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Abstract

The energy of a vertex vi in a graph G is EG(vi) = |A|ii, where
A is the adjacency matrix of G, and |A| = (AA∗)1/2. The graph
energy is then E(G) = EG(v1)+EG(v2)+ · · ·+EG(vn). In this paper
we calculate the energy of vertices of some subdivision graphs.

1 Introduction

Let G be a simple graph with n vertices and m edges. Let V (G) =

{v1, v2, . . . , vn} be the vertex set of G. The degree of a vertex v ∈ V (G)

is the number of edges incident to it. If each vertex of G has same degree

equal to r, then G is said to be an r-regular graph. As usual, Kn denotes

the complete graph on n vertices and Kp,q denotes the complete bipartite

graph on p+ q vertices.

The subdivision graph S(G) of a graph G is obtained from G by in-

serting a new vertex on each edge of G. Thus if G has n vertices and m

edges, then S(G) has n+m vertices and 2m edges [6].
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The adjacency matrix of a graph G is the square matrix A = A(G) =

[aij ] of order n, in which aij = 1 if the vertices vi and vj are adjacent and

aij = 0 otherwise. The characteristic polynomial of a graph G is defined

as

ϕ(G : λ) = det(λI −A(G)) ,

where I is the identity matrix of order n. The eigenvalues of the adjacency

matrix ofG are called the eigenvalues ofG and are labeled as λ1, λ2, . . . , λn.

The energy of a graph G is defined as the sum of the absolute values

of the eigenvalues of G and is denoted by E(G) [5]. That is

E(G) =

n∑
i=1

|λi| .

More on the graph energy can be found in [7, 8].

Recently Arizmendi and Juarez-Romero [2] introduced the energy of a

vertex. According to them, the energy of a vertex vi, denoted by EG(vi),
is defined as

EG(vi) = |A|ii, for i = 1, 2, . . . , n ,

where |A| = (AA∗)1/2.

Given E(G) = trace(|A(G)|), the energy of a graph can be calculated

by adding the energies of the vertices of G. That is

E(G) =

n∑
i=1

EG(vi). (1)

In the paper [1], Arizmendi et al. determined the basic properties of

the energy of a vertex, including some bounds. In [3] they showed that

the energy of a vertex can be calculated by means of a Coulson integral

formula. The energy of vertices of some graphs, such as transitive graph,

complete graph, hypercube, cycle, complete bipartite graph, friendship

graph, dandelion graph, and path are given in [1]. In this paper we obtain

the energy of the vertices of the subdivision graph of complete graph,

complete bipartite graph, cocktail party graph, and Petersen graph.

We need the following auxiliary results.
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Lemma 1. [1] Let G be a graph with n vertices. Then

EG(vi) =
n∑

j=1

pij |λj |, i = 1, . . . , n,

where λj denotes the j-th eigenvalue of the adjacency matrix A and the

weights pij satisfy

n∑
i=1

pij = 1 and

n∑
j=1

pij = 1.

Moreover pij = u2
ij, where U = (uij) is the orthogonal matrix whose

columns are the eigenvectors of A.

Lemma 2. [1] Let G be a graph with n vertices. For k ∈ N, let ϕi(A
k) be

the k-th moment of A with respect to the linear functional ϕi. Then

ϕi(A
k) =

n∑
j=1

pijλ
k
j , i = 1, . . . , n,

where the notation is same as in Lemma 1.

Recall that ϕi(A
k) is equal to the number of vi−vi walks in G of length

k.

Lemma 3. [1] Let G be a bipartite graph with partite sets V1 and V2. Then∑
u∈V1

EG(u) =
∑
v∈V2

EG(v) .

Lemma 4. [4] Let G be an r-regular graph with n vertices and m edges.

Then

ϕ(S(G) : λ) = λm−n ϕ(G : λ2 − r) .

2 Energy of vertex

In this section we determine the energy of the vertices of the subdivision

graph of complete graph, complete bipartite graph, cocktail party graph,
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and Petersen graph.

Theorem 1. Let v1, v2, . . . , vn be the vertices of the complete graph Kn,

n ≥ 2. If the vertex set of the subdivision graph S(Kn) is{
v1, v2, . . . , vn, s1, s2, . . . , sn(n−1)

2

}
where sj, j = 1, 2, . . . , n(n−1)

2 are the subdivided vertices, then

ES(Kn)(vi) =
(n− 1)

√
n− 2 +

√
2(n− 1)

n
, i = 1, 2, . . . , n

and

ES(Kn)(sj) =
2
(
(n− 1)

√
n− 2 +

√
2(n− 1)

)
n(n− 1)

, j = 1, 2, . . . ,
n(n− 1)

2
.

Proof. The characteristic polynomial of Kn is ϕ(Kn : λ) = (λ+1)n−1(λ−
(n−1)) [4] and herem = n(n−1)

2 . Therefore by Lemma 4, the characteristic

polynomial of S(Kn) is

ϕ(S(Kn) : λ) = λ
n2−3n

2 (λ2 − (n− 2))n−1(λ2 − 2(n− 1)) .

The distinct eigenvalues of S(Kn) are λ1 = 0, λ2 =
√
n− 2, λ3 = −

√
n− 2,

λ4 =
√
2(n− 1) and λ5 = −

√
2(n− 1).

Now we find the weights p11, p12, p13, p14, and p15 of the vertex v1 of

S(Kn). By Lemma 2 we have following system of linear equations:

p11 + p12 + p13 + p14 + p15 = 1 ;

p11λ1 + p12λ2 + p13λ3 + p14λ4 + p15λ5 = 0 ;

p11λ
2
1 + p12λ

2
2 + p13λ

3
2 + p14λ

2
4 + p15λ

2
5 = n− 1 ;

p11λ
3
1 + p12λ

3
2 + p13λ

3
3 + p14λ

3
4 + p15λ

3
5 = 0 ;

p11λ
4
1 + p12λ

4
2 + p13λ

4
3 + p14λ

4
4 + p15λ

4
5 = n2 − n .
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That is

p11 + p12 + p13 + p14 + p15 = 1 ;
√
n− 2 p12 −

√
n− 2 p13 +

√
2(n− 1) p14 −

√
2(n− 1) p15 = 0 ;

(n− 2)p12 + (n− 2)p13 + 2(n− 1)p14 + 2(n− 1)p15 = n− 1 ;

(n− 2)3/2 p12 − (n− 2)3/2 p13 + (2(n− 1))3/2 p14 − (2(n− 1))3/2 p15 = 0 ;

(n− 2)2 p12 + (n− 2)2 p13 + 4(n− 1)2 p14 − 4(n− 1)2 p15 = n2 − n .

Solving the above system of equations we get

p11 = 0 , p12 = p13 =
n− 1

2n
, p14 = p15 =

1

2n
.

Therefore, by Lemma 1

ES(Kn)(v1) = p11|λ1|+ p12|λ2|+ p13|λ3|+ p14|λ4|+ p15|λ5|

= (0)|0|+ n− 1

2n

∣∣√n− 2
∣∣+ n− 1

2n

∣∣−√
n− 2

∣∣
+

1

2n

∣∣∣√2(n− 1)
∣∣∣+ 1

2n

∣∣∣−√
2(n− 1)

∣∣∣
=

(n− 1)
√
n− 2 +

√
2(n− 1)

n
.

This means that by symmetry, for all vertices vi, i = 1, 2, . . . , n,

ES(Kn)(vi) =
(n− 1)

√
n− 2 +

√
2(n− 1)

n

holds.

Since S(Kn) is a bipartite graph, by Lemma 3,

n(n−1)
2∑

j=1

ES(Kn)(sj) =

n∑
i=1

ES(Kn)(vi)

n(n−1)
2∑

j=1

ES(Kn)(s1) =

n∑
i=1

ES(Kn)(v1)

n(n− 1)

2
ES(Kn)(s1) = n ES(Kn)(v1)
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ES(Kn)(s1) =
2

n− 1
ES(Kn)(v1)

=
2
(
(n− 1)

√
n− 2 +

√
2(n− 1)

)
n(n− 1)

.

Again, this implies that for all vertices sj , j = 1, 2, . . . , n(n−1)
2 ,

ES(Kn)(sj) =
2
(
(n− 1)

√
n− 2 +

√
2(n− 1)

)
n(n− 1)

holds.

Theorem 2. Let v1, v2, . . . , v2n be the vertices of the complete bipar-

tite graph Kn,n. If the vertex set of the subdivision graph S(Kn,n) is

{v1, v2, . . . , v2n, s1, s2, . . . , sn2}, where sj, j = 1, 2, . . . , n2, are the sub-

divided vertices, then

ES(Kn,n)(vi) =
n− 1√

n
+

1√
2n

, i = 1, 2, . . . , 2n

and

ES(Kn,n)(sj) =
2

n

(
n− 1√

n
+

1√
2n

)
, j = 1, 2, . . . , n2.

Proof. The characteristic polynomial of Kn,n is ϕ(Kn,n : λ) = λ2n−2(λ2 −
n2) [4] and here m = n2. Therefore by Lemma 4, the characteristic poly-

nomial of S(Kn,n) is

ϕ(S(Kn,n) : λ) = λn2−2n+2(λ2 − n)2n−2(λ2 − 2n) .

The distinct eigenvalues of S(Kn,n) are λ1 = 0, λ2 =
√
n, λ3 = −

√
n,

λ4 =
√
2n, and λ5 = −

√
2n.

Now we find the weights p11, p12, p13, p14 and p15 of the vertex v1. By

Lemma 2, we have the following system of linear equations:

p11 + p12 + p13 + p14 + p15 = 1 ;
√
np12 −

√
np13 +

√
2np14 −

√
2np15 = 0 ;

np12 + np13 + 2np14 + 2np15 = n ;
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n
√
np12 − n

√
np13 + 2n

√
2np14 − 2n

√
2np15 = 0 ;

n2p12 + n2p13 + 4n2p14 + 4n2p15 = n2 + n .

Solving the above system of equations, we get p11 = 1
2n , p12 = p13 =

n−1
2n and p14 = p15 = 1

4n . Therefore by Lemma 1

ES(Kn,n)(v1) = p11|λ1|+ p12|λ2|+ p13|λ3|+ p14|λ4|+ p15|λ5|

=
1

2n
|0|+ n− 1

2n

∣∣√n
∣∣+ n− 1

2n

∣∣−√
n
∣∣

+
1

4n

∣∣∣√2n
∣∣∣+ 1

4n

∣∣∣−√
2n

∣∣∣
=

n− 1√
n

+
1√
2n

.

Then by symmetry, also for all other vertices vi, i = 2, 3, . . . , 2n,

ES(Kn,n)(vi) =
n− 1√

n
+

1√
2n

.

Since S(Kn,n) is a bipartite graph, by Lemma 3,

n2∑
j=1

ES(Kn,n)(sj) =

2n∑
i=1

ES(Kn,n)(vi)

n2∑
j=1

ES(Kn,n)(s1) =

2n∑
i=1

ES(Kn,n)(v1)

n2 ES(Kn,n)(s1) = 2n ES(Kn)(v1)

ES(Kn)(s1) =
2

n
ES(Kn)(v1) =

2

n

(
n− 1√

n
+

1√
2n

)
.

Then also for all other vertices sj , j = 2, 3, . . . , n2,

ES(Kn,n)(sj) =
2

n

(
n− 1√

n
+

1√
2n

)
holds.

A regular graph H of degree n − 2 with n = 2k, k ≥ 2, vertices is

called cocktail party graph. That is a graph obtained from the complete
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graph K2k by removing one factor [4]. In a fully analogous manner as

Theorems 1 and 2, we can prove:

Theorem 3. Let v1, v2, . . . , vn be the vertices of the cocktail party graph

H, where n = 2k, k ≥ 2. If the vertex set of the subdivision graph S(H) is{
v1, v2, . . . , vn, s1, s2, . . . , sn(n−2)

2

}
, where sj, j = 1, 2, . . . , n(n−2)

2 , are the

subdivided vertices, then

ES(H)(vi) =
k
√
2k − 2 + (k − 1)

√
2k − 4 +

√
4k − 4

2k

for i = 1, 2, . . . , n, and

ES(H)(sj) =
k
√
2k − 2 + (k − 1)

√
2k − 4 +

√
4k − 4

2(k2 − k)

for j = 1, 2, . . . , n(n− 2)/2.

The Petersen graph is the complement of the line graph of K5.

Theorem 4. Let {v1, v2, . . . , v10} be the vertex set of the Petersen graph

P , and {v1, v2, . . . , v10, s1, s2, . . . , s15} be the vertex set of its subdivision

graph S(P ). Then

ES(P )(vi) ≈ 1.64494, i = 1, 2, . . . , 10

and

ES(P )(sj) ≈ 1.09662, j = 1, 2, . . . , 15 .

Proof. The characteristic polynomial of the Petersen graph P is [4]

ϕ(P : λ) = (λ− 3)(λ+ 2)4(λ− 1)5.

Therefore, by Lemma 4, the characteristic polynomial of S(P ) is

ϕ(S(P ) : λ) = λ5(λ2 − 6)(λ2 − 1)4(λ2 − 4)5.

The distinct eigenvalues of S(P ) are λ1 = 0, λ2 =
√
6, λ3 = −

√
6, λ4 = 1,

λ5 = −1, λ6 = 2, and λ7 = −2.
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Let p11, p12, p13, p14, p15, p16 and p17 be the weights of the vertex

v1 in S(P ). Then by Lemma 2, we have the following system of linear

equations:

p11 + p12 + p13 + p14 + p15 + p16 + p17 = 1 ;
√
6 p12 −

√
6 p13 + p14 − p15 + 2p16 − 2p17 = 0 ;

6p12 + 6p13 + p14 + p15 + 4p16 + 4p17 = 3 ;

6
√
6 p12 − 6

√
6 p13 + p14 − p15 + 8p16 − 8p17 = 0 ;

36 p12 + 36 p13 + p14 + p15 + 16 p16 − 16 p17 = 12 ;

36
√
6 p12 − 36

√
6 p13 + p14 − p15 + 32 p16 − 32 p17 = 0 ;

216 p12 + 216 p13 + p14 + p15 + 64 p16 + 64 p17 = 54 .

Solving these equations we get

p11 = 0 , p12 = p13 = 0.05 , p14 = p15 = 0.2 , p16 = p17 = 0.25 .

Therefore by Lemma 1

ES(P )(v1) = p11|λ1|+ p12|λ2|+ p13|λ3|+ p14|λ4|+ p15|λ5|

+ p16|λ6|+ p17|λ7|

= (0)|0|+ (0.05)
∣∣∣√6

∣∣∣+ (0.05)
∣∣∣−√

6
∣∣∣+ (0.2)|1|+ (0.2)| − 1|

+ (0.25)|2|+ (0.25)| − 2| ≈ 1.64494

implying that ES(P )(vi) ≈ 1.64494 holds for all i = 1, 2, . . . , 10.

Since S(P ) is a bipartite graph, by Lemma 3,

15∑
j=1

ES(P )(sj) =

10∑
i=1

ES(P )(vi)

15∑
j=1

ES(P )(s1) =

10∑
i=1

ES(P )(v1)

(15)ES(P )(s1) = (10)ES(P )(v1)

ES(P )(s1) ≈ 10

15
· 1.64494 = 1.09662



710

implying that ES(P )(sj) ≈ 1.09662 holds for all j = 1, 2, . . . , 15.

3 Energy of subdivision graphs

Using Eq. (1) and the results of Theorems 1–4, we get the energy of

subdivison graph of complete graph, complete bipartite graph, cocktail

party graph and of Petersen graph as follows.

E(S(Kn)) =
√
2(n− 1)

[
2 +

√
2(n− 1)(n− 2)

]
;

E(S(Kn,n)) = 4
√
n

[
n− 1 +

1√
2

]
;

E(S(H)) = 2
√
2(k − 1)

[
k +

√
(k − 1)(k − 2) +

√
2
]
;

E(S(P )) ≈ 32.8987 .
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