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Abstract

Biochemical Systems Theory (BST) is a modeling framework
that employs power-law formulations to effectively capture the in-
herent nonlinearities and heterogeneity of biological systems. Recent
research has shown that BST models can be modelled by reaction
networks. However, many key results in Chemical Reaction Net-
work Theory (CRNT) rely on the condition of weak reversibility - a
property often absent in reaction networks derived from BST mod-
els. To address this challenge, this paper develops algorithms for
constructing weakly reversible realizations of two variants of BST
models: S-systems and General Mass Action (GMA) systems. By
applying these algorithms, fundamental network properties are sim-
plified, and recent CRNT results regarding the steady states of such
systems are validated. Additionally, some of these algorithms yield
deficiency zero networks - a necessary property for the existence of
complex-balanced steady states. Finally, the proposed algorithms
are applied to the GMA representation of the carbon cycle models
by Anderies et al. and Heck et al., demonstrating the existence of
concentration robustness in these models.
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1 Introduction

For over 150 years, the mass action law, which was first formulated by

Cato Maximillian Guldberg and Peter Waage in 1864 and later clarified

by Jacobus van ’t Hoff in 1877, has established itself as the most used

default model in mathematical modelling to the point that it is considered

an undisputed truth [11, 29]. However, this formulation quickly fails in

realistic situations such that even simple chemical reaction systems lead to

nonlinearities [10,11]. It is for this reason that Michael Savageau proposed

a new framework he called Biochemical Systems Theory (BST) in 1969 to

take into account nature’s heterogeneity [11]. This paved the way for the

analysis of dynamic and large-scale biological and biochemical systems.

Instead of using mass action law, Savageau used power law formulations,

which can be thought of as a direct generalization of Guldberg and Waage’s

mass action law, as core representations for such processes [10,11].

It has been found out in [3] that BST models can be represented by

chemical reaction networks, which means that results in Chemical Reaction

Network Theory (CRNT) can be applied to analyze BST models. Now,

many results in CRNT are hinged on the condition that reaction networks

be weakly reversible (i.e., all components of a linkage class are strongly con-

nected with each other). For example, the deficiency theorems require that

the reaction networks be weakly reversible so that conclusions can be made

on the dynamics of the associated system, such as on the non-emptiness

of its set of positive steady states [5, 7, 30, 31]. Furthermore, non-weakly

reversible systems with zero deficiency are generally undesirable because

they cannot admit a positive equilibrium, nor can they support a cyclic

composition trajectory in which all species concentrations remain posi-

tive [21]. However, weak reversibility is usually not the case for chemical

reaction networks underlying BST models [3]. In fact, all of the seventeen

BST models of biological systems examined in [3] and [4] were found to be

not weakly reversible. This leads to the following question: Is it possible

to construct weakly reversible realizations of chemical reaction networks

underlying BST models?

Attempts were made to construct weakly reversible realizations of reac-
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tion networks. However, the reaction networks considered are only those

that are endowed with mass action kinetics. Szederkenyi, Hangos, and

Tuza proposed a method under a Mixed Integer Linear Programming

(MILP) framework based on elementary graph theory to construct a dense

weakly reversible realization [14]. Here, the method requires potentially

multiple MILP optimizations which are known to be NP-hard [22]. As a

remedy, the weak reversibility part is reformulated as a linear constraint

which is based on the fact that a reaction graph corresponding to a Lapla-

cian matrix Ak is weakly reversible if and only if there exists a vector

b ∈ Rm
>0 ∩ ker(Ak) where m is the number of species in the reaction net-

work [22]. In this reformulation, determining a weakly reversible realiza-

tion can now be done in a single MILP step.

As mentioned, these attempts of finding a dynamically equivalent we-

akly reversible realization are valid only under the assumption of mass

action kinetics which does not answer the original question posed above.

This paper presents algorithms for constructing weakly reversible re-

alizations of reaction networks underlying BST models. In particular,

it considers two variants of BST models, namely General Mass Action

(GMA) systems and S-systems. For S-systems, we develop an algorithm

that will preserve the reaction vectors of the influx and efflux reactions of

the algorithm in [3]. Notably, this new dynamically equivalent network is

weakly reversible and deficiency zero.

For GMA systems, we consider two approaches. For small scale sys-

tems, we use the characterization of the incidence matrix Ia that encodes

a weakly reversible network. Here, we determine the positive entries of the

molecularity matrix Y by solving the induced linear system from the ma-

trix equation Y ·Ia = N , where Ia is selected to ensure that the associated

network is weakly reversible. To narrow down the candidates for Ia in this

formulation, we use the result in [8, 15] which states that if the reaction

network is positive-dependent, then the network has a weakly reversible

realization. We take advantage of this by breaking down the network into

positive-dependent subnetworks and focus on finding weakly reversible re-

alizations for each subnetwork. For large scale GMA systems, we also

consider poly-PL kinetics, introduced in [6], to apply the S-system algo-
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rithm. These poly-PL kinetics, i.e. positive linear combinations of power

law kinetics, naturally occur in the kinetic system realizations of GMA sys-

tems. Because the resulting networks are weakly reversible and deficiency

zero, we can leverage the power-law results of Talabis et al. [5–7] and the

parametrization results of Müller and Regensburger [30]. Lastly, we apply

the algorithms proposed in this paper for concentration robustness analy-

sis. We demonstrate the effectiveness of our approach by considering the

carbon cycle models Anderies et al. [17] and Heck et al. [32], showcasing

the applicability of our methods in analyzing such models.

The paper is organized as follows: Section 2 presents some basic no-

tions on CRNT and BST models as needed in the succeeding sections. In

Section 3, we present in detail a characterization of the structure of an

Ia that encodes weakly reversible networks. This section also discusses an

approach to be more efficient in choosing an Ia in the implementation of

the algorithm. Section 4 offers a complete, step-by-step description of the

algorithms for finding a weakly reversible realization of BST models. Addi-

tionally, various network and kinetic properties of the constructed weakly

reversible realizations are analyzed and compared to those of the reac-

tion network representations in [3]. In Section 5, we apply our algorithms

to identify key features of the system, such as concentration robustness.

The results are illustrated using the GMA representation of the carbon

cycle models by Anderies et al [17] and Heck et al [32]. Lastly, an overall

summary is provided in Section 6.

2 Preliminaries

2.1 Fundamentals of reaction networks

and kinetic systems

A chemical reaction network (CRN) is defined by three sets. First, we

have the set of species which is denoted by S = X1, X2, . . . , Xm. Its

cardinality is equal to m. Second, we have the set of complexes, de-

noted by C = C1, C2, . . . , Cn, which are linear combinations of the species

with nonnegative stoichiometric coefficients. Its cardinality is equal to n.
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Lastly, we have the set of reactions R which are ordered pairs of dis-

tinct complexes. The ordered pair (Ci, Cj) ∈ R is denoted in the CRN as

Ci → Cj with a nonnegative weight, kij , assigned to it called the reaction

rate coefficient. Here, Ci is called the reactant complex while Cj is

the product complex. The cardinality of R is equal to r.

A CRN can be represented by a directed graph. Recall that a directed

graph (or digraph) D consists of a non-empty finite set V (D) of elements

called vertices and a finite set E(D) of ordered pairs of distinct vertices

called edges. In CRN, the set of vertices in the digraph is C while the set

of edges is R. A directed walk is a sequence of edges {E1, E2, ..., En−1}
connecting a sequence of vertices {V1, V2, ..., Vn} such that Ei = (Vi, Vi+1)

for i = 1, ..., n− 1. A directed path is a directed walk with distinct edges

and vertices. Two vertices are said to be connected if there is a directed

path between them. Furthermore, two vertices are strongly connected if

there is a directed path to and from each other.

Given these terminologies, we say that two complexes Ci and Cj are

connected if we can find a series of reactions that connects Ci to Cj , or

from Cj to Ci. On the other hand, they are strongly connected if we

can find a series of reactions that connects Ci to Cj , and vice versa.

A set of complexes is called a linkage class of the CRN, denoted

by L i, if the complexes in the set are connected but not to any other

complex that is not in the set. Moreover, it is a strong linkage class

if the complexes are strongly connected. It can also be a subset of the

linkage class where any two complexes are connected by a directed path

in each direction. In other words, a (strong) linkage class is a maximal set

of (strongly) connected complexes. A complex, if not strongly connected

to other complex/es in the CRN, is a trivial strong linkage class. We

denote the number of linkage classes by l and the number of strong linkage

classes by sl. A CRN is weakly reversible if l = sl (i.e., every linkage

class is a strong linkage class).

Running Example 1 - Part 1. To illustrate the concepts above, consider

the chemical reaction network below.
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X1 2X1 +X2

0 X3 X4 +X5

k1

k2

k3

k4

The ki’s are called the reaction rate coefficients. We have m = 5

(species), n = 5 (complexes), and r = 4 (reactions), where

S = {X1, X2, X3, X4, X5} , C = {X1, 2X1 +X2, 0, X3, X4 +X5} ,

R = {(X1, 2X1 +X2), (0, X3), (X3, 0), (X3, X4 +X5)}

The entity “0” in the CRN is called the zero complex which is just the

zero vector in RS . The zero complex helps model the creation or annihila-

tion of species in the network. The zero complex and the complex X4+X5

are connected since we can find a series of reactions from 0 to X4 + X5.

However, they are not strongly connected. An example of strongly con-

nected complexes are the zero complex and X3. Here, there are two linkage

classes, namely L 1 = {X1, 2X1 +X2} and L 2 = {0, X3, X4 +X5}. But

there are 4 strong linkage classes, namely {X1}, {2X1 +X2}, {0, X3},and
{X4 +X5}. So, l = 2 but sl = 4. Therefore, the CRN N is not weakly

reversible.

The matrices that will be defined characterize a CRN. The molec-

ularity matrix Y is an m × n matrix where the (i, j)-th entry is the

stoichiometric coefficient of the species Xi in complex Cj . The incidence

matrix Ia is an n × r matrix where each row corresponds to a complex

and each column corresponds to a reaction, satisfying

(Ia)(i,j) =





−1 if i is the reactant complex of reaction j ∈ R,

1 if i is the product complex of reaction j ∈ R,

0 otherwise.

Lastly, the stoichiometric matrix N is an m × r matrix whose entries

are taken from the reaction vectors. The reaction vectors of the CRN are
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the members of the set {Cj − Ci ∈ Rm|Ci → Cj ∈ R}. The span of this

set is called the stoichiometric subspace. Alternatively, N = Y · Ia.

Running Example 1 - Part 2. In Running Example 1, the matrices Y ,

Ia, and N are

Y =

X1 2X1 +X2 0 X3 X4 +X5


1 2 0 0 0 X1

0 1 0 0 0 X2

0 0 0 1 0 X3

0 0 0 0 1 X4

0 0 0 0 1 X5

Ia =

R1 R2 R3 R4


−1 0 0 0 X1

1 0 0 0 2X1 +X2

0 −1 1 0 0

0 1 −1 −1 X3

0 0 0 1 X4 +X5

N =

R1 R2 R3 R4


1 0 0 0 X1

1 0 0 0 X2

0 1 −1 −1 X3

0 0 0 1 X4

0 0 0 1 X5

Here, we denote the reactions by Ri such that R1 : X1 → 2X1 +X2, R2 :

0 → X3, R3 : X3 → 0, and R4 : X3 → X4 +X5.

A kinetics K of a CRN is defined as an assignment to each reaction

Ci → Cj ∈ R of a continuously differentiable rate function KCi→Cj
:

R̄S
+ → R̄+ such that if KCi→Cj

(c) > 0 then supp(Ci) ⊂ supp(c). Supp(Ci)

are the species that appear in Ci. The pair (N ,K) is called a chemical

kinetic system (CKS).

Under power law kinetics (PLK), the rate at which a reaction occurs

is given by

Ki(x) = ki

m∏

j=1

x
Fij

j , ∀i ∈ {1, 2, . . . , r}

with rate constants ki > 0 and Fij ∈ R known as kinetic orders defined

in the r × m kinetic order matrix F . PLK offers more flexibility in

modelling systems in biochemistry, epidemics, etc. [9]. A special class
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of PLK is the power law reactant-determined kinetics (PL-RDK)

where reactions with identical reactant complexes have the same kinetics

orders. If this condition is not met, the kinetic system falls under PL-

NDK.

Running Example 1 - Part 3. In Running Example 1, we can define

the kinetics of the CRN under PLK as follows

K(x) =







k1X
f11
1

k2

k3X
f33
3

k4X
f43
3

where fij ∈ F . The dynamical system of the CRN of our running example

can be written as




Ẋ1

Ẋ2

Ẋ3

Ẋ4



=

R1 R2 R3 R4






1 0 0 0

1 0 0 0

0 1 −1 −1

0 0 0 1

0 0 0 1




k1X
f11
1

k2

k3X
f33
3

k4X
f43
3



= N ·K(x).

It is possible for different CRNs to have the same set of ordinary dif-

ferential equations. This motivates the concept of dynamical equivalence.

Two CRNs are said to be dynamically equivalent if they give rise to

the same set of ordinary differential equations. In such case, we say that

these CRNs are realizations of the associated dynamical system.

Another type of kinetics is the Poly-PL kinetics (PYK) which are

kinetic systems consisting of nonnegative linear combinations of power

law functions. Similar to PLK, the domain of PYK is Rm
> . Clearly, both

PLK and PYK generate the same species formation rate which is given

by the power law dynamical systems. We can define reactant-determined

kinetics for PYK (PY-RDK) similarly as PL-RDK. In 2019, Talabis et

al. [6] formally defined PYK as follows.
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Definition 1. A kinetics K : Rm
> → Rr is a poly-PL kinetics if

Ki(x) = ki(ai,1x
Fi,1 + ...+ ai,jx

Fi,j ) ∀i ∈ {1, 2, ..., r}

written in lexicographic order with ki ∈ R+, Fi,j , ai,j ∈ Rm and j ∈
{1, 2, ..., hi} (where hi is the number of terms in reaction i). Poly-PL

kinetics is defined by r × m matrices Fi,k = (Fij), called the kinetic

order matrices while vectors k = (ki) and (ai,·) ∈ Rr
> are called the

rate vector and poly-rate vectors, respectively.

In 2018, Talabis et al. [5] defined the concepts T and T̂ -matrices as

follows.

Definition 2. The m× nr T-matrix is the truncated Ỹ where the non-

reactant columns are deleted and nr is the number of reactant complexes.

The T̂ matrix is constructed from the T matrix such that

T̂ =

[
T

LT

]

where L is the nr × l matrix defined by L =
[
e1, e2, . . . , el

]
where ei is a

characteristic vector for linkage class L i.

It is also in [5] where Talabis et al. defined PL-TIK systems which is

a subclass of PL-RDK systems.

Definition 3. A PL-TIK kinetics is T̂ -rank maximal if the column rank

of T̂ is maximal.

Alternatively, we can determine if a system is PL-TIK by looking at

the concept of the kinetic order deficiency. It measures the degree of

kinetic interactions of the PL-RDK system. The kinetic order deficiency δ̂

can be computed by δ̂ = nr − q̂ where q̂=rank(T̂ ). If a system is PL-TIK,

it follows that rank(T̂ ) = nr. Hence, a system is PL-TIK if and only if

δ̂ = 0.

There is an analog of Definitions 2 and 3 for PYK systems which can

be found in [6]. In 2019, Talabis et al. [6] defined the concept of Tκ and

T̂κ matrices, and a PY-TIK system as follows.
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Definition 4. The m × nr poly T-matrix Tκ (∀κ ∈ {1, 2, ..., h}) is the

truncated Ỹκ where the non-reactant columns are deleted. Define the nr×l

matrix L = (e1, e2, ..., el) where e
i is a characteristic vector for linkage class

L i. The block matrix T̂κ ∈ R(m+l)×nr (∀κ ∈ {1, 2, ..., h}) is defined as

T̂κ =

(
Tκ

LT

)

Definition 5. A PYK system is PY-TIK if every T̂κ is rank maximal

(i.e., column rank of T̂κ is maximal).

2.2 Equilibria and network decomposition

In this subsection, we review some definitions and earlier results on equi-

libria. Later in this subsection, we will look into the theory of network

decomposition.

Once a kinetics is associated to a CRN, we can now determine the rate

at which the concentration of each species evolves through time.

Definition 6. The species rate formation function f : Rm
≥0 → Rn of

a CKS is given by

f(x) = N ·K(x) =
∑

Ci→Cj∈R

KCi→Cj
(x)(Cj − Cj)

for all x ∈ Rm
≥0. The ODE or dynamical system of the CKS is defined as

dx

dt
= f(x). An element c∗ of Rm

>0 for which f(c∗) = 0 is called a positive

equilibrium or steady state. The set of positive steady states,

denoted as E+, is defined by E+ = {x ∈ Rm
>0|f(x) = 0}.

We also have the concept of a complex formation rate function which

is the analog of the species formation rate function for complexes.

Definition 7. The complex formation rate function g : Rm
>0 → Rn

of a CKS is given by

g(x) = Ia ·K(x)



641

A complex balanced steady state c happens if g(c) = 0. A CKS is

complex balanced if it has a complex balanced steady state. The set of

complex balanced equilibria, denoted by Z+, is given by Z+ = {x ∈
Rm

>0|g(x) = 0}.

Complex balanced systems played an important role in the development

of the theory of chemical reaction networks. It was Horn and Jackson [12]

who first introduced the concept of complex balancing. From the definition

above, we can say that a system is complex balanced at a state if for each

complex, formation and degradation are at equilibrium. Lastly, it is worth

noting that Z+(N ,K) ⊆ E+(N ,K).

Positive equilibria and complex balanced equilibria of certain classes of

power law systems were explored in [5,7]. The following results are called

deficiency theorems because of the condition that the deficiency be 0 or 1.

Theorem 1 ( [5]). Let (N ,K) be a PL-TIK system with δ = 0. Then

E+(N ,K) ̸= 0 if and only if N is weakly reversible. Furthermore, the

following also hold:

i. If E+(N ,K) ̸= ∅ and x∗ ∈ E+(N ,K), then

E+(N ,K) =

{
x ∈ Rm

+ | log(x)− log(x∗) ∈
(
S̃R

)⊥}

ii. If E+(N ,K) ̸= ∅, then |E+(N ,K)∩Q| = 1 for each positive kinetic

class Q.

Theorem 2 ( [5]). Let (N ,K) be a PL-TIK system satisfying

i. δθ ≤ 1, θ = 1, 2, . . . , l

ii.
l∑

θ=1

δθ = δ

If N is weakly reversible, then E+(N ,K) ̸= 0.

Items i.) and ii.) of Theorem 1 also hold for Theorem 2. The theorems

above show that the set of positive equilibria is non-empty if the network is

weakly reversible with deficiency equal to either 0 or 1. In Talabis et al [7],
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the condition that the deficiency be either zero or one is removed while

yielding conclusions about the complex-balanced equilibria. This can be

referred as a high deficiency theorem for PL-TIK systems.

Theorem 3 ( [7]). Let (N ,K) be a PL-TIK system. Then Z+(N ,K) ̸= 0

if and only if N is weakly reversible. Furthermore, the following also hold:

i. If Z+(N ,K) ̸= 0 and x∗ ∈ Z+(N ,K) ̸= 0, then

Z+(N ,K) =

{
x ∈ Rm

≥ | log(x)− log(x∗) ∈
(
S̃R

)⊥}

ii. If Z+(N ,K) ̸= 0, then |Z+(N ,K) ∩Q| = 1 for each positive kinetic

reactant flux class Q.

We also recall from [6] statements on the existence, parametrization,

and uniqueness of complex balanced equilibria for PY-TIK systems:

Theorem 4. [6] Let (N ,K) be a PY-TIK systems. Then N is weakly

reversible if and only if Z+(N ,K) ̸= ∅.

Theorem 5. [6] Let (N ,K) a weakly reversible poly-PL kinetic system

with poly T-matrices T1, ..., Th. Consider an arbitrary poly T-matrix Tk.

(i) if Z+(N ,K) ̸= ∅ and x∗ ∈ Z+(N ,K) then

Z+(N ,K) =
{
x ∈ Rm

≥

∣∣∣log(x)− log(x∗) ∈ (S̃j)
⊥
}
.

(ii) if Z+(N ,K) ̸= ∅ then |Z+(N ,K)∩Qj | = 1 for each positive kinetic

reactant flux class Qj.

We now proceed to reviewing the theory of network decomposition by

stating the following definitions.

Definition 8. A decomposition of N is a set of subnetworks of N

({N1,N2, . . . ,Nk}) induced by a partition {R1,R2, . . . ,Rk} of its reaction
set R.
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Definition 9. A network decomposition N = N1∪N2∪ . . .∪Nk is inde-

pendent if its stoichiometric subspace is a direct sum of the subnetwork

stoichiometric subspaces. It is incidence independent if the image of

the network’s incidence map is a direct sum of the images of the incidence

maps of the subnetworks.

In Fortun et al [26], it was shown that for an independent decomposi-

tion, δ ≤ δ1 + δ2 + . . .+ δk. In Farinas et al [16], it was shown that for an

incidence independent decomposition, δ ≥ δ1 + δ2 + . . .+ δk.

Feinberg identified a fundamental relationship between an independent

decomposition and the set of positive equilibria of a network.

Theorem 6 ( [19, 20]). Let P (R) = {R1,R2, ...,Rk} be a partition of a

CRN N and let K be a kinetics on N . If N = N1∪N2∪...∪Nk is the net-

work decomposition of P (R) and E+ (Ni,Ki) =
{
x ∈ RS

>0|NiKi(x) = 0
}

then

E+ (N1,K1) ∩ E+ (N2,K2) ∩ ... ∩ E+ (Nk,Kk) ⊆ E+ (N ,K) .

If the network decomposition is independent, then equality holds.

The following theorem is an analogue of Feinberg’s 1987 result for in-

cidence independent decompositions and complex balanced equilibria.

Theorem 7 ( [16]). Let N = (S ,C ,R) be a a CRN and Ni = (Si,Ci,

Ri) for i = 1, 2, ..., k be the subnetworks of a decomposition. Let K be any

kinetics, and Z+(N ,K) and Z+(Ni,Ki) be the sets of complex balanced

equilibria of N and Ni, respectively. Then

i. Z+ (N1,K1) ∩ Z+ (N2,K2) ∩ ... ∩ Z+ (Nk,Kk) ⊆ Z+ (N ,K).

If the decomposition is incidence independent, then

ii. Z+ (N ,K) = Z+ (N1,K1) ∩ Z+ (N2,K2) ∩ ... ∩ Z+ (Nk,Kk), and

iii. Z+ (N ,K) ̸= ∅ implies Z+ (Ni,Ki) ̸= ∅ for each i = 1, ..., k.

2.3 BST models and their CRN representations

There are different variants within BST depending on the rules in setting

up the equations for the model such as in the order of flux aggregation
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and power law approximation [10]. The two most common variants are

the GMA system and S-system.

If every process/reaction is modeled with its own power law represen-

tation, we have a GMA system. Its general format is as follows

Ẋi =

Ti∑

k=1

±γik

n+m∏

j=1

X
fikj

j , i = 1, 2, . . . , n

where n and m are the number of dependent and independent variables,

respectively, and Ti is the number of reactions/processes associated to

species Xi, γj are the rate constants, and fl are the kinetic orders. In

BST, a species is called dependent if it varies with time (i.e., Ẋi ̸= 0)

and independent otherwise. In this formulation, incoming reactions take

positive values while outgoing reactions take negative values. On the other

hand, if incoming processes or reactions and outgoing processes or reac-

tions are first aggregated and collectively modeled with only one power

law representation each, we have an S-system [10]. Its general format is

as follows

Ẋi = αi

n+m∏

j=1

X
gij
j − βi

n+m∏

j=1

X
hij

j , i = 1, 2, . . . , n.

where αi and βi are the rate constants, and gij and hij are the kinetic

orders. For more details on BST model construction and design, you can

refer to [10].

GMA system is more intuitive since it focuses on fluxes [10]. One flux is

modeled using one power law term. On the other hand, S-system is simpler

because it only involves two terms. It was also shown that S-systems are

more accurate representation for functions that start at a small value and

monotonically grow toward saturation [10]. Furthermore, GMA systems

require more complicated solution methods whereas S-system can only be

computed using linear algebra techniques [10].

In [3], a method is developed to represent a BST model as a CRN.

For the representation, a biochemical map is used which is like a reaction

graph. A directed mass transfer arrow in the biochemical map represents a
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reaction in the CRN. Furthermore, regulatory arrows - often represented as

broken lines in the biochemical map - are also accounted for which change

the connectivity of the CRN representation. These regulatory arrows point

from an element in the biochemical map to a reaction which represent the

role of that element as an inhibitor or promoter of that particular reaction.

If the sign associated to a regulatory arrow is negative, the element from

which the arrow originates acts as an inhibitor to the reaction for which the

regulatory arrow is pointing to. If the sign is positive, then that element

acts as a promoter to the reaction.

Running Example 2 - Part 1. Consider the map in Figure 1.

𝑋0 𝑋1

𝑋4

𝑋2 𝑋3
⊕

⊖

⊖

Figure 1. Biochemical Map of Generic pathway with one activating
and two inhibitory signals (Figure 3 from [11]).

For the GMA representation, we consider each reaction and regulatory

process separately and construct their respective power law formulation.

Thus,

Ẋ1 = α1X
g14
3 Xg11

0 − β11X
h1,11

1 − β12X
h1,12

1 X
h1,15

4

Ẋ2 = α2X
g22
1 − β2X

h23
2

Ẋ3 = α3X
g33
2 − β3X

h34
3 Xh35

4

Ẋ4 = α4X
g42
1 Xg45

4 − β4X
h45
4

For the S-system representation, we consider all the species that is in-

volved in both the incoming and outgoing reactions, and in the regulatory

processes. We then aggregate them each by one term in the equation.
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Thus,

Ẋ1 = κ1X
g11
0 Xg41

3 − κ2X
g22
1 Xg52

4

Ẋ2 = κ3X
g23
1 − κ4X

g34
2

Ẋ3 = κ5X
g35
2 − κ6X

g46
3 Xg56

4

Ẋ4 = κ7X
g27
1 Xg57

4 − κ8X
g58
4

As mentioned, it has been found out that BST models can be repre-

sented by reaction networks [3]. The goal is to associate a CRN represen-

tation such that it will induce the same ODE system as the BST model

using its biochemical map representation. In [3], Arceo et al. present

an algorithm for transforming Biochemical Systems Theory (BST) models

into reaction networks, which we refer to as the BST Algorithm.

Algorithm 1 (BST Algorithm). A. For GMA systems, we consider

first the inflow (i.e., reactions of the form 0 → Xi) and outflow

(i.e., reactions of the form Xi → 0) arrows and those without regu-

latory arrows. In the CRN representation, we include them as they

are (e.g., X1 → X2 and 0 → X0). For those with regulatory ar-

rows (dashed arrows), the rule is that for each interaction Xi → Xj

with a regulatory arrow from each Xk, we associate the reaction

Xi +
∑

Xk → Xj +
∑

Xk.

B. For S-system, for each dependent variable Xi, we associate the re-

action
∑

Xg,j → Xi +
∑

Xg,j for the production (influx) term of

Ẋi where Xg,j is a variable with gij ̸= 0 (i ̸= j) in the production

(influx) term in the ODE model. Furthermore, we associate the re-

action Xi +
∑

Xh,j → ∑
Xh,j for the degradation (efflux) term of

Ẋi where Xh,j is a variable with hij ̸= 0 (i ̸= j) in the degradation

(efflux) term in the ODE model.

Running Example 2 - Part 2. Consider Running Example 2. Using

the BST Algorithm, a realization of the Generalized Mass Action (GMA)

model is given by
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R1 :0 → X0

R2 :X0 +X3 → X1 +X3

R3 :X4 → 0

R4 :X1 +X4 → 2X4

R5 :X1 → X2

R6 :X3 +X4 → X4

R7 :X2 → X3

.

Meanwhile, the CRN representation of the S-system model is given by

R1 :X0 +X3 → X0 +X3 +X1

R2 :X2 → X2 +X3

R3 :X1 +X4 → X4

R4 :X3 +X4 → X4

R5 :X1 → X1 +X2

R6 :X1 +X4 → X1 + 2X4

R7 :X2 → 0

R8 :X4 → 0

3 An Ia that encodes a weakly reversible net-

work

3.1 Characterization of an Ia of a weakly reversible

network

In Section 2, it was mentioned that the stoichiometric matrix N is one

of the matrices that characterizes a CRN. Every row of N describes all

the reactions in which a particular species participates, therefore telling us

how the reactions are interconnected [1]. It is also essential in calculating

the flux production and degradation of each species of the network [27].

Since we have ẋ = N ·K(x), the stoichiometric matrix N determines the

dynamics of the network.

Now, we wish to construct a weakly reversible network that is dynam-

ically equivalent to the CRN representation of BST models based on the

method in Arceo at al [3]. Hence, it is important to keep the stoichiometric

matrix as is to preserve the dynamics of the initial network.

Recall that N = Y · Ia where Y is the molecularity matrix and Ia is

the incidence matrix. The matrix Y contains the stoichiometric coeffi-

cient of the species Xi in complex Cj while the matrix Ia shows how the
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complexes are interconnected in the reactions of the network. Since weak

reversibility has also something to do with the connectivity of the network,

the approach is to construct a network with Ia that encodes a weakly re-

versible network with the same N as the initial network. The succeeding

part of this section determines the structure of an Ia that encodes a weakly

reversible network.

Recall that a network is weakly reversible if for every pair of complexes

in a linkage class we can find a directed path from and to each other. If

that is the case, the minimum number of reactions for a weakly reversible

network must be 2. The first one is the reaction that goes from a complex

Ci to another complex Cj while the second one is the reaction that goes

the opposite direction. So, an Ia that encodes a weakly reversible

network must contain at least 2 columns. Another direct implica-

tion from the definition of weak reversibility is that each complex in the

network must both be a reactant complex and a product complex. This

corresponds to Ia having both −1 and 1 in each row as per definition

of the incidence matrix. Consider the network with its Ia given below.

X1 X2

X2 +X3 X3 0

2X3 X1 +X3

k1

k2

k3

k4

Ia =

R1 R2 R3 R4






−1 0 0 0 X1

1 0 0 0 X2

0 0 −1 0 X2 +X3

0 1 1 0 X3

0 −1 0 0 0

0 0 0 −1 2X3

0 0 0 1 X1 +X3

The network is not weakly reversible. Here, X2, X3, and X1 +X3 are
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not reactant complexes which correspond to not having −1 in their rows

in Ia. Suppose we make them reactant complexes by adding the following

reactions below.

X2 −→ X2 +X3, X3 −→ X1, X1 +X3 −→ 2X3

We get the updated Ia as follows.

Ia =

R1 R2 R3 R5 R4 R7 R6






−1 0 0 1 0 0 0 X1

1 −1 0 0 0 0 0 X2

0 1 −1 0 0 0 0 X2 +X3

0 0 1 −1 1 0 0 X3

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 −1 2X3

0 0 0 0 0 −1 1 X1 +X3

Observe now that all rows now contain a −1 which make all complexes

now reactant complexes. The corresponding network to the updated Ia is

given below.

X1

X2

X2 +X3

X30 2X3 X1 +X3

k1

k2k3

k4

k5
k6

k7

Despite making all complexes reactant complexes, the network remains

to be not weakly reversible. An observation we can get from the Ia and its

corresponding network is that the zero complex is not a product complex.

If we add at least one of the following reactions below, the network becomes

weakly reversible.

X1 −→ 0, X2 −→ 0, X2 +X3 −→ 0, X3 −→ 0

This is equivalent to adding 1 in the 5th row of Ia. In such case, all

complexes now are both a reactant complex and a product complex. So,

the condition that all complexes of the network be a reactant and product
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complex must be imposed for weak reversibility. However, we can see in

the example below that it is not a sufficient condition for weak reversibility.

Instead of adding at least one of the reactions above, consider adding either

of the following reactions below (Note: The complexes 2X3 and X1 +X3

are from another linkage class.).

2X3 −→ 0, X1 +X3 −→ 0

Suppose we add the latter reaction. The network and its corresponding

Ia become

X1

X2

X2 +X3

X302X3 X1 +X3

k1

k2k3

k4

k5
k6

k7

k8

Ia =

R1 R2 R3 R5 R4 R8 R7 R6






−1 0 0 1 0 0 0 0 X1

1 −1 0 0 0 0 0 0 X2

0 1 −1 0 0 0 0 0 X2 +X3

0 0 1 −1 1 0 0 0 X3

0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 1 −1 2X3

0 0 0 0 0 −1 −1 1 X1 +X3

Here, all rows now contain entries of −1 and 1. The network, however,

remains not to be weakly reversible. This implies that we should impose

another condition to get the general structure of a weakly reversible Ia.

Now, we can see that there exist two cycles in the network. The first

one involves the complexes X1, X2, X2 + X3, and X3 while the second

one involves 2X3 and X1 +X3. Consider the fifth column. The complex

X3 serves as a product complex to a reaction whose reactant complex

is a complex outside the cycle that involves X3. Similarly, the complex

X1 + X3 serves as a reactant to a reaction whose product complex is a
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complex outside the cycle that involves X1 + X3. These reactions make

the network not weakly reversible.

We can remedy this by removing reaction 0 −→ X3 and adding the

reaction 0 −→ 2X3. Doing so gives us an Ia as follows.

Ia =

R1 R2 R3 R5 R4 R8 R7 R6






−1 0 0 1 0 0 0 0 X1

1 −1 0 0 0 0 0 0 X2

0 1 −1 0 0 0 0 0 X2 +X3

0 0 1 −1 0 0 0 0 X3

0 0 0 0 −1 1 0 0 0

0 0 0 0 1 0 1 −1 2X3

0 0 0 0 0 −1 −1 1 X1 +X3

Notice that the Ia becomes a block matrix which corresponds to a

network with two linkage classes. Here, all rows of each linkage class

contain a −1 and 1. We can also see that no complex in any of the cycle

is involved in a reaction with a complex outside the cycle. The reaction

network corresponding to the Ia above is given below.

X1

X2

X2 +X3

X3

0

2X3X1 +X3

k1

k2k3

k4

k5

k6

k7

k8

We then make the following remark with regards to the structure of a

weakly reversible network: If we have a cycle, no complex in the cycle must

be involved in a reaction with a complex outside the cycle. Equivalently,

strongly connected components must correspond to a block matrix

in Ia with zero off-diagonal blocks.

Now, suppose we put the reaction 0 −→ X3 back and add the reaction

X3 −→ 0 while retaining the reaction 0 −→ 2X3. In this way, the 0 com-

plex becomes a part of the cycle and that the network now only contains
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one linkage class. Refer to the updated network and its corresponding Ia

below.

X1

X2

X2 +X3

X30

2X3

X1 +X3 k1

k2k3

k4

k5

k6 k7

k8

k9

k10

Ia =

R1 R2 R3 R5 R4 R8 R7 R6 R9 R10



−1 0 0 1 0 0 0 0 0 0 X1

1 −1 0 0 0 0 0 0 0 0 X2

0 1 −1 0 0 0 0 0 0 0 X2 +X3

0 0 1 −1 0 0 0 0 −1 0 X3

0 0 0 0 −1 1 0 0 1 −1 0

0 0 0 0 1 0 1 −1 0 1 2X3

0 0 0 0 0 −1 −1 1 0 0 X1 +X3

Here, the network still is weakly reversible. We make an additional

remark with regards to the structure of a weakly reversible network: If we

have a cycle, outside complexes attached to any complex in the cycle must

both be a reactant and product to that cycle.

Now, we’ll try to remove the reaction 0 −→ 2X3. Instead, add the

reaction 0 −→ X1 +X3. The resulting network and its corresponding Ia

are given below.

X1

X2

X2 +X3

X302X3 X1 +X3

k1

k2k3

k4

k5
k6

k7

k8

k9k10
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Ia =

R1 R2 R3 R5 R4 R8 R7 R6 R9 R10



−1 0 0 1 0 0 0 0 0 0 X1

1 −1 0 0 0 0 0 0 0 0 X2

0 1 −1 0 0 0 0 0 0 0 X2 +X3

0 0 1 −1 1 0 0 0 −1 0 X3

0 0 0 0 −1 1 0 0 1 −1 0

0 0 0 0 0 0 1 −1 0 0 2X3

0 0 0 0 0 −1 −1 1 0 1 X1 +X3

Notice that the sum of all entries of each row and column is 0. We

can make the following remark: A row in Ia will have a sum of 0 if

and only if there is an equal number of incoming and outgoing

reactions for the corresponding complex.

Now, it has been established that the condition that every row of Ia

must have entries of −1 and 1 is needed for weak reversibility. Therefore,

the dimension of an Ia that encodes a weakly reversible network

must be n ≤ r. Suppose n > r (i.e., there are more complexes than

reactions), we cannot have a −1 and 1 in every row. This is important for

the algorithm because this serves as a terminality condition, as we will see

in Section 4.2.

3.2 Strategy for narrowing down candidates for Ia

Our goal is to make the algorithm more efficient by narrowing down the

possible candidates for Ia. To achieve this, we use the block matrix struc-

ture of Ia and an important result on positive-dependent networks. Note

that the matrix Ia can be represented as a block matrix in the following

form:

Ia =







Ia,1 0 . . . 0

0 Ia,2 . . . 0
...

...
. . .

...

0 0 . . . Ia,ℓ

,
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where each Ia,i corresponds to an individual linkage class, and the 0 entries

represent zero matrices. The matrix structure for Ia will now be applied

individually to each Ia,i, significantly reducing the possible candidates for

Ia. On the other hand, Talabis and Mendoza [8] build on the result of

Hong et al. [15] to establish the following theorem: if a network N is posi-

tive dependent, then, for any kinetics K, the system (N ,K) has a weakly

reversible network translation (N #,K#). We will utilize this result to

identify candidates for Ia by examining the network’s positive dependency

properties.

Our approach consists of the following steps:

1. Identify subnetworks within the overall network that are positive-

dependent.

2. For each positive-dependent subnetwork, associate a corresponding

matrix Ia,i. These matrices Ia,i will represent the weakly reversible

linkage classes of the network.

3. Construct Ia as a block matrix composed of the individual Iai blocks.

This strategy will allow us to systematically narrow down possible

structures for Ia based on the network’s positive dependencies. To identify

the positive dependent subnetwork, we present the following definition and

algorithm:

Definition 10. Let R = {R1, . . . ,Rr} be the set of positive dependent

reaction vectors. The positive dependent graph of R is the (undirected)

graph G = (V,E) with vertex set V = {v1, . . . , vr} and edge set E such

that (vi, vj) is an edge in E if and only if there exist positive constants ai,

aj and non-negative ak’s with aiRi + ajRj +

r−2∑

k=1

akRk = 0.

We now consider the following detailed method to obtain a positive

dependent graph from a positive dependent network.

Remark 1. We note that reaction vectors may not be unique, as two

reactions may have the same reaction vectors. The following method is
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inspired by the work of Hernandez and De la Cruz [2], who employed a

coordinate graph to find independent decompositions of chemical reaction

networks. In this work, we adopt a similar strategy with variations to

identify positive dependent decompositions.

Method of Finding a Positive Dependent Subgraph

1. Consider the set of reaction vectors {R1, R2 . . . , Rr}.

2. Construct the vertex set of the positive dependent graph G = (V,E)

by representing each Ri as vertex vi.

3. For each unconnected vertex vi, consider the vector Ri. For k = 1

to r − 1:

a. Check if there exist positive coefficients ai’s such that aiRi +
k∑

j=1

ajRj = 0.

b. If such a combination is possible, add the edge (vi, vj) to E for

each Rj in the combination. Go to Step 4.

4. Repeat Step 3 for each remaining unconnected vertex. Stop once all

vertices are connected, yielding a positive dependent graph.

Remark 2. Each connected subgraph in the positive-dependent graph cor-

responds to a positive-dependent subnetwork associated with a matrix Ia,i.

Each Ia,i matrix represents a weakly reversible linkage class(es) of the net-

work.

4 Constructing weakly reversible

realizations

4.1 S-systems

Recall that the general rule of representing an S-system model as a reaction

network according to [3] is as follows:
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For each Ẋi, we associate the influx reaction by
∑

Xg,j → Xi+
∑

Xg,j

while we associate the efflux reaction by Xi +
∑

Xh,j →
∑

Xh,j.

If we take the reaction vectors for these reactions, we get −Xi and Xi.

Therefore, the proposed algorithm for constructing a weakly reversible

realization for S-system models is founded on these two rules:

Rule 1. We associate the reaction Xi +
m′∑
k=1

Xk
αi−→ 2Xi +

m′∑
k=1

Xk for the

influx terms where Xi’s are the dependent species in the model, Xk’s are

the independent species, and m′ is the number of independent species in

the model.

Rule 2. We associate the reaction 2Xi +
m′∑
k=1

Xk
αi−→ Xi +

m′∑
k=1

Xk for the

efflux terms where Xi’s are the dependent species in the model, Xk’s are

the independent species, and m′ is the number of independent species in

the model.

The complete, step-by-step description of the algorithm for finding

weakly reversible realization of S-systems is given by Algorithm 2.

Algorithm 2. The S-system algorithm for constructing weakly reversible

realization of BST models is as follows.

1. We start with the ODE form of the model. If we are given a biochem-

ical map instead, we determine first its ODE form which is given by:

Ẋi = αi

n+m∏

j=1

X
gij
j − βi

n+m∏

j=1

X
hij

j

for i = 1, . . . , n where n and m are the number of dependent and

independent species, and gij and hij are the kinetic orders on the

influx and efflux terms, respectively.

2. For the influx terms of Ẋi, perform Rule 1.

3. For the efflux terms of Ẋi, perform Rule 2.

4. Stop if we have already done applying the method for all dependent

species in the model.
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The two rules above ensures us that we get the same reaction vectors

as the CRN representation according to the method in [3]. Consequently,

we get the same stoichiometric matrix N . Equivalently, refer to Figure 2

for the flowchart version of Algorithm 2.

Start

Given: ODE
system

Initialize i = 1

For the influx term of Ẋi,
associate the reaction Xi +
m′∑
k=1

Xk
αi−→ 2Xi +

m′∑
k=1

Xk

For the efflux term of Ẋi,
associate the reaction 2Xi +

m′∑
k=1

Xk
αi−→ Xi +

m′∑
k=1

Xk

Is i = n?

Stop. A WR re-
alization is found.

Update i = i + 1

Yes

No

1

Figure 2. Flowchart of Algorithm 2

Remark 3. Algorithm 2 guarantees that a weakly reversible realization

can always be constructed for any S-system.

Running Example 3 - Part 1. Consider the biochemical system model

called HS96. It is a genetic network proposed by Hlavacek and Savageau

in 1996 with 5 dependent variables and 10 reactions [18]. The ODE model
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of the system under the S-system framework is given by

Ẋ1 = α1X
g13
3 Xg15

5 − β1X
h11
1

Ẋ2 = α2X
g21
1 − β2X

h22
2

Ẋ3 = α3X
g32
2 − β3X

h32
2 Xh33

3

Ẋ4 = α4X
g43
3 Xg45

5 − β4X
h44
4

Ẋ5 = α5X
g54
4 − β5X

h55
5

where gij ’s and hij ’s are the kinetic orders. Using Algorithm 2, the weakly

reversible realization is given by:

X1 2X1 X2 2X2 X3 2X3

X4 2X4 X5 2X5

α1

β1

α2

β2

α3

β3

α4

β4

α5

β5

where αi’s and βi’s are the reaction rate coefficients. The table below com-

pares the network and kinetic properties of the new network (the weakly

reversible realization) to that of the old network which is the representation

based on [3].

Table 1. Comparison of network and kinetic properties (Running Ex-
ample 3)

Network and Kinetic Properties Algorithm 1 Algorithm 2

Species 5 5

Complexes 11 10

Reactant complexes 6 10

Reversible reactions 1 5

Irreversible reactions 8 0

Reactions 10 10

Linkage classes 2 5
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Strong linkage classes 10 5

Terminal linkage classes 5 5

Rank 5 5

Reactant rank 5 5

Deficiency 4 0

Reactant deficiency 1 5

ILC No Yes

Weakly reversible No Yes

t-minimal No Yes

Positive dependence Yes Yes

Endotactic No Yes

PL-RDK Yes Yes

PL-TIK Yes Yes

Conservative No No

Concordance No No

The algorithm has a remarkable effect on the system: ILC, weak re-

versibility, t-minimality and edotacity are now attained. Also, observe that

the deficiency of the newly constructed networks became 0. We formalize

this result in the theorem below.

Theorem 8. If we perform the S-systems algorithm (Algorithm 2) for

constructing a weakly reversible realization, the resulting reaction network

has δ = 0.

Proof. Recall that n is the number of complexes and l is the number of

linkage classes in the reaction network.

We define m′ to be the number of dependent species in the model.

From the algorithm, it is clear that n = 2m′ and l = m′. Furthermore,
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the stoichiometric matrix N is an m′ × 2m′ matrix of the form




1 −1 0 0 0 0 · · · 0 0

0 0 1 −1 0 0 · · · 0 0

0 0 0 0 1 −1 · · · 0 0

. . . . . . · · · . .

. . . . . . · · · . .

. . . . . . · · · . .

0 0 0 0 0 0 · · · 1 −1




.

So, we can say that rank(N) = m′. Therefore, δ = n− l− s = 2m′ −m′ −
m′ = 0.

We can now relate this to our previous results on PL-TIK systems

(Theorems 1 and 3). We have the following:

Corollary 1. Given an S-system with the induced kinetic system (N ,K)

by Algorithm 3, we have the following:

i. (N ,K) is PL-TIK if and only if E+(N ,K) ̸= ∅.

ii. If (N ,K) is PL-TIK,

E+(N ,K) = Z+(N ,K) =

{
x ∈ Rm

+ | log(x)− log(x∗) ∈
(
S̃R

)⊥}

and |E+(N ,K)∩Q| = |Z+(N ,K)∩Q| = 1 for each positive kinetic

class Q.

Running Example 3 - Part 2. Considering the induced system of Al-

gorithm 3, by definition, the system is PL-RDK. We define T̂ (written as

transpose) as follows
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T̂
⊤
=





0 0 1.0041 0 −1.0009 1 0 0 0 0

2.0113 0 0 0 0 1 0 0 0 0

1.9919 0 0 0 0 0 1 0 0 0

0 1.9963 0 0 0 0 1 0 0 0

0 −0.9599 0 0 0 0 0 1 0 0

0 −0.9702 1.8996 0 0 0 0 1 0 0

0 0 1.9060 0 −0.9288 0 0 0 1 0

0 0 0 1.8127 0 0 0 0 1 0

0 0 0 1.9749 0 0 0 0 0 1

0 0 0 0 1.9556 0 0 0 0 1

.

Kinetic orders are taken from the paper of Rinon et al. where they

estimated the parameters of the S-sysem model using Hybrid Genetic Al-

gorithm [18]. Here, rank(T̂ ) = 10. Therefore, the system is PL-TIK (by

Definition 3). Thus, by Corollary 1, we can say that there exists positive

steady states for this system which are all complex balanced.

4.2 GMA systems

We will use the details discussed in Section 3 for the algorithm of GMA

systems. For each possible Ia that encodes a weakly reversible network,

we solve the induced linear system Y ·Ia = N where the unknowns are the

entries of Y .

In this formulation, the number of reactions r is fixed since we aim to

get a similar N as the initial network. So, we start with the “simplest”

Ia of weakly reversible networks which just contains the minimum number

of complexes n for a given r until n = r. So, the complete, step-by-step

description of the algorithm for finding weakly reversible realization of

GMA systems is given below.

Algorithm 3. The GMA system algorithm for constructing weakly re-

versible realization of BST models is as follows.

1. We start with the biochemical map of the model. If we are given an

ODE form instead, we determine the biochemical map by considering
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the general structure of the GMA system model which is given by:

Ẋi = V +
i − V −

i

where V +
i and V −

i are the sums of all incoming and outgoing pro-

cesses (reactions) of Xi, respectively.

2. Construct the CRN representation of the system based on the method

in [3].

3. Break down network into positive-dependent subnetworks (Refer to

Section 3.2). Determine the stoichiometric matrix of each subnet-

work.

4. For each subnetwork, construct an incidence matrix Ian×r
that en-

codes a weakly reversible network (Refer to Section 3.1) such that n

is the minimum number of complexes for a fixed r.

Number of reactions → Minimum number of complexes

2 → 2

(2, 6] → 3

(6, 12] → 4

(12, 20] → 5

.

.

.

((n− 1) · (n− 2), n · (n− 1)] → n

5. Given the N from step 3 and Ia from step 4, solve the matrix equation

Y · Ia = N

If a solution exists, Y and Ia is the molecularity and incidence ma-

trices of the constructed weakly reversible realization, respectively.

Repeat for all subnetworks. Otherwise, go back to step 4. Stop if

n = r. If no solution exists for all Ia, the algorithm cannot find a

weakly reversible realization of the CRN.
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Start
Given: Bio-
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Identify subnet-
works i that are

positive-dependent
(i = 1, ..., p)

Initialize i = 1

Determine the
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matrix of the i-th
subnetwork Ni
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that (n−1)(n−2) <
r < n(n − 1)
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Iak

(k = 1, ..., l) Initialize k = 1

Perform Tarjan’s
algorithm to

check for strongly
connected com-
ponents (SCCs)
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· Yj = Nij

for all j rows

Is k = l?

Stop. The algo-
rithm cannot find
a WR realization

Update k = k + 1

Is matrix
equation

consistent?

Is k = l?

Update k = k + 1

Is i = p?
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Stop. A WR re-
alization is found.

Is n = r?

Yes

No

Yes

No

No

Yes

No

Yes

No

Yes

Yes

No

Figure 3. Flowchart of Algorithm 3

For the complete details and step-by-step procedure of Algorithm 3,

refer to Figure 3. In generating valid Ia, the requirements are: 1) Each

column must only have two nonzero entries: −1 and 1, 2) Each row must

have at least one −1 entry and one 1 entry, and 3) No two columns must

be the same.

Furthermore, in the decision after performing Tarjan’s algorithm to

check for SCCs, both must be satisfied: 1) Do all SCCs contain more than

one complex? and 2) Do the SCCs correspond to block submatrices in Ia

with zero off-diagonal blocks? Note that if there is only one SCC, condition

2 is vacuously true.
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Remark 4. It is worth noting that the resulting weakly reversible network

after performing Algorithm 3, if successful, can either be PL-NDK or PL-

RDK. Therefore, one can iteratively construct Ia (as outlined in Step 4)

until the desired kinetic properties, such as PL-RDK, are achieved. This

is one advantage of Algorithm 3 over the method in [15].

Running Example 4 - Part 1. Consider a linear pathway with end-

product inhibition (refer to [3]). According to the method in [3], the

chemical reaction network corresponding to the system under the GMA

framework is given by

0 −→ X4 X3 −→ 0

X1 −→ X2 X2 −→ X3

X4 +X3 −→ X1 +X3

We cannot find a positive dependent subgraph for this particular sub-

network. So, we take the whole network as is. We then detemine the

stoichiometric matrix which is given by

N =







0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

1 −1 0 0 0

.

Since r = 5, the minimum number of complexes is 3. However, there

is no valid incidence matrix that encodes a weakly reversible network that

produces a consistent matrix equation Y · Ia = N with 3 and 4 complexes.

So, we consider an incidence matrix with 5 complexes.

Ia =







−1 0 0 0 1

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

.
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This induces the matrix equation




a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a5 b5 c5 d5




⊤ 


−1 0 0 0 1

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1



=




0 0 0 1

1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 −1




⊤

which yields the following molecularity matrix Y if we set a5 = 1, b5 =

0, c5 = 2, and d5 = 1 given below

Y =

C1 C2 C3 C4 C5





1 1 2 1 1 X1

0 0 0 1 0 X2

1 1 1 1 2 X3

1 2 1 1 1 X4

.

Instead of considering a single large coefficient matrix A, solving the

matrix equation above can be done by working on one row at a time to

save computing time. This leads us to the following remark: The rows of

Y are independent from each other . In other words, stoichiometric

coefficients of species Xi in complex Cj can be determined independently.

Furthermore, the existence of free variables implies that the weakly

reversible realization for GMA system models may not be unique .

Using the molecularity matrix Y above, the resulting network is given

by

X1 +X3 +X4 X1 +X3 + 2X4

2X1 +X3 +X4X1 +X2 +X3 +X4

X1 + 2X3 +X4

α1

α2

α3

α4

α5



666

where the αi’s are the reaction rate coefficients. The network now becomes

weakly reversible.

Table 2. Comparison of network and kinetic properties (Running Ex-
ample 4)

Network and Kinetic Properties Algorithm 1 Algorithm 3

Species 4 4

Complexes 7 5

Reactant complexes 5 5

Reversible reactions 0 0

Irreversible reactions 5 5

Reactions 5 5

Linkage classes 2 1

Strong linkage classes 7 1

Terminal linkage classes 2 1

Rank 4 4

Reactant rank 4 4

Deficiency 1 0

Reactant deficiency 1 1

ILC No Yes

Weakly reversible No Yes

t-minimal Yes Yes

Positive dependence Yes Yes

Endotactic No Yes

PL-RDK Yes Yes

PL-TIK Yes Yes

Conservative No No

Concordance Yes No

Building on Theorems 1 and 3, we have the following corollary:

Corollary 2. Given a GMA-system with the induced kinetic system

(N ,K) by Algorithm 3, we have the following:

i. (N ,K) is PL-TIK if and only if Z+(N ,K) ̸= ∅.
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ii. If (N ,K) is PL-TIK,

Z+(N ,K) =

{
x ∈ Rm

+ | log(x)− log(x∗) ∈
(
S̃R

)⊥}

and |Z+(N ,K) ∩Q| = 1 for each positive kinetic class Q.

iii. If (N ,K) is PL-TIK and δ = 0, E+(N ,K) = Z+(N ,K).

Running Example 4 - Part 2. From our Running Example 4, direct

computations show that the tranformed system is PL-RDK. Determining

whether it is PL-TIK, we define T̂ by

T̂ =







0 0.5 0 0 0

0 0 1 0 0

−2 0 0 0.75 0

1 0 0 0 0

1 1 1 1 1

.

The system is PL-TIK since rank(T̂ ) = 5 (by Definition 3). Further-

more, given that δ = 0, from Corollary 2, we can say that there exists

positive steady states which are complex balanced.

Algorithm 3 becomes impractical for large systems since it entails an

enumeration of incidence matrices that encode weakly reversible network

especially if we cannot find sufficiently small positive-dependent subgraphs

for the whole network.

4.3 Large GMA systems

One remedy we can do for the impracticality of using Algorithm 3 in

constructing a weakly reversible realization for large GMA systems is to

consider another type of kinetics. In particular, we consider PYK for con-

structing a weakly reversible realization of large GMA systems. Reaction

networks endowed with PYK are easier to work with since we can think
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of the ODE model of the network as follows.

Ẋi =

(
r+∑

i=1

∏

j∈(influx)i

Xj

)
−
(

r−∑

k=1

∏

g∈(efflux)k

Xg

)

where r+ is the number of incoming reactions to Xi, r
− is the number of

outgoing reactions from Xi, Xj are the contributing species to the influx

terms, and Xg are the contributing species to the efflux terms.

In this way, we can think of it as only consisting of ”two” terms such

that the first one is for influx terms (i.e., the sum of the product of con-

tributing species for each incoming reaction) and the second one is for the

efflux terms (i.e., the sum of the product of contributing species for each

outgoing reaction). Therefore, we can apply Algorithm 2 but with PYK.

Since Algorithm 3 becomes impractical for large GMA systems, we can

instead model the system using PYK and apply the method for construct-

ing weakly reversible realizations for S-systems. The complete, step-by-

step description of the algorithm for finding a weakly reversible realization

of large GMA systems is given below.

Algorithm 4. The algorithm for large GMA systems in constructing a

weakly reversible realization (with Poly-PL kinetics) of BST models is as

follows.

1. We start with the ODE form of the model (must be of the form Equa-

tion 4.3). If we are given a biochemical map instead, we determine

first its ODE form which is given by:

Ẋi =
∑

j∈influx

vji −
∑

k∈efflux

vik

where vji =
∏

j∈influx

Xj and vik =
∏

k∈efflux

Xk are the corresponding

power law representations of each of the influx and efflux reactions,

respectively.

2. For the influx terms of Ẋi, perform Rule 1.

3. For the efflux terms of Ẋi, perform Rule 2.
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4. Stop if we have already done applying the method for all dependent

species in the model.

Note that Algorithm 4 is essentially Algorithm 2 but with poly-PL ki-

netics. Therefore, the resulting network after applying Algorithm 4 would

have deficiency 0. We then state the following theorem:

Theorem 9. If we perform the algorithm for large GMA systems modelled

with Poly-PL kinetics (Algorithm 4) for constructing a weakly reversible

realization, the resulting reaction network has δ = 0.

The proof is similar to that of Theorem 8. Furthermore, from the

PY-TIK results, we have the following:

Corollary 3. Given a GMA-system with the induced poly-PL system

(N ,K) by Algorithm 4, we have the following:

i. (N ,K) is PY-TIK if and only if Z+(N ,K) ̸= ∅.

ii. If (N ,K) is PY-TIK,

Z+(N ,K) =

{
x ∈ Rm

+ | log(x)− log(x∗) ∈
(
S̃j

)⊥}

and |Z+(N ,K)∩Q| = 1 for each positive kinetic reactant flux class

Qj.

5 Applications: Concentration robustness

and carbon cycle models

In this section, we present several applications of the algorithms discussed

previously. First, we will discuss how the proposed algorithms help to

identify key features of the system, such as concentration robustness. We

will then conclude with an application on a GMA representation of the

carbon cycle models by Anderies et al [17] and Heck et al [32].
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5.1 Concentration robustness in weakly reversible sys-

tems

The concept of absolute concentration robustness (ACR) was first intro-

duced by Shinar and Feinberg [13]. ACR pertains to a phenomenon in

which a species in a chemical kinetic system carries the same value for any

positive steady state the network may admit regardless of initial condi-

tions. In particular, a kinetic system (N ,K) has ACR in a species X ∈ S

if there exists c∗ ∈ E+(N ,K) and for every other c∗∗ ∈ E+(N ,K), we

have c∗∗X = c∗X . Fortun and Mendoza [24] introduced the concept of bal-

anced concentration robustness (BCR). A complex balanced chemical ki-

netic system (N ,K) has balanced concentration robustness (BCR)

in a species X ∈ S if X has the same value for all c ∈ Z+(N ,K). This

is another type of concentration robustness that is weaker than ACR. For

the PLK systems (or subsystems), the key property for ACR (and BCR)

in a species X is the presence of an SF-reaction pair, which is defined as

follows.

Definition 11. A pair of reactions in a PLK system is called a Shinar-

Feinberg pair (or SF-pair) in a species X if their kinetic order vectors

differ only in X. A subnetwork of the PLK system is of SF-type if it

contains an SF-pair in X.

The following are key results on ACR and BCR from Fortun and Men-

doza [24].

Theorem 10 (Theorem 6 of [24]). Let (N ,K) be a deficiency zero PL-

RDK with a positive equilibrium. If a pair of reactions in a linkage class

forms an SF-pair species X, then it has ACR in X.

Proposition 11 (Proposition 7 of [24]). Let (N ,K) be a kinetic system

with a positive equilibrium and an independent decomposition N = N1 ∪
N2 ∪ · · · ∪ Np. If there is an Ni with PL-RDK (Ni,Ki) of SF-type in

X ∈ S such that δ ≤ 1 then (N ,K) has ACR in X.

Proposition 12 (Proposition 8 of [24]). Let (N ,K) be a kinetic system

with a complex balanced equilibrium and an incidence independent decom-
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position N = N1∪N2∪· · ·∪Np. If there is an Ni with PL-RDK (Ni,Ki)

of SF-type in X ∈ S such that δ ≤ 1 then (N ,K) has BCR in X.

In previous works, deficiency has been a necessary condition for the

ACR/BCR results. The following result allows us to eliminate this condi-

tion. However, before presenting the theorem, we define the following

Definition 12. An SF-pair {r, r′} in X is called consecutive if the product

complex of r is the reactant complex of r′.

Theorem 13. Let (N ,K) be a weakly reversible PL-TIK system. If the

system has a consecutive SF-pair in X, then it has balanced concentration

robustness in X.

Proof. By Theorem 6 of [7], Z+(N ,K) ̸= ∅ for all rate constants and

Z+(N ,K) =
{
x ∈ Rm

≥

∣∣∣log(x)− log(x∗) ∈ (S̃R)
⊥
}
.

Let c∗, c∗∗ ∈ Z+(N ,K). Hence, log(c∗)− log(c∗∗) ∈ (S̃R)
⊥. Note that S̃R

is the space generated by T (Ia) and each column of T (Ia) corresponds to

a reaction (i, j) in such a way that the corresponding column is T·,j − T·,i.

Thus, we have

⟨T·,j − T·,i, log(c
∗)− log(c∗∗)⟩ = 0, ∀(i, j) ∈ R. (1)

Since (i, j), (j, k) ∈ R is an SF-pair in X ∈ S , T·,j −T·,i = aX ∀a ∈
R+.

Thus, Equation 1 will be reduced to a(log(c∗X)− log(c∗∗X )) = 0. Hence,

c∗X = c∗∗X . That is, the system has balanced concentration robustness on

X.

Remark 5. Since Algorithms 2 and 4 generate zero deficiency networks,

Theorem 10 and Propositions 11 and 12 can be used to conclude ACR and

BCR. On the other hand, Theorem 13 can be applied for Algorithm 3 for

BCR conclusion.
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5.2 Weakly reversible translates of the Anderies et al.

model

The pre-industrial carbon cycle model by Anderies et al. [17] is a simple

mass balance model involving three interacting carbon pools: land, at-

mosphere, and ocean. This system can be visually represented using a

biochemical map, where nodes represent carbon pools, solid arrows indi-

cate carbon transfer, and dashed arrows indicate modulation effects by the

pools. Figure 4 presents the biochemical map of this model.

L
Land

A
Atmosphere

O
Ocean

Figure 4. Biochemical map of Anderies et al.’s carbon cycle model in
the pre-industrial state

In [23], Fortun et al. reviewed the model’s design and underlying as-

sumptions, detailing the parameters and ordinary differential equations in

the pre-industrial state of the carbon cycle model. They approximated all

rate processes using products of power law functions to derive a Gener-

alized Mass Action (GMA) system approximation of the original model.

The resulting ODEs from the approximation are given by:





L̇ = k1L
p1Aq1 − k2L

p2Aq2

Ȧ = k2L
p2Aq2 − k1L

p1Aq1 − amA+ amβO

Ȯ = amA− amβO,

(2)

For the case where the human terrestrial carbon off-take term (which

accounts for human activities that reduce the capacity of the terrestrial

pool to capture carbon, such as deforestation and land-use change) van-

ishes, the estimated kinetic orders are p1 = p2 = −69, q1 = 0.580148 and
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q2 = 0.910864. Using the BST algorithm, the CRN representation for the

model is:
L+ 2A → 2L+A

L+A → 2A

A ⇄ O

(3)

Its associated kinetic order matrix is:

F =

L A O






r1 −69 0.580148 0

r2 −69 0.910864 0

r3 0 1 0

r4 0 0 1

. (4)

Note that Theorems 10, 13 and Propositions 11, 12 cannot be used

for ACR and BCR analysis because the network is not weakly reversible.

Therefore, we employ the following algorithms.

5.2.1 Application of Algorithm 3

From the CRN representation of the carbon cycle model in 3, we determine

its stoichiometric matrix which is given by

N =







1 −1 0 0

−1 1 −1 1

0 0 1 −1
.

Since there are only 4 reactions which is manageable, we can bypass

the step in finding positive-dependent subgraphs. We start identifying

the incidence matrices Ia that encode weakly reversible networks of size

3 × 4. Only one valid Ia produces a consistent system which is given by

the following matrix

Ia =







−1 1 0 0

1 −1 −1 1

0 0 1 −1
.
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Solving the induced linear system produces a realization that is PL-

NDK. To apply the theory developed by Talabis et al. in [5, 7] and the

parametrization results of Muller and Regensburger, we proceed with the

algorithm to find a realization that is PL-RDK. Considering the incidence

matrix given by

Ia =







−1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 −1

yields the matrix equation



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 ·




−1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 −1



=




1 −1 0 0

−1 1 −1 1

0 0 1 −1


 .

Solving this linear system gives us six free variables: a2, a4, b2, b4, c2,

and c4. Setting a2 = a4 = b2 = 1, c2 = c4 = 2, and b4 = 0, we have the

following weakly reversible network:

2A+ 2O L+A+ 2O L+A+O L+ 2O

k1

k2

am

amβ

with kinetics K(x) defined as

K(x) =







k1L
p1Aq1

k2L
p2Aq2

amA

amβO

.

Furthermore, calculating the deficiency of the new network gives us

δ = n − l − s = 4 − 2 − 2 = 0. Therefore, we got a weakly reversible

deficiency zero network after applying Algorithm 3 which is also PL-RDK.
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Consider the reactions 2A+ 2O ↔ L+ A+ 2O. We can say that this

pair of reactions is an SF-pair in A since their kinetic orders differ only

in A based on Equation 4. Furthermore, this SF-pair is consecutive by

Definition 12. Therefore, there is a BCR in A by Theorem 13. But since

the constructed network has deficiency zero, we can conclude that it has

ACR in A.

Finally, we now apply the parametrization results of Muller of Regens-

burger. As mentioned, we can do this because our realization is weakly

reversible and deficiency zero that is also a PL-RDK system. So, the

monomial parametrization is given by X =

[ ]
k−r
1 kr2ξ

k−r
1 kr

2

β 1
⊤

where r = 1
0.580148−0.910864 and ξ ∈ R>. The parametrization verifies

the conclusion that there is an ACR in species A. In fact, there is also an

ACR in species O.

5.2.2 Application of Algorithm 4

Using Algorithm 4, the weakly reversible realization is given by:

L 2L A 2A O 2O

k1

k2

1

1

am

amβ

The kinetics K(x) is defined as follows:

K(x) =







k1L
p1Aq1

k2L
p2Aq2

k2L
p2Aq2 + amβO

k1L
p1Aq1 + amA

amA

amβO

.

The partition P = {{L ↔ 2L}, {A ↔ 2A}, {O ↔ 2A}} induces a

weakly reversible decomposition under poly-PL kinetics. Consider the 1st

partition (under PL-RDK). The reactions L ↔ 2L have the kinetic orders
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[ ]
r1 −69 0.580148 0

r2 −69 0.910864 0 ,

and hence, they form an SF-pair. Since the network deficiency is

zero, by Theorem 10, we have an ACR in species A for the subnetwork

{L ↔ 2L}. This result extends to the entire system, as P also induces an

independent decomposition.

5.3 Weakly reversible translate of the Heck et al. model

The global carbon cycle model of Heck et al. [32] is built from the model of

Anderies et al. [17]. In their revised model, the atmosphere-land interac-

tions are modified for a better representation of empirically observed Earth

system carbon dynamics [32]. Furthermore, they extended the model of

Anderies et al. [17] by incorporating a societal intervention process called

terrestrial carbon dioxide removal (tCDR) which mimics current interna-

tional policies on climate change. This intervention sequesters and perma-

nently stores terrestrial carbon in a carbon engineering sink. The model

also considers pooling the geological carbon pool and the new sink to form

a passive carbon pool and decoupling the atmospheric carbons into two

nodes [25]. The biochemical map of the system is shown in Figure 5. A

detailed discussion on the model development and calibration can be found

in [32].

Using the BST algorithm [3] for GMA systems, the CRN representation

of the model is:

A1 + 2A2 → 2A1 +A2 A1 + 2A4 → 2A1 +A4

A1 +A2 → 2A2 A1 +A4 → 2A4

A2 → A3 A4 → A3

A3 → A2 A3 → A4

A4 +A5 → 2A4 A1 +A2 +A4 → A5 +A2 +A4.
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𝑨𝟒
Atmospheric 

carbon due to fossil 
fuel combustion

𝑨𝟐
Atmospheric 

carbon in pre-
industrial state

𝑨𝟑
Marine Carbon

𝑨𝟏
Terrestrial Carbon

𝑨𝟓
PASSIVE CARBON
Carbon Sink and 

Available Fossil Fuel

ACTIVE CARBON

Figure 5. Biochemical map of Heck et al.’s carbon cycle model [25].

Its associated kinetic order matrix is given by

F =

A1 A2 A3 A4 A5





R1 199.75 −86.03 0 0 0

R2 159.84 −63.32 0 0 0

R3 0 1 0 0 0

R4 0 0 1 0 0

R5 0 0 0 1 1.54

R6 −43.80 0 0 21.42 0

R7 −56.13 0 0 22.19 0

R8 0 0 0 1 0

R9 0 0 1 0 0

R10 1 4.44 0 11.52 0

.

Note that the network above is not weakly reversible. To use the results

for ACR and BCR analysis, we find a weakly reversible realization.
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5.3.1 Application of Algorithm 3

From the CRN representation above, we have the following reaction vec-

tors:

R1 : A1 −A2 R6 : A1 −A4

R2 : A2 −A1 R7 : A4 −A1

R3 : A3 −A2 R8 : A3 −A4

R4 : A2 −A3 R9 : A4 −A3

R5 : A4 −A5 R10 : A5 −A1

Here, we apply the positive dependent subgraph method discussed in

Section 3.2. Note that R1 + R2 = 0, R3 + R4 = 0, and R5 + 2R6 +

R7 + R8 + R9 + R10 = 0. We can take R1 = {R1, R2}, R2 = {R3, R4},
and R3 = {R5, R6, R7, R8, R9, R10} as the positive-dependent subgraphs

of the whole network where R1,R2, and R3 are the reaction sets of the

subgraphs. We first consider R1 whose induced subnetwork is given by

A1 + 2A2 → 2A1 +A2

A1 +A2 → 2A2.

Considering the incidence matrix Ia =

[
−1 1

1 −1

]
, we solve

[
a1 a2

b1 b2

]
·
[
−1 1

1 −1

]
=

[
1 −1

−1 1

]

whose solution gives us two free variables which are a2 and b2. Setting

a2 = 1 and b2 = 0, we have the following weakly reversible subnetwork:

A2 A1

k1

k2

Similarly, we do this for R2 by considering the same incidence matrix.
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Solving the induced matrix equation and setting a2 = 2 and b2 = 1, we

get

3A2 2A2 +A3.

k3

k4

Lastly, we consider R3 whose induced subnetwork is given by

A4 +A5 → 2A4 A4 → A3

A1 + 2A4 → 2A1 +A4 A3 → A4

A1 +A4 → 2A4 A1 +A2 +A4 → A5 +A2 +A4

There are 6 reactions, however no valid incidence matrix that encodes a

weakly reversible network produces a consistent matrix equation Y ·Ia = N

with 3 and 4 complexes. So, we consider

Ia =




−1 0 0 0 0 1

1 −1 1 0 0 0

0 1 −1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1




which gives us the weakly reversible subnetwork below by setting a5 = 1,

b5 = 2, c5 = 1, and d5 = 0.

A3 +A4 + 2A5 A3 + 2A4 +A5

A1 +A3 +A4 +A52A3 + 2A5

A1 + 2A3 +A5

k5

k6k7

k8k10

k9

Notice that this particular subnetwork is PL-NDK due to the branching

of reactions at the complex A1+A3+A4+A5. Using the CF-WR algorithm
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introduced by Talabis and Mendoza [8], the kinetic system is now PL-RDK.

We have the following:

A3 +A4 + 2A5 A3 + 2A4 +A5

A1 +A3 +A4 +A52A3 + 2A5

A1 + 2A3 +A5

A3 + 2A4 +A5 +A2

A1 +A3 +A4 +A5 +A2

k5

k6

k8k10

k9
k∗6k∗7

With the obtained subnetworks above, the weakly reversible realization

of the CRN representation of the Heck et al model [32] is given by

A3 +A4 + 2A5 A3 + 2A4 +A5

A1 +A3 +A4 +A52A3 + 2A5

A1 + 2A3 +A5

A3 + 2A4 +A5 +A2

A1 +A3 +A4 +A5 +A2

A2 A1 3A2 2A2 +A3

k5

k6

k8k10

k9

k∗6k∗7

k1

k2

k3

k4

Here, direct computation shows that the linkage class decomposition

can be considered as incidence independent decomposition. (See Definition

9.) Since each subnetwork is weakly reversible and of PL-TIK type, by

Theorem 3, Z+(Ni,K) ̸= 0 for all subnetworks. Consequently, by Theorem

7, Z+(N ,K) ̸= 0.

Now, consider R5 (with rate constant k5) and R8 (with rate constant

k8). Note that both are part of a single linkage class. Referring to the

kinetic order matrix, their kinetic orders differ only in species A5. Hence,
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R5 and R8 is an SF-pair in A5. The deficiency of this particular subnetwork

is 1. Therefore, by Proposition 12, the Heck system has BCR in species

A5.

6 Summary

Weak reversibility is an important property that reaction networks must

possess because many results in CRNT requires this condition such as on

the non-emptiness of the system’s sets of positive and complex balanced

equilibria, parametrization of these steady states, among others. However,

BST models are not known to be weakly reversible. Hence, this study aims

to construct weakly reversible realizations of BST models and apply known

results in CRNT. To summarize, here are our main results:

1. This study considers two variants of BST models which are the GMA

system and S-system. Building upon the method proposed by Arceo

et al. [3] to represent these models as a chemical reaction network

with power law kinetics, this paper develops algorithms to construct

their weakly reversible realization.

2. For S-systems, we develop an algorithm that represents the influx and

efflux terms of the ODE model as reversible reactions, ensuring that

the network is weakly reversible. We also establish that the resulting

deficiency is zero. On the other hand, the method for GMA systems

is based on determining the entries of the molecularity matrix Y by

solving the induced linear system from the matrix equation Y · Ia =

N . Ia is chosen in such a way that the associated network is weakly

reversible.

3. Narrowing down the possible candidates for Ia is necessary to make

the GMA algorithm more efficient. To achieve this, we build on

the results of Talabis and Mendoza [8] and Hong et al. [15] which

states that if a network that is positive-dependent then it has a

weakly reversible realization. The approach then is to break down

the entire network into positive-dependent subgraphs and focus on

each subnetworks.
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4. Another approach to address the impracticality of the GMA algo-

rithm to large BST models is by considering Poly-PL kinetics and

applying the S-system algorithm, thereby expanding the utility of

the Poly-PL kinetics introduced in [6].

5. Because the resulting networks after applying the algorithms are

weakly reversible and deficiency zero, we can apply the power law

results of Talabis et al. [5–7] and parametrization results of Müller

and Regensburger [30,31].

6. Lastly, we apply the algorithms proposed in this paper for concentra-

tion robustness analysis. We demonstrate the results by considering

the carbon cycle models by Anderies et al. [17] and Heck et al. [32].
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A Notation and acronym

We list some of the symbols and acronyms used in the paper.

Table 3. List of Symbols

S set of species
m cardinality of species
C set of complexes
n cardinality of complexes
R set of reactions
r cardinality of reactions
L set of linkage classes
l number of linkage classes
sl number of strong linkage classes
nr number of reactant complexes
t number of terminal strong linkage classes
δ Deficiency

δ̂ Kinetic reactant deficiency
S Stoichiometric subspace
N Reaction network
N Stoichiometric matrix
K Kinetics of a CRN
IK Interaction map
AK Laplacian map
Ia Incidence matrix
F Kinetic order matrix
Y Matrix of complexes

T̂ augmented T-matrix
Tκ poly T-matrix

S̃R Kinetic reactant flux subspace
Q Positive kinetic reactant flux class
E+(N ,K) Set of positive equilibria
Z+(N ,K) Set of complex balanced equilibria
R Set of real numbers
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Table 4. Abbreviations

ACR Absolute concentration robustness
BCR Balanced concentration robustness
BST Biochemical systems theory
ILC Independent linkage classes
MAK Mass action kinetics
GMA Generalized mass action
ODE Ordinary differential equations
PYK Poly-PL kinetics

TIK T̂ -rank maximal kinetics
PL Power law
RDK Reactant-determined kinetics
NDK Non-reactant-determined kinetics
CRN Chemical reaction network
CKS Chemical kinetic system
SFRF Species formation rate functions
ZDD Zero deficiency decomposition
SF-pair/SF-type Shinar-Feinberg pair/Shinar-Feinberg type
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