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Abstract

We propose a new molecular index based on a distance on graphs
defined through hitting times of random walks on connected graphs.
We show its connections to previous probabilistic/electric indices
such as the RW index and the Kirchhoff index, compute its value
for some families of graphs, and present some open questions.

1 Introduction

In what follows, a graph G = (V,E) will be a finite simple connected

undirected graph with vertex set V = {1, 2, . . . , n}, edge set E and vertex

degrees d1, d2, . . . , dn. For all graph theoretical details the reader may

consult reference [2].

In Mathematical Chemistry, molecules are modeled using these graphs,

where the vertices are the atoms and the atomic bonds are represented by

the edges. Many topological indices, or descriptors, i. e., real-valued func-

tions on the domain of all graphs, have been defined with the purpose

of capturing physico-chemical properties of the molecules and classifying

them according to the values of their indices. One such index is the Kirch-
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hoff index defined in [6] as

K(G) =
∑
i<j

Rij , (1)

where Rij is the effective resistance between vertices i and j when the

graph is thought of as an electrical network, where all the edges have unit

resistance.

The simple random walk on G is defined as the Markov chain {Xn, n ≥
0} whose state space is V and whose transition probabilities are defined as

uniform, from a vertex i to any of its di neighboring vertices. The hitting

time Tj of the vertex j is defined as the smallest number of jumps needed

by the random walk to reach the vertex j:

Tj = inf{n ≥ 0 : Xn = j},

and its expected value, when the process is started in state i is denoted by

EiTj . We remark that EiTi = 0, and this should not be confused with the

mean return time to vertex i, EiT
+
i = 2|E|

di
, which involves T+

i = inf{n ≥
1 : Xn = i}. For facts about hitting times of Markov chains, the reader is

referred to [4].

In [7] we showed that there is a close relationship between hitting times

and the Kirchhoff index, namely

K(G) =
1

2|E|
∑
i<j

(EiTj + EjTi), (2)

so that one can use probabilistic tools and intuitions to this index, in ad-

dition to several other fruitful approaches. A good introduction to the

relationship between electric networks and random walks on graphs is ref-

erence [5].

A recent probabilistic/electrical index was put forward in [3] by Camby

et al., the random walk index, defined in the following way: for any pair

of vertices i and j, a battery is placed between i and j so that a 1 ampere

current enters i and exits j. This generates a voltage vijx on all vertices

x ∈ V , and a potential difference on any edge (x, y) given by vijx − vijy .
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If the polarity of the battery is inverted, then the potential drop on the

edge (x, y) is vijy − vijx , and thus, in order to avoid the dependance on the

polarity of the battery, the authors consider the quantity |vijx − vijy |, and
they add these quantities over all edges of the graph getting

d̂ij =
∑

(x,y)∈E

|vijx − vijy |.

The authors prove that the function d̂ defined on the pairs of vertices ij

by the value d̂ij is a metric, and then define the random walk index as

RW (G) =
∑
i<j

d̂ij . (3)

Below we will show a relationship between RW (G) and our new proba-

bilistic index.

2 The results

We define HT (G), the hitting time index of a graph G, as

HT (G) =
∑
i<j

D(i, j),

where D(i, j) = max{EiTj , EjTi}. A salient feature of this index is the

following

Proposition 1. The function D is a distance on G.

Proof. That D(i, j) ≥ 0 and D(i, j) = 0 if and only if i = j is trivial. The

triangular inequality perhaps need some explanation. It is clear that for

any vertices i, j, k we have

EiTj ≤ EiTk + EkTj , (4)

because when going from i to j, we have in general more paths to perform

that journey than those that go first to the intermediate vertex k, and

then proceed to j, so the left side of (4) is bounded above by the expected
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length of the first journey to k, plus the expected length of the second

journey from k to j. Then, clearly

EiTj ≤ D(i, k) +D(k, j), (5)

and exchanging the roles of i and j

EjTi ≤ D(j, k) +D(k, i) = D(i, k) +D(k, j). (6)

Now (5) and (6) imply

D(i, j) = max{EiTj , EjTi} ≤ D(i, k) +D(k, j)

which completes the proof.

The connection between this new index and those with a probabilis-

tic/electric flavor is given in the next

Proposition 2. For any G we have

RW (G) ≤ HT (G) ≤ 2|E|K(G). (7)

Proof. The right inequality is easy to prove: D(i, j) = max{EiTj , EjTi} ≤
EiTj + EjTi. Then we use (2).

For the left inequality, if we set a battery between vertices i and j so

that a current of 1 ampere flows between i and j, a voltage vijk is established

at every node k of V . We found in [8] an expression for the hitting times of

random walks on weighted graphs that in the case of simple graphs reduces

to ∑
k∈V

dkv
ij
k = EiTj , (8)

and it is immediate to notice that this can be rewritten as∑
(x,y)∈E

(vijx + vijy ) = EiTj .
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Now

RW (G) =
∑
i<j

∑
(x,y)∈E

|vijx − vijy | ≤
∑
i<j

∑
(x,y)∈E

(vijx + vijy )

=
∑
i<j

EiTj ≤
∑
i<j

D(i, j) = HT (G)

In [9] we studied highly symmetric graphs for which

EiTj = EjTi, (9)

for all i, j ∈ G. It turns out that the family of walk-regular graphs satisfies

(9). A graph is walk-regular if the number of k-long walks, k ≥ 2, starting

and ending at a vertex v is the same for all v ∈ V . This family contains the

families of vertex-transitive, regular edge-transitive and distance regular

graphs. For all these graphs we have the following improvement of the

right inequality in (7):

Proposition 3. For any walk-regular G we have

HT (G) = |E|K(G). (10)

Proof. This is due to the fact that D(i, j) = max{EiTj , EjTi} = 1
2 (EiTj +

EjTi) .

The classical Wiener index (see [10]) is given by the sum of the distances

between all vertices. More formally, the distance d(i, j) between vertices

i and j is the length of a shortest walk between i and j, and the Wiener

index is defined as

W (G) =
∑
i<j

d(i, j).

The following is a simple observation that yields an interesting relationship

Proposition 4. For any G we have

W (G) ≤ HT (G) . (11)
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Proof. The number of jumps needed for the random walk to reach j start-

ing from i is bounded below by d(i, j). Therefore, so is its expected value,

i.e., EiTj ≥ d(i, j). The same holds for EjTi. Thus D(i, j) ≥ d(i, j) .

In fact, in [3] they prove something stronger than (11) that, together

with proposition 3, can be summarized in the following

Corollary. For every G we have

K(G) ≤ W (G) ≤ RW (G) ≤ HT (G) ≤ 2|E|K(G).

The relationship between HT (G) and K(G) can be made more precise

with the following lower bound

Proposition 5. For any G we have

|E|K(G) ≤ HT (G). (12)

Proof. Use the fact thatD(i, j) = max{EiTj , EjTi} ≥ 1
2 (EiTj+EjTi) .

3 Some computations and conjectures

Using proposition 3 we have that

HT (Kn) =
1

2
(n− 1)2n,

and

HT (Cn) =
1

6
n2(n2 − 1).

Now we will find the HT index of the star graph Sn. First, we place a

battery between the center vertex c and any leaf vertex v that sends a 1

ampere current from c to v. Since the resistance of the edge cv is 1, then

the voltage at c and any other leaf other than v is 1, while the voltage at

v is 0. Then, using (8),

EcTv = (n− 2) + (n− 1) = 2n− 3,
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where the first parenthesis corresponds to n − 2 vertices with degree 1,

and the second parenthesis corresponds to c, whose degree is n− 1. Since

obviously EvTc = 1, we have that D(c, v) = 2n− 3.

Also, if we place a battery sending a current of 1 ampere between any

two leaves v and w, since the effective resistance between these two vertices

is equal to 2, then we must have that the voltages are equal to 2 in the

vertex v, equal to 1 in the vertex c (and in all leaves other than v and w)

and equal to 0 in the vertex w. Using (8) we conclude that

EvTw = 2 + (n− 3) + (n− 1) = 2(n− 1).

Finally we get

HT (Sn) = (n− 1)(2n− 3) +

(
n− 1

2

)
2(n− 1) = (n− 1)(n2 − n− 1).

The computation of HT (Pn), for the path graph Pn on n vertices, is

more involved. First we compute EkTk+1, for any 1 ≤ k ≤ n − 1, by

placing a battery between the vertices k and k + 1 so that the current

flowing from k to k + 1 is equal to 1. Then it is clear that all vertices

prior to and including 1 have voltage equal to 1, and all those following

and including k + 1 have voltage 0. Therefore, by (8) we get

EkTk+1 = 2k − 1.

And thus, for i < j, we have

EiTj =

j−1∑
k=i

(2k − 1) = (i+ j − 2)(j − i). (13)

A similar argument for hitting times in the opposite direction yields

EjTi = (2n− i− j)(j − i). (14)

Then, in view of (13) and (14) we have that EiTj ≥ EjTi, i.e., D(i, j) =
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EiTj , if and only if i+ j ≥ n+1. This fact allows us to write, finally that

HT (Pn) =

⌊n
2 ⌋∑

k=1

n−k+1∑
m=k+1

EmTk +

n∑
k=⌊n

2 ⌋+2

k−1∑
m=n−k+2

EmTk.

Thus, for example, HT (K6) = 75, HT (S6) = 145, HT (C6) = 210, and

HT (P6) = 223. We should point out that, as opposed to the RW index,

our HT index discriminates between the graphs Cn and Pn and between

Sn and Kn.

Inequalities (7) and (12) imply that HT (G) = Θ(|E|K(G)), though

this fact does not help in finding graphs that maximize and minimize

HT (G) because the interplay between |E| and K(G) is not simple: the

largest values for |E| and K(G) are Θ(n2) and Θ(n3) respectively, but

they don’t occur at the same graph; similarly, the smallest values for |E|
and K(G) are both linear, but there is no graph where these occur simulta-

neously. The complete graph Kn has the smallest value for K(G) = n− 1,

and the largest value for |E|; also, for all i, j, it seems to have the smallest

values for D(i, j) = n − 1, and so, even though its |E|-value is large, it

seems to be a good candidate to minimize HT (G). On the other hand,

the path Pn maximizes K(G), though its |E|-value is only linear, so that

HT (Pn) = Θ(n4), with the constant of the leading term equal to 1
6 , and

this order of magnitude seems to be the largest possible for the HT index.

If we turn our attention at the largest values for hitting times, these

occur for the lollipop graph, i.e., a complete graph on roughly 2n
3 vertices,

attached to a path made with the remaining vertices, that attains the

maximal value 4
27n

3 from any vertex of the complete part to the endpoint

of the path, as shown in [1], and since this occurs for about two thirds of

the vertices, the largest HT can be for a lollipop graph is also Θ(n4), but

with a constant smaller than that of HT (Pn).

By brute force, it can be verified for n ≤ 6 that the graphs that maxi-

mize and minimize HT (G) are indeed, Pn and Kn, respectively. It would

nice to settle these conjectures for general n.
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