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Abstract

LetG be a simple connected graph with vertex set V (G) and edge
set E(G). A formal definition of a vertex-degree-based topological
index (VDB topological index) of G is

T If (G) =
∑
uv∈E

f(dG(u), dG(v)),

where f(x, y) > 0 is a symmetric real function with x ≥ 1 and y ≥ 1,
and dG(u) is the degree of vertex u in G.

In this paper, we give some conditions related to the function
f(x, y), and show that if a VDB topological index satisfies these
conditions, then the extremal graphs must be almost regular. From
this conclusion, we obtained the minimum/maximum values of such
VDB topological indices among c-cyclic graphs, and characterize
the extremal c-cyclic graphs that achieve the minimum/maximum
values. As an application, we show that there are many VDB topo-
logical indices that satisfy the conditions given in this paper. These
VDB topological indices include the second Zagreb index, reciprocal
Randić index, first hyper-Zagreb index, first Gourava index, second
Gourava index, product-connectivity Gourava index, exponential re-
ciprocal sum-connectivity index, exponential inverse degree index,
first Zagreb index, forgotten index, inverse degree index, Sombor
index, reduced Sombor index, third Sombor index, fourth Sombor
index, and so on.
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1 Introduction

All graphs considered are assumed to be simple and connected. Let

G = (V (G), E(G)) be a such graph with |V (G)| = n and |E(G)| = m. If

m = n+c−1, then G is called a c-cyclic graph. Specially, if c = 0, 1, 2, 3, 4,

then G is called a tree, a unicyclic graph, a bicyclic graph, a tricyclic graph

and a tetracyclic graph, respectively. Let N(v) denote the neighbor set

of vertex v in G. Then |N(v)| is the degree of v in G, denoted by dG(v).

Let ∆(G) and δ(G) be the maximum degree and minimum degree of G,

respectively. If ∆(G)− δ(G) ≤ 1, then we say that G is said to be almost

regular. If ∆(G) ≤ 4, then G is called a chemical graph. Denote by Gn,c

(resp. CGn,c) the set of all c-cyclic graphs (resp. c-cyclic chemical graphs)

of order n.

In mathematical chemistry, there is a large number of topological in-

dices. We are mostly interested in vertex-degree-based topological indices,

which are defined as a sum, over all edges of a graph, of certain numbers

that depend on the degrees of the end-vertices of each edge. A formal defi-

nition of a vertex-degree-based topological index (VDB topological index)

of G is as follows

T If = T If (G) =
∑
uv∈E

f(dG(u), dG(v)), (1)

where f(x, y) > 0 is a pertinently chosen symmetric real function with

x ≥ 1 and y ≥ 1.

Let ni be the number of vertices of G with degree i, and mi,j the

number of edges of G joining a vertex of degree i and a vertex of degree

j. Then

T If (G) =
∑

δ(G)≤i≤j≤∆(G)

mi,jf(i, j). (2)

The problem of characterizing extremal graphs with respect to VDB

topological indices among all c-cyclic graphs is one of the most studied

problems in chemical graph theory. In many cases, the extremal graphs

for different VDB topological indices are same or have some common prop-
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erties. Yao et al. [16] presented a uniform method to some extremal re-

sults together with its corresponding extremal graphs for VDB topologi-

cal indices among the class of trees, unicyclic graphs and bicyclic graphs

with fixed number of independence number and/or matching number, re-

spectively. Ghalavand and Ashrafi [8] ordered the connected graphs and

connected chemical graphs with cyclomatic number c with respect to to-

tal irregularity. Liu et al. [12] ordered the minimal Sombor indices of

chemical trees, chemical unicyclic graphs, chemical bicyclic graphs and

chemical tricyclic graphs, respectively. Other related results can be found

in [1–7,9, 10,13–15,17] and/or related references listed therein.

The main purpose of this paper is to attack the above problem for gen-

eral VDB topological indices. In Section 2, we give some conditions related

to the function f(x, y), and show that if a VDB topological index satisfies

these conditions, then the extremal graphs must be almost regular. From

this conclusion, in Sections 3 and 4, we obtained the minimum/maximum

values of such VDB topological indices among Gn,c (CGn,c), and charac-

terize the extremal graphs that achieve the minimum/maximum values,

respectively. In Section 5, as an application, we show that there are many

VDB topological indices that satisfy the conditions given in this paper.

These VDB topological indices include the second Zagreb index, recipro-

cal Randić index, first hyper-Zagreb index, first Gourava index, second

Gourava index, product-connectivity Gourava index, exponential recipro-

cal sum-connectivity index, exponential inverse degree index, first Zagreb

index, forgotten index, inverse degree index, Sombor index, reduced Som-

bor index, third Sombor index, fourth Sombor index, and so on.

2 Extremal graphs of VDB topological in-

dices over graphs

Let f(x, y) > 0 be a symmetric real function with x ≥ 1 and y ≥ 1.

We define the following four functions, where a and b are given numbers
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and b > a > 0.

g(y) = f(b, y)− f(a, y),

A(x, y) = yf(x+ 1, y)− (x+ y − 1)f(x+ 1, y − 1)

−f(x+ 1, x+ 1) + xf(x, y − 1),

B(x, y) = yf(y, y)− f(x+ 1, y)− (y − 1)f(y − 1, y)

−x [f(x, x+ 1)− f(x, x)] ,

C(x, y) = (x+ y − 1)f(x, y)− f(x+ 1, y − 1)− f(x, x+ 1)

−(y − 2)f(x, y − 1)− (x− 1)f(x+ 1, y),

D(x, y) = f(x, y)− f(x+ 1, y − 1) + (y − 1)f(y, y)

−f(x+ 1, y)− (y − 2)f(y − 1, y)

−(x− 1) [f(x, x+ 1)− f(x, x)] .

(3)

We also give the following four conditions, where c and d are any positive

integers with d ≥ c+ 2.

(C1) g(y) is increasing on y ≥ 1, A(c, d) > 0 and C(c, d) > 0.

(C2) g(y) is increasing on y ≥ 1, B(c, d) < 0 and D(c, d) < 0.

(C3) g(y) is decreasing on y ≥ 1, B(c, d) > 0 and D(c, d) > 0.

(C4) g(y) is decreasing on y ≥ 1, A(c, d) < 0 and C(c, d) < 0.

Let G be a graph, ∆(G) = ∆, δ(G) = δ, and ∆ − δ ≥ 2. Let u, v be

a closest pair of vertices in G such that dG(u) = ∆ and dG(v) = δ. Take

G′ = G− uu1 + vu1, where u1 ∈ N(u) \ (N(v) ∪ {v}).

Lemma 2.1. (1) If the condition (C1) holds, then T If (G) > T If (G
′).

(2) If the condition (C2) holds, then T If (G) < T If (G
′).

Proof. Suppose that the function g(y) is increasing on y ≥ 1.

Case 1. uv ̸∈ E(G).

Denote N(u) = {u1, u2, . . . , u∆} and N(v) = {v1, v2, . . . , vδ}. Note

that dG′(u) = ∆ − 1, dG′(v) = δ + 1, dG′(ui) = dG(ui) for i = 1, . . . ,∆,

and dG′(vj) = dG(vj) for j = 1, . . . , δ. Then

T If (G)− T If (G
′)

=

∆∑
i=1

f(dG(u), dG(ui)) +

δ∑
j=1

f(dG(v), dG(vj))− f(dG′(v), dG′(u1))
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−
∆∑
i=2

f(dG′(u), dG′(ui))−
δ∑

j=1

f(dG′(v), dG′(vj))

=
∆∑
i=1

f(∆, dG(ui)) +

δ∑
j=1

f(δ, dG(vj))− f(δ + 1, dG(u1))

−
∆∑
i=2

f(∆− 1, dG(ui))−
δ∑

j=1

f(δ + 1, dG(vj))

=f(∆, dG(u1)) +

∆∑
i=2

[f(∆, dG(ui))− f(∆− 1, dG(ui))]

− f(δ + 1, dG(u1))−
δ∑

j=1

[f(δ + 1, dG(vj))− f(δ, dG(vj))] . (4)

Note that uv ̸∈ E(G), and u, v is a closest pair of vertices in G such that

dG(u) = ∆ and dG(v) = δ. We have δ + 1 ≤ dG(ui) ≤ ∆ for i = 1, . . . ,∆,

and δ ≤ dG(vj) ≤ ∆− 1 for j = 1, . . . , δ. Since g(y) is increasing on y ≥ 1,

we have

f(∆,∆)− f(δ + 1,∆) ≥ f(∆, dG(u1))− f(δ + 1, dG(u1))

≥ f(∆, δ + 1)− f(δ + 1, δ + 1),

and for i = 2, . . . ,∆ and j = 1, . . . , δ,

f(∆,∆)− f(∆− 1,∆) ≥ f(∆, dG(ui))− f(∆− 1, dG(ui))

≥ f(∆, δ + 1)− f(∆− 1, δ + 1),

f(δ + 1,∆− 1)− f(δ,∆− 1) ≥f(δ + 1, dG(vj))− f(δ, dG(vj))

≥ f(δ + 1, δ)− f(δ, δ).

So by Eq. (4),

T If (G)− T If (G
′)

≥f(∆, δ + 1)− f(δ + 1, δ + 1) + (∆− 1) [f(∆, δ + 1)− f(∆− 1, δ + 1)]

− δ [f(δ + 1,∆− 1)− f(δ,∆− 1)]

=∆f(∆, δ + 1)− (∆ + δ − 1)f(∆− 1, δ + 1)



554

− f(δ + 1, δ + 1) + δf(δ,∆− 1) = A(δ,∆),

and

T If (G)− T If (G
′)

≤f(∆,∆)− f(δ + 1,∆) + (∆− 1) [f(∆,∆)− f(∆− 1,∆)]

− δ [f(δ + 1, δ)− f(δ, δ)]

=∆f(∆,∆)− f(δ + 1,∆)− (∆− 1)f(∆− 1,∆)− δ [f(δ + 1, δ)− f(δ, δ)]

=B(δ,∆).

Thus for Case 1, if the condition (C1) holds, then T If (G) > T If (G
′);

and if the condition (C2) holds, then T If (G) < T If (G
′).

Case 2. uv ∈ E(G).

Denote N(u) = {v, u1, u2, . . . , u∆−1} and N(v) = {u, v1, v2, . . . , vδ−1}.
Note that dG′(u) = ∆ − 1, dG′(v) = δ + 1, dG′(ui) = dG(ui) for i =

1, . . . ,∆− 1, and dG′(vj) = dG(vj) for j = 1, . . . , δ − 1. Then

T If (G)− T If (G
′)

=f(dG(u), dG(v)) +

∆−1∑
i=1

f(dG(u), dG(ui)) +

δ−1∑
j=1

f(dG(v), dG(vj))

− f(dG′(u), dG′(v))− f(dG′(v), dG′(u1))−
∆−1∑
i=2

f(dG′(u), dG′(ui))

−
δ−1∑
j=1

f(dG′(v), dG′(vj))

=f(∆, δ) +

∆−1∑
i=1

f(∆, dG(ui)) +

δ−1∑
j=1

f(δ, dG(vj))

− f(∆− 1, δ + 1)− f(δ + 1, dG(u1))−
∆−1∑
i=2

f(∆− 1, dG(ui))

−
δ−1∑
j=1

f(δ + 1, dG(vj))

=f(∆, δ)− f(∆− 1, δ + 1) + f(∆, dG(u1))− f(δ + 1, dG(u1))
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+

∆−1∑
i=2

[f(∆, dG(ui))− f(∆− 1, dG(ui))]

−
δ−1∑
j=1

[f(δ + 1, dG(vj))− f(δ, dG(vj))] . (5)

Note that δ ≤ dG(ui) ≤ ∆ for i = 1, . . . ,∆, and δ ≤ dG(vj) ≤ ∆ for

j = 1, . . . , δ. Since g(y) is increasing on the interval y ≥ 1, we have

f(∆,∆)− f(δ+1,∆) ≥ f(∆, dG(u1))− f(δ+1, dG(u1)) ≥ f(∆, δ)− f(δ+1, δ),

and for i = 2, . . . ,∆− 1 and j = 1, . . . , δ − 1,

f(∆,∆)−f(∆−1,∆) ≥ f(∆, dG(ui))−f(∆−1, dG(ui)) ≥ f(∆, δ)−f(∆−1, δ),

f(δ+1,∆)−f(δ,∆) ≥ f(δ+1, dG(vj))−f(δ, dG(vj)) ≥ f(δ+1, δ)−f(δ, δ).

So by Eq. (5),

T If (G)− T If (G
′)

≥f(∆, δ)− f(∆− 1, δ + 1) + f(∆, δ)− f(δ + 1, δ)

+ (∆− 2) [f(∆, δ)− f(∆− 1, δ)]− (δ − 1) [f(δ + 1,∆)− f(δ,∆)]

=(∆ + δ − 1)f(δ,∆)− f(∆− 1, δ + 1)− f(δ + 1, δ)

− (∆− 2)f(∆− 1, δ)− (δ − 1)f(δ + 1,∆)

=C(δ,∆),

and

T If (G)− T If (G
′)

≤f(∆, δ)− f(∆− 1, δ + 1) + f(∆,∆)− f(δ + 1,∆)

+ (∆− 2) [f(∆,∆)− f(∆− 1,∆)]− (δ − 1) [f(δ + 1, δ)− f(δ, δ)]

=f(∆, δ)− f(∆− 1, δ + 1) + (∆− 1)f(∆,∆)− f(δ + 1,∆)

− (∆− 2)f(∆− 1,∆)− (δ − 1) [f(δ + 1, δ)− f(δ, δ)]

=D(δ,∆).
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Thus for Case 2, if the condition (C1) holds, then T If (G) > T If (G
′);

and if the condition (C2) holds, then T If (G) < T If (G
′).

The lemma now follows.

Similar the proof of Lemma 2.1, we also have the following lemma.

Lemma 2.2. (1) If the condition (C3) holds, then T If (G) > T If (G
′).

(2) If the condition (C4) holds, then T If (G) < T If (G
′).

The following two theorems are easily derived from Lemmas 2.1 and

2.2.

Theorem 2.3. Suppose the condition (C1) or (C3) holds. If a graph

G minimizes T If index among all graphs of order n, then G is almost

regular.

Theorem 2.4. Suppose the condition (C2) or (C4) holds. If a graph

G maximizes T If index among all graphs of order n, then G is almost

regular.

3 Minimum values of VDB topological in-

dices over Gn,c (CGn,c)

In this section, we determine the minimum values of VDB topological

indices satisfying the condition (C1) or (C3) over Gn,c (CGn,c), and char-

acterize those graphs that achieve the minimum values. In order to obtain

the main results, we establish three useful lemmas on c-cyclic almost reg-

ular graphs.

Lemma 3.1. Let n ≥ 3 and G ∈ Gn,c be almost regular.

(1) If c = 0, then G ∼= Pn.

(1) If c = 1, then G ∼= Cn.

Proof. Since G is almost regular, ∆(G)− δ(G) ≤ 1.

(1) If c = 0, then δ(G) = 1. So ∆(G) ≤ 2. Thus G ∼= Pn.

(2) If c = 1 and G isn’t a cycle, then δ(G) = 1, and ∆(G) ≥ 3. It is a

contradiction.
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Lemma 3.2. Let n ≥ 6 and G ∈ Gn,2 be almost regular. Then δ(G) = 2,

∆(G) = 3, and (m2,2,m2,3,m3,3) = (n− 4, 4, 1) or (n− 5, 6, 0).

Proof. Let n ≥ 6 and G ∈ Gn,2 be almost regular. It is easy to see that

∆(G) ≥ 3 and there is at least one vertex with degree 2. So ∆(G) = 3 and

δ(G) = 2. It implies that two cycles in G cannot have exactly one common

vertex. Then G ∼= G1 or G2, where G1 and G2 are showed in Figure 3.1,

s ≥ t ≥ 3, r ≥ 2, s+ t+ r− 2 = n, m ≥ 2, 2m ≤ t+ 2, and s+ t−m = n.

&%
'$

• • · · ·

&%
'$
•Cs Ct

u1 u2 ur

G1

•

•

Cs Ct•
u1

u2

...

um

G2

Figure 3.1 Graphs G1 and G2

If G ∼= G1, then

(m2,2,m2,3,m3,3) =

{
(n− 4, 4, 1), if r = 2,

(n− 5, 6, 0), if r ≥ 3.

If G ∼= G2, then

(m2,2,m2,3,m3,3) =

{
(n− 4, 4, 1), if m = 2,

(n− 5, 6, 0), if m ≥ 3.

The lemma holds.

Lemma 3.3. Let c ≥ 3, n ≥ 5(c − 1), and G ∈ Gn,c be almost regular.

Then

(1) δ(G) = 2 and ∆(G) = 3.

(2) n2 = n− 2(c− 1), n3 = 2(c− 1), m2,2 = n− 5(c− 1) +m3,3, and

m2,3 = 6(c− 1)− 2m3,3.

(3) 0 ≤ m3,3 ≤ 3c− 4.

Proof. (1) Since c ≥ 3 and G is almost regular, we have ∆(G) ≥ 3, and
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δ(G) ≥ ∆(G)− 1 ≥ 2. If δ(G) ≥ 3, then∑
i≥3

ni = n,
∑
i≥3

ini = 2(n+ c− 1).

We get

2n+ 2c− 2 ≥ 3
∑
i≥3

ni = 3n.

Thus n ≤ 2c − 2, which is a contradiction with c ≥ 3 and n ≥ 5(c − 1).

Therefore, δ(G) = 2 and ∆(G) = 3.

(2) By the claim (1), n1 = 0 and ni = 0 for i ≥ 4. Then
n2 + n3 = n,

2n2 + 3n3 = 2(n+ c− 1),

2m2,2 +m2,3 = 2n2,

m2,3 + 2m3,3 = 3n3.

(6)

Solving the system (6) with unknowns n2, n3,m2,2,m2,3, we can obtain

n2 = n − 2(c − 1), n3 = 2(c − 1), m2,2 = n − 5(c − 1) + m3,3, and

m2,3 = 6(c− 1)− 2m3,3.

(3) Since G is a connected graph with δ(G) = 2 and ∆(G) = 3, we have

m2,3 ̸= 0. Then by the last equation in (6),m3,3 =
3n3−m2,3

2 = 3c−3−m2,3

2 .

So 0 ≤ m3,3 ≤ 3c− 4.

The following theorem can be deduced directly from Theorem 2.3 and

Lemma 3.1.

Theorem 3.4. Let G ∈ Gn,c (or G ∈ CGn,c) with n ≥ 3, and the condition

(C1) or (C3) hold.

(1) If c = 0, then

T If (G) ≥ T If (Pn) = 2f(1, 2) + (n− 3)f(2, 2),

and the equality holds if and only if G ∼= Pn.

(2) If c = 1, then

T If (G) ≥ T If (Cn) = nf(2, 2),
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and the equality holds if and only if G ∼= Cn.

Theorem 3.5. Let G ∈ Gn,2 (or G ∈ CGn,2) with n ≥ 6, and the condition

(C1) or (C3) hold.

(1) If f(2, 2) + f(3, 3)− 2f(2, 3) > 0, then

T If (G) ≥ (n− 5)f(2, 2) + 6f(2, 3),

and the equality holds if and only if m2,2 = n−5, m2,3 = 6, and m3,3 = 0.

(2) If f(2, 2) + f(3, 3)− 2f(2, 3) < 0, then

T If (G) ≥ (n− 4)f(2, 2) + 4f(2, 3) + f(3, 3),

and the equality holds if and only if m2,2 = n−4, m2,3 = 4, and m3,3 = 1.

(3) If f(2, 2) + f(3, 3)− 2f(2, 3) = 0, then

T If (G) ≥ (n− 5)f(2, 2) + 6f(2, 3),

and the equality holds if and only if G ∈ G′
n,2, where G′

n,2 = {H ∈ Gn,2 |
δ(H) = 2,∆(H) = 3, (m2,2,m2,3,m3,3) = (n− 4, 4, 1) or (n− 5, 6, 0)}.

Proof. Let G′
n,2 = {H ∈ Gn,2 | δ(H) = 2,∆(H) = 3, (m2,2,m2,3,m3,3) =

(n− 5, 6, 0) or (n− 4, 4, 1)}. By Eq. (2), for any H ∈ G′
n,2,

T If (H) = m2,2f(2, 2) +m2,3f(2, 3) +m3,3f(3, 3)

=

{
(n− 4)f(2, 2) + 4f(2, 3) + f(3, 3), if (m2,2,m2,3,m3,3) = (n− 4, 4, 1),

(n− 5)f(2, 2) + 6f(2, 3), if (m2,2,m2,3,m3,3) = (n− 5, 6, 0).

Since the condition (C1) or (C3) holds, by Theorem 2.3 and Lemma 3.2,

we have for any G ∈ Gn,2 or CGn,2,

T If (G) ≥ min
H∈G′

n,2

T If (H).

Then it is easy to see that the theorem follows.

Theorem 3.6. Let G ∈ Gn,c (or G ∈ CGn,c) with c ≥ 3 and n ≥ 5(c− 1),

and the condition (C1) or (C3) hold.
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(1) If f(2, 2) + f(3, 3)− 2f(2, 3) > 0, then

T If (G) ≥ (n− 5(c− 1))f(2, 2) + 6(c− 1)f(2, 3),

and the equality holds if and only if m3,3 = 0, m2,2 = n − 5(c − 1), and

m2,3 = 6(c− 1).

(2) If f(2, 2) + f(3, 3)− 2f(2, 3) < 0, then

T If (G) ≥ (n− 2c+ 1)f(2, 2) + 2f(2, 3) + (3c− 4)f(3, 3),

and the equality holds if and only if m3,3 = 3c− 4, m2,2 = n− 2c+1, and

m2,3 = 2.

(3) If f(2, 2) + f(3, 3)− 2f(2, 3) = 0, then

T If (G) ≥ (n− 5(c− 1))f(2, 2) + 6(c− 1)f(2, 3),

and the equality holds if and only if G ∈ G′
n,c, where G′

n,c = {H ∈ Gn,c |
δ(H) = 2,∆(H) = 3,m2,2 = n−5(c−1)+m3,3,m2,3 = 6(c−1)−2m3,3, 0 ≤
m3,3 ≤ 3c− 4}.

Proof. Let G′
n,c = {H ∈ Gn,c | δ(H) = 2,∆(H) = 3,m2,2 = n− 5(c− 1) +

m3,3,m2,3 = 6(c− 1)− 2m3,3, 0 ≤ m3,3 ≤ 3c− 4}. By Eq. (2), we have for

any H ∈ G′
n,c,

T If (H) = m2,2f(2, 2) +m2,3f(2, 3) +m3,3f(3, 3)

= (n− 5(c− 1) +m3,3)f(2, 2) + (6(c− 1)− 2m3,3)f(2, 3) +m3,3f(3, 3)

= (n− 5(c− 1))f(2, 2) + 6(c− 1)f(2, 3) +m3,3(f(2, 2)− 2f(2, 3) + f(3, 3)).

Since the condition (C1) or (C3) holds, by Theorem 2.3 and Lemma 3.3,

we have for any G ∈ Gn,c or CGn,c,

T If (G) ≥ min
H∈G′

n,c

T If (H).

Then it is easy to see that the theorem follows.
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4 Maximum values of VDB topological in-

dices over Gn,c (CGn,c)

In this section, we determine the maximum values of VDB topological

indices satisfying the condition (C2) or (C4) over Gn,c (CGn,c), and char-

acterize those graphs that achieve the maximum values. The proofs of the

following theorems are similar to the proofs of Theorems 3.4, 3.5 and 3.6,

and we ignore all proofs.

Theorem 4.1. Let G ∈ Gn,c (or G ∈ CGn,c) with n ≥ 3, and the condition

(C2) or (C4) hold.

(1) If c = 0, then

T If (G) ≤ T If (Pn) = 2f(1, 2) + (n− 3)f(2, 2),

and the equality holds if and only if G ∼= Pn.

(2) If c = 1, then

T If (G) ≤ T If (Cn) = nf(2, 2),

and the equality holds if and only if G ∼= Cn.

Theorem 4.2. Let G ∈ Gn,2 (or G ∈ CGn,2) with n ≥ 6, and the condition

(C2) or (C4) hold.

(1) If f(2, 2) + f(3, 3)− 2f(2, 3) < 0, then

T If (G) ≤ (n− 5)f(2, 2) + 6f(2, 3),

and the equality holds if and only if m2,2 = n−5, m2,3 = 6, and m3,3 = 0.

(2) If f(2, 2) + f(3, 3)− 2f(2, 3) > 0, then

T If (G) ≤ (n− 4)f(2, 2) + 4f(2, 3) + f(3, 3),

and the equality holds if and only if m2,2 = n−4, m2,3 = 4, and m3,3 = 1.

(3) If f(2, 2) + f(3, 3)− 2f(2, 3) = 0, then

T If (G) ≤ (n− 5)f(2, 2) + 6f(2, 3),
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and the equality holds if and only if G ∈ G′
n,2, where G′

n,2 = {H ∈ Gn,2 |
δ(H) = 2,∆(H) = 3, (m2,2,m2,3,m3,3) = (n− 5, 6, 0) or (n− 4, 4, 1)}.

Theorem 4.3. Let G ∈ Gn,c (or G ∈ CGn,c) with c ≥ 3 and n ≥ 5(c− 1),

and the condition (C2) or (C4) hold.

(1) If f(2, 2) + f(3, 3)− 2f(2, 3) < 0, then

T If (G) ≤ (n− 5(c− 1))f(2, 2) + 6(c− 1)f(2, 3),

and the equality holds if and only if m3,3 = 0, m2,2 = n − 5(c − 1), and

m2,3 = 6(c− 1).

(2) If f(2, 2) + f(3, 3)− 2f(2, 3) > 0, then

T If (G) ≤ (n− 2c+ 1)f(2, 2) + 2f(2, 3) + (3c− 4)f(3, 3),

and the equality holds if and only if m3,3 = 3c− 4, m2,2 = n− 2c+1, and

m2,3 = 2.

(3) If f(2, 2) + f(3, 3)− 2f(2, 3) = 0, then

T If (G) ≤ (n− 5(c− 1))f(2, 2) + 6(c− 1)f(2, 3),

and the equality holds if and only if G ∈ G′
n,c, where G′

n,c = {H ∈ Gn,c |
δ(H) = 2,∆(H) = 3,m2,2 = n−5(c−1)+m3,3,m2,3 = 6(c−1)−2m3,3, 0 ≤
m3,3 ≤ 3c− 4}.

5 Applications

In this section, we consider the VDB topological indices in Table 5.1.

It is not difficult to verify that

• the VDB topological indices from No.1 to No.8 in Table 5.1 satisfy

the condition (C1), and f(2, 2) + f(3, 3)− 2f(2, 3) > 0;

• the VDB topological indices from No.9 to No.11 in Table 5.1 satisfy

the condition (C1), and f(2, 2) + f(3, 3)− 2f(2, 3) = 0; and

• the VDB topological indices from No.12 to No.15 in Table 5.1 satisfy

the condition (C3), and f(2, 2) + f(3, 3)− 2f(2, 3) < 0.
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Table 5.1 Some VDB topological indices

No. Function f(x, y) Eq. (1) corresponds to

1 xy Second Zagreb index

2
√
xy Reciprocal Randić index

3 (x+ y)2 First hyper-Zagreb index

4 x+ y + xy First Gourava index

5 (x+ y)xy Second Gourava index

6
√

(x+ y)xy Product-connectivity Gourava index

7 e
√
x+y Exponential reciprocal sum-connectivity index

8 e
1
x2 + 1

y2 Exponential inverse degree index

9 x+ y First Zagreb index

10 x2 + y2 Forgotten index

11 1
x2 + 1

y2 Inverse degree index

12
√

x2 + y2 Sombor index

13
√

(x− 1)2 + (y − 1)2 Reduced Sombor index

14
√
2π x2+y2

x+y
Third Sombor index

15 π
2

(
x2+y2

x+y

)2
Fourth Sombor index

By Theorems 3.4, 3.5 and 3.6, we have the following theorems.

Theorem 5.1. Let G ∈ Gn,c (or G ∈ CGn,c) with n ≥ 3. For all VDB

topological indices in Table 5.1,

(1) if c = 0, then

T If (G) ≥ T If (Pn) = 2f(1, 2) + (n− 3)f(2, 2),

and the equality holds if and only if G ∼= Pn; and

(2) if c = 1, then

T If (G) ≥ T If (Cn) = nf(2, 2),

and the equality holds if and only if G ∼= Cn.

Theorem 5.2. Let G ∈ Gn,2 (or G ∈ CGn,2) with n ≥ 6.

(1) For VDB topological indices from No.1 to No.8 in Table 5.1,

T If (G) ≥ (n− 5)f(2, 2) + 6f(2, 3),
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and the equality holds if and only if m2,2 = n−5, m2,3 = 6, and m3,3 = 0.

(3) For VDB topological indices from No.9 to No.11 in Table 5.1,

T If (G) ≥ (n− 5)f(2, 2) + 6f(2, 3),

and the equality holds if and only if G ∈ G′
n,2, where G′

n,2 = {H ∈ Gn,2 |
δ(H) = 2,∆(H) = 3, (m2,2,m2,3,m3,3) = (n− 5, 6, 0) or (n− 4, 4, 1)}.

(3) For VDB topological indices from No.12 to No.15 in Table 5.1,

T If (G) ≥ (n− 4)f(2, 2) + 4f(2, 3) + f(3, 3),

and the equality holds if and only if m2,2 = n−4, m2,3 = 4, and m3,3 = 1.

Theorem 5.3. Let G ∈ Gn,c (or G ∈ CGn,c) with c ≥ 3 and n ≥ 5(c− 1).

(1) For VDB topological indices from No.1 to No.8 in Table 5.1,

T If (G) ≥ (n− 5(c− 1))f(2, 2) + 6(c− 1)f(2, 3),

and the equality holds if and only if m3,3 = 0, m2,2 = n − 5(c − 1), and

m2,3 = 6(c− 1).

(2) For VDB topological indices from No.9 to No.11 in Table 5.1,

T If (G) ≥ (n− 5(c− 1))f(2, 2) + 6(c− 1)f(2, 3),

and the equality holds if and only if G ∈ G′
n,c, where G′

n,c = {H ∈ Gn,c |
δ(H) = 2,∆(H) = 3,m2,2 = n−5(c−1)+m3,3,m2,3 = 6(c−1)−2m3,3, 0 ≤
m3,3 ≤ 3c− 4}.

(3) For VDB topological indices from No.12 to No.15 in Table 5.1,

T If (G) ≥ (n− 2c+ 1)f(2, 2) + 2f(2, 3) + (3c− 4)f(3, 3),

and the equality holds if and only if m3,3 = 3c− 4, m2,2 = n− 2c+1, and

m2,3 = 2.
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6 Conclusions

In this paper, we try to unify the solution for extremal graphs with

respect to vertex-degree-based topological indices for c-cyclic graphs. We

give some conditions, and show that if a VDB topological index satis-

fies these conditions, then the extremal graphs with respect to the VDB

topological index (under consideration) must be almost regular. Applying

this conclusion, we describe extremal graphs with respect to some vertex-

degree-based topological indices for c-cyclic graphs. These VDB topologi-

cal indices include the second Zagreb index, reciprocal Randić index, first

hyper-Zagreb index, first Gourava index, second Gourava index, product-

connectivity Gourava index, exponential reciprocal sum-connectivity in-

dex, exponential inverse degree index, first Zagreb index, forgotten index,

inverse degree index, Sombor index, reduced Sombor index, third Sombor

index, fourth Sombor index, and so on.
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cyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010)
441–451.

[4] R. Cruz, J. Rada, W. Sanchez, Extremal unicyclic graphs with respect
to vertex-degree-based topological indices, MATCH Commun. Math.
Comput. Chem. 88 (2022) 481–503.

[5] K. C. Das, A. Ghalavand, A. R. Ashraf, On a conjecture about the
Sombor index of graphs, Symmetry 13 (2021) #1830.



566

[6] H. Deng, A unified approach to the extremal Zagreb indices for trees,
unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Com-
put. Chem. 57 (2007) 597–616.

[7] H. Deng, S. Elumalai, S. Balachandran, Maximum and second maxi-
mum of geometric-arithmetic index of tricyclic graphs, MATCH Com-
mun. Math. Comput. Chem. 79 (2018) 467–475.

[8] A. Ghalavand, A. R. Ashrafi, Ordering of c-cyclic graphs with respect
to total irregularity, J. Appl. Math. Comput. 63 (2020) 707–715.

[9] I. Gutman, A. Ghalavand, T. Dehghan-Zadeh, A. R. Ashraf, Graphs
with smallest forgotten index, Iranian J. Math. Chem. 8 (2017) 259–
273.

[10] H. Liu, Extremal (n,m)-graphs with respect to VDB topological in-
dices, Open J. Discr. Appl. Math. 6 (2023) 16–20.

[11] H. Liu, Z. Du, Y. Huang, H. Chen, S. Elumalai, Note on the minimum
bond incident degree indices of k-cyclic graphs, MATCH Commun.
Math. Comput. Chem. 91 (2024) 255–266.

[12] H. Liu, L. You, Y. Huang, Ordering chemical graphs by Sombor in-
dices and its applications, MATCH Commun. Math. Comput. Chem.
87 (2022) 5–22.

[13] H. Liu, L. You, Y. Huang, Extremal Sombor indices of tetracyclic
(chemical) graphs, MATCH Commun. Math. Comput. Chem. 88
(2022) 573–581.

[14] H. Liu, L. You, Y. Huang, Sombor index of c-cyclic chemical graphs,
MATCH Commun. Math. Comput. Chem. 90 (2023) 495–504.

[15] J. Rada, Exponential vertex-degree-based topological indices and dis-
crimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29–
41.

[16] Y. Yao, M. Liu, K. C. Das, Y. Ye, Some extremal results for vertex-
degree-based invariants, MATCH Commun. Math. Comput. Chem.
81 (2019) 325–344.

[17] Z. Zhu, H. Lu, On the general sum-connectivity index of tricyclic
graphs, J. Appl. Math. Comput. 51 (2016) 177–188.


	Introduction
	Extremal graphs of VDB topological indices over graphs
	Minimum values of VDB topological indices over Gn,c (CGn,c)
	Maximum values of VDB topological indices over Gn,c (CGn,c)
	Applications
	Conclusions

