij

2

=
√
n · 4H2

B(G) = 2
√
nHB(G).

So, we get the upper bound for Hamming energy by the Hamming index

HE(G) =

n∑
i=1

|λi| ≤ 2
√
nHB(G).

In the special case of the complete graph Kn, there is a distinct re-

lationship between the Hamming energy and the Hamming index. The

complete connectivity of Kn allows for explicit formulas that directly re-

late these two invariants, showcasing how the symmetrical structure of Kn

influences their values. This helps us understand Kn’s properties and sets

a standard for more complex graphs.

Theorem 7. If Kn is complete graph then

HE(G) = 4(n− 1)(n− 2).

Proof. If Kn is complete graph, then degKn
(u) = n − 1, u ∈ V (G). Also

from Theorem 4 we have Hamming distances

Hd(s(u), s(v)) =

{
degG(u) + degG(v)− 2, if u ∼ v

degG(u) + degG(v), if u ≁ v

=

{
2n− 4, if u ∼ v;

0, if u ≁ v.

Therefore, Hamming matrix is

H(G) =



0 2n− 4 . . . 2n− 4 2n− 4

2n− 4 0 . . . 2n− 4 2n− 4
...

...
. . .

...
...

2n− 4 2n− 4 . . . 0 2n− 4

2n− 4 2n− 4 . . . 2n− 4 0


.
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From det(H(G)−λI) = 0 we obtain λ1 = (n−1)(2n−4) and λi = 2n−4,

for i = 2, . . . , n. Given this,

HE(G) =

n∑
i=1

|λi| = 2 · (n− 1)(2n− 4) = 4(n− 1)(n− 2).

Corollary. For the complete graph Kn with n ≥ 4, we have HE(G) =
4

n
HB(G).

Considering the relationship between the Hamming index HB(G) of

graph G and its largest eigenvalue λ1, the next inequality provides a sig-

nificant insight into the spectral characteristics of G. This inequality shows

how important the Hamming index is in limiting spectral properties.

Theorem 8. Let G be a graph on n vertices and let λ1 ≥ λ2 ≥ . . . ≥ λn be

the eigenvalues of the Hamming matrix H(G). If HB(G) is the Hamming

index of the graph G, then

2HB(G)

n
≤ λ1.

Proof. Given that λ1 ≥ λ2 ≥ . . . ≥ λn and applying the Cauchy-Schwarz

inequality, we obtain

nλ2
1 ≥

n∑
i=1

λ2
i = tr

(
H(G)TH(G)

)
=
∑
ij

h2
ij ≥

(∑
ij

hij

)2

n
=

4H2
B(G)

n
.

Therefore,
2HB(G)

n
≤ λ1.

By applying Geršgorin’s circular theorem (1), we provide meaningful

estimates for the Hamming energy of certain special classes of graphs. This

represents a significant result and application in graph energy. Therefore,

we illustrate the use of the theorem through our examples.

Theorem 9. If Cn is cycle graph, then

HE(G) ≤ 4n(n− 2).
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Proof. If Cn is cycle graph, then deg(u) = 2, u ∈ V (G). Also from Theo-

rem 4 we have Hamming distances

Hd(s(u), s(v)) =

{
2, if u ∼ v;

4, if u ≁ v.

Therefore, Hamming matrix is

H(G) =



0 2 4 . . . 4 2

2 0 2 . . . 4 4

4 2 0 . . . 4 4
...

...
...

. . .
...

...

4 4 4 . . . 0 2

2 4 4 . . . 2 0


.

Hence, in each row, we have one 0, two 2s, and the rest are 4s. One of

the most significant results we use is Geršgorin’s theorem. In our case,

the Hamming matrix has a special form, with all zeros on the main diag-

onal. Therefore, the application of this theorem is significant because it is

directly relevant to our evaluation.

|λ− hii| = |λ| ≤ ri(H(G)).

Therefore, for λ ∈ σ(H(G)) we have

|λ| ≤ ri(H(G)) = 2 · 2 + 4 · (n− 3) = 4(n− 2).

Given this, the energy is

HE(G) =

n∑
i=1

|λi| ≤
n∑

i=1

ri(H(G)) =

n∑
i=1

4(n− 2) = 4n(n− 2).

Theorem 10. If Sn (n > 3) is a star graph and let λ1 ≥ λ2 ≥ . . . ≥ λn

be the eigenvalues of the Hamming matrix H(G), then

λ1 ≤ (n− 1)(n− 2).
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Proof. For star graph Sn we have Hamming distances

Hd(s(u), s(v)) =

{
n− 2, if u ∼ v;

2, if u ≁ v.

Therefore, Hamming matrix is

H(G) =



0 n− 2 n− 2 . . . n− 2 n− 2

n− 2 0 2 . . . 2 2

n− 2 2 0 . . . 2 2
...

...
...

. . .
...

...

n− 2 2 2 . . . 0 2

n− 2 2 2 . . . 2 0


.

Hence we have two cases. For the first row, we have one 0 and the rest are

n− 2’s. So, form Geršgorin’s theorem 1 we obtain

|λ| ≤ r1(H(G)) = (n− 1) · (n− 2).

The following applies to the rest of the species

|λ| ≤ ri(H(G)) = n− 2 + (n− 2) · 2 = 3(n− 2), i ̸= 1.

So, for n > 3 we have r1(H(G)) ≥ ri(H(G)). Therefore,

λ1 ≤ (n− 1)(n− 2).

5 Predictive potential of the hamming en-

ergy of a graph

To give a glimpse into the possible chemical applicability of the Hamming

graph energy, we present here its predictive potential.

The correlation between HE(G) and the entropy (S), the heat of va-

porization (Hvap), and the heat of formation (Hf ) of octane molecules

is depicted in Figure 2. To obtain a better perspective into the predic-
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tive potential of HE(G), the correlation between graph energy E(G) and

physicochemical properties is also depicted.

Figure 2 shows that the Hamming energy of a graph is better correlated

with the S and Hvap of molecules, compared to the graph energy. Namely,

in both cases, the coefficient of correlation (R) for the Hamming energy of

a graph is significantly higher indicating that HE(G) may be applied to

model these physicochemical properties of molecules. However, the graph

energy shows a somewhat better correlation with the heat of formation.

400 450
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42.5

43.0

43.5

44.0

H
E

(G
)

R = -0.9407

35.0 37.5 40.0
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−220 −210

Hf (kJ mol−1)

42.5

43.0

43.5

44.0

R = -0.8008

400 450

S (J mol−1K−1)

8

9

E
(G

)

R = 0.7262

35.0 37.5 40.0

Hvap (kJ mol−1)
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Figure 2. Correlation between the Hamming energy HE(G) and en-
ergy E(G) and the physicochemical properties of octanes.
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