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Abstract

The bond incident degree (BID) indices Tf (G) of a connected
graph G with edge-weight function f(x, y) are defined as

Tf (G) =
∑

vivj∈E(G)

f(d(vi), d(vj)),

where f(x, y) > 0 is a symmetric real function with x ≥ 1 and
y ≥ 1 and d(u) is the degree of vertex u in G. In this paper, we
prove that extremal tree of order n with given independence number
s (n/2 ≤ s ≤ n− 1) having maximum bond incident degree indices
Tf is the spur graph Sn,s if edge-weight symmetric function f(x, y)
satisfies three conditions: f(x, y) is strictly increasing on x (or y);
f(x, y)−f(x, y−1) is increasing on x (or y); φ(x+1, y−1) ≥ φ(x, y)
for every x, y ≥ 2, where φ(x, y) = f(x, y)− f(x− 1, y).

1 Introduction and notation

The bond incident degree (BID) indices denoted Tf (G) of a connected

graph G with edge-weight function f(x, y) were defined in [2, 9] as

Tf (G) =
∑

vivj∈E(G)

f(d(vi), d(vj)),
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where f(x, y) > 0 is a symmetric real function with x ≥ 1 and y ≥ 1.

In this setting extremal results for trees were given by Ali and Dimitrov

[1]. Liu, You, Chen and Huang [6] used a unified method to characterize

the first two maximum and the first two minimum trees with respect to BID

indices, respectively and Gao [4] determined the trees with maximum BID

indices, by imposing some general conditions on the edge-weight function

f(x, y). Different general conditions were proposed also by Hu, Li, Li,

Peng [5], Yao, Liu, Belardo, Yang [10] and Vetrik [8] for deducing extremal

graphs in several classes of graphs. In this paper we shall consider edge-

weight functions f(x, y) which fulfil the following conditions:

i) f(x, y) is strictly increasing on x (or y);

ii) f(x, y)− f(x, y − 1) is increasing on x (or y);

iii) φ(x+1, y−1) ≥ φ(x, y) for every x, y ≥ 2, where φ(x, y) = f(x, y)−
f(x− 1, y).

The maximum vertex degree of G is denoted by ∆(G) and N(u) is

the set of vertices adjacent with u. The distance between vertices u and

v of a connected graph is the length of a shortest path between them.

The diameter of G is the maximum distance between vertices of G. If

x ∈ V (G), G−x denotes the subgraph of G obtained by deleting x and its

incident edges. A similar notation is G − xy, where xy ∈ E(G). Given a

graph G, a subset S of V (G) is said to be an independent set of G if every

two vertices of S are not adjacent. The maximum number of vertices in

an independent set of G is called the independence number of G and is

denoted by α(G). K1,n−1 and Pn will denote, respectively, the star and

the path on n vertices. Since a tree on n vertices is a bipartite graph, at

least one partite set, which is an independent set, has at least n/2 vertices,

which implies that for any tree T we have α(T ) ≥ ⌈n/2⌉ and this bound

is reached for example for paths. Also, α(T ) ≤ n − 1 and the equality

holds only for the star graph. For every n ≥ 2 and n/2 ≤ s ≤ n − 1 the

spur Sn,s [3] is a tree consisting of 2s − n + 1 edges and n − s − 1 paths

of length 2 having a common endvertex; it is obtained from a star K1,s by

attaching a pendant edge to n− s− 1 pendant vertices of K1,s. We have



569

α(Sn,s) = s. The bond incident degree index Tf (Sn,s) is

Tf (Sn,s) = (2s− n+ 1)f(s, 1) + (n− s− 1)(f(s, 2) + f(2, 1)). (1)

Let Tn,s be the set of trees of order n having independence number s. Note

that Tn,n−1 = {Sn,n−1 = K1,n} and Tn,n−2 = {Sn,n−2}.

2 Main result

The following observation will be useful.

Lemma 2.1 [7] Let T be a tree and x ∈ V (T ), which is adjacent to pendant

vertices v1, . . . vr. If r ≥ 2 then any maximum independent subset of V (T )

contains v1, . . . , vr.

We shall state a preliminary result which will be used in the proof of

the main result of this paper.

Lemma 2.2. If ii) and iii) hold, then we have f(p, 1) ≥ f(p − 1, 2) for

every p ∈ N, p ≥ 3.

Proof. For x = y = 2 iii) yields f(3, 1) − f(2, 1) ≥ f(2, 2) − f(1, 2), or

f(3, 1) ≥ f(2, 2) since f(1, 2) = f(2, 1). Let p ≥ 4 and suppose that

the property holds for p − 1. Then, for x = p − 1 and y = 2 from iii)

we get f(p, 1) − f(p − 1, 1) ≥ f(p − 1, 2) − f(p − 2, 2), which implies

f(p, 1) − f(p − 1, 2) ≥ f(p − 1, 1) − f(p − 2, 2) ≥ 0 by the induction

hypothesis.

Theorem 2.3. Let n ≥ 5, n/2 ≤ s ≤ n − 1 and T ∈ Tn,s. If edge-

weight function f(x, y) satisfies i)–iii) then Tf (T ) is maximum if and only

if T = Sn,s.

Proof. For n = 5 we have two possible values for s: s = 3, when T5,3 =

{P5, S5,3} and s = 4 when T5,4 = {S5,4 = K1,4}. For s = 3 we get

Tf (S5,3) = f(3, 2) + 2f(3, 1) + f(2, 1) > Tf (P5) = 2f(2, 2) + 2f(2, 1) since

this is equivalent to

f(3, 2) + 2f(3, 1) > 2f(2, 2) + f(2, 1). (2)
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By Lemma 2.2 we get f(3, 1) ≥ f(2, 2). By i) we also have f(3, 2) > f(2, 1),

which proves (2). For s = 4 T5,4 has a unique member S5,4 = K1,4,

therefore it is extremal.

We shall use induction on n. Let n ≥ 6 and suppose that the property holds

for all trees of order n − 1 and independence number s with (n − 1)/2 ≤
s ≤ n − 2. Let T be a tree of order n and independence number s and

a path v1, v2, . . . , vd+1 of length d in T , where d is the diameter of T .

We can suppose that d ≥ 3 since if we have d = 2 it follows s = n − 1,

T = K1,n−1 = Sn,n−1 and the theorem is verified. v1 and vd+1 are pendant

vertices of T , hence T − v1 is a tree of order n− 1.

We shall consider two cases: A. α(T − v1) = α(T ) = s and B. α(T − v1) =

α(T )− 1 = s− 1.

A. When α(T − v1) = α(T ) we deduce that ⌈(n − 1)/2⌉ ≤ s ≤ n − 2

unless s = n − 1. In this case T = K1,n−1 = Sn,n−1 and we are done.

Let s ≤ n − 2. By Lemma 2.1 we deduce d(v2) = 2 and let d(v3) = d3 ≤
∆(T ) ≤ s.

By the induction hypothesis we get

Tf (T ) = Tf (T − v1) + f(2, 1) + f(d3, 2)− f(d3, 1)

≤ (2s− n+ 2)f(s, 1) + (n− s− 2)f(s, 2) + (n− s− 2)f(2, 1) + f(2, 1)

+f(d3, 2)− f(d3, 1)

using (1). Since d3 ≤ s by ii)we have f(d3, 2)− f(d3, 1) ≤ f(s, 2)− f(s, 1).

It follows that Tf (T ) ≤ (2s − n + 1)f(s, 1) + (n − s − 1)f(s, 2) +

(n − s − 1)f(2, 1) = Tf (Sn,s) and equality holds if and only if T − v1 =

Sn−1,s, d(v2) = 2 and d3 = s, which implies that T = Sn,s.

B. Next we assume that α(T − v1) = α(T ) − 1 = s − 1. We have

⌈(n − 1)/2⌉ ≤ s − 1 ≤ n − 2 unless n = 2k, k ∈ N and s = k. It follows

that T ∈ T2k,k and T − v1 ∈ T2k−1,k−1 = ∅ and this case does not apply.

Since v1, v2, v3, . . . , vd+1 is a path of maximum length of T , v3 is the only
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vertex in N(v2) having degree d3 ≥ 2. By letting d(v2) = d2 ≤ s we have

Tf (T ) =Tf (T − v1) + f(d2, 1) + (d2 − 2)(f(d2, 1)− f(d2 − 1, 1))

+ f(d3, d2)− f(d3, d2 − 1). (3)

Condition (ii) implies that the function (x − 2)(f(x, 1) − f(x − 1, 1)) is

strictly increasing in x for x ≥ 2, so we get (d2−2)(f(d2, 1)−f(d2−1, 1) ≤
(s − 2)(f(s, 1) − f(s − 1, 1)) and equality holds only for d2 = s.We also

deduce that f(d2, 1) ≤ f(s, 1). v2 is adjacent to d2 − 1 pendant vertices

and in the graph T − v2v3 the degree of v3 is equal to d3 − 1. Each edge

v3x, where x ̸= v2 belongs to a path in T ending in a pendant vertex

and these vertices are pairwise different. It follows that d2 − 1 + d3 − 1 is

less than or equal to the number of pendant vertices of T , which implies

d2 − 1 + d3 − 1 ≤ s, or d2 + d3 ≤ s+ 2. We shall prove that

f(d3, d2)− f(d3, d2 − 1) ≤ f(s, 2)− f(s− 1, 2) (4)

if d2 + d3 ≤ s+ 2 and d2, d3 ≥ 2. Indeed, there exist natural numbers x, y

such that f(d3, d2) − f(d3, d2 − 1) ≤ f(x, y) − f(x, y − 1), where x, y ≥ 2

and x + y = s + 2 by increasing d2 or d3 if d2 + d3 < s + 2 since ii)

holds. Since f(x, y) − f(x, y − 1) = φ(x, y), by successively applying iii)

we get f(d3, d2)− f(d3, d2 − 1) ≤ f(s, 2)− f(s, 1). By Lemma 2.2 we have

f(s, 1) ≥ f(s− 1, 2) and (4) is proved.

By the induction hypothesis and (1) we have Tf (T −v1) ≤ Tf (Sn−1,s−1) =

(2s−n)f(s−1, 1)+(n−s−1)(f(s−1, 2)+f(2, 1)). Thus we get Tf (T ) ≤
(2s−n)f(s−1, 1)+(n−s−1)(f(s−1, 2)+f(2, 1))+f(s, 1)+(s−2)(f(s, 1)−
f(s− 1, 1))+ f(s, 2)− f(s− 1, 2) = (s− 1)f(s, 1)+ (n− s− 2)f(s− 1, 2)−
(n − s − 2)f(s − 1, 1) + f(s, 2) + (n − s − 1)f(2, 1). By denoting the last

expression by E(n, s), the inequality E(n, s) ≤ Tf (Sn,s) is equivalent to

(n− s− 2)(f(s, 2)− f(s− 1, 2)) ≥ (n− s− 2)(f(s, 1)− f(s− 1, 1)). (5)

If s = n − 1 then T = K1,n−1 = Sn,n−1 and the theorem is true. If

s = n − 2 then (5) becomes an equality, T = Sn,n−2 and the theorem is

verified. Otherwise n − s − 2 ≥ 1 or s ≤ n − 3 and (5) is equivalent to
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f(s, 2) − f(s − 1, 2) ≥ f(s, 1) − f(s − 1, 1). From ii) it follows that this

inequality is valid. If s ≤ n−3 a necessary condition that Tf (T ) = Tf (Sn,s)

is that T − v1 = Sn−1,s−1. Since d2 = s it follows that v1 is adjacent with

the center of the star K1,s. The inequality n− s−1 ≥ 2 implies that there

exist at least two paths of length two ending in the center ofK1,s, subgraph

of Sn,s. This yields a contradiction, since we have supposed that the path

v1, v2, . . . , vd+1 has maximum length in T , but this path has length three.

Consequently, if α(T − v1) = α(T ) − 1 we have Tf (T ) ≤ Tf (Sn,s) and

the equality holds only if s = n − 1, when T = K1,n−1 = Sn,n−1 and

s = n − 2, T − v1 = Sn−1,n−3, d2 = s and d2 + d3 = s + 2, i. e., d3 = 2

and T = Sn,n−2. It follows that the equality in case B holds only if

T ∈ {Sn,n−1, Sn,n−2} and the proof is complete.

Notice that only if n − s − 1 ∈ {0, 1} a pendant vertex adjacent to the

center of the star K1,s is the endvertex of a longest path in Sn,s, and this

corresponds to the equality in (5).

3 Concluding remarks

We proved that the spur graph Sn,s is the unique tree of order n with given

independence number s having maximum bond incident degree indices

Tf (Sn,s) if edge-weight symmetric function f(x, y) satisfies conditions i)-

iii).

Several BID indices studied in the literature have edge-weight functions

f(x, y) which fulfil conditions i)-iii):

• The function f(x, y) = (x+ y)α has properties i)-iii) for α ≥ 1. The

general sum-connectivity index of a graph G is defined as χα(G) =∑
uv∈E(G)(dG(u)+dG(v))

α, where α is a real number. For α = 1 we

obtain the first Zagreb index, and for α = 2 we get the first hyper-

Zagreb index. Das, Xu and Gutman [3] proved that in the class of

trees of order n and independence number s, the spur Sn,s maximizes

both first and second Zagreb indices and this graph is unique with

these properties. By extending this result, the author and Jamil [7]

showed that in the same class of trees Tn,s, Sn,s is the unique graph

maximizing general sum-connectivity index χα(T ) for α ≥ 1.
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• The function f(x, y) = g(x) + g(y), where g(x) is strictly increasing

and convex also satisfies conditions i)-iii); in particular f(x, y) =

xα + yα for α ≥ 1 satisfies these conditions. In this case condition

iii) is reduced to Jensen’ s inequality for convex functions.

• The edge-weight symmetric function f(x, y) = ex+y fulfil mentioned

conditions. The corresponding BID index is called the exponential

first Zagreb index.
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