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Abstract

We investigate a discrete counterpart of planar dynamical sys-
tem of nonlinear differential equations induced by kinetic differential
equations for a two-species chemical reaction. Chemical reactions
exhibit a wide range of dynamical behavior. We show how the theo-
retical analysis provides insight into the potential behavior of chem-
ical reaction systems, determining the areas of parametric space
which indicate scenarios for local stability, then for one type of bi-
furcation co-dimension one and one type of bifurcation co-dimension
two. Precisely, we prove the existence of period-doubling bifurca-
tion and 1:2 resonance bifurcation also, by using the center mani-
fold theorem and the technique of normal forms. All mathematical
investigations are illustrated with numerical examples, bifurcation
diagrams, Lyapunov exponents and phase portraits.
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1 Introduction

Over the past four decades the field of nonlinear chemical dynamics has

grown significantly. Its applications includes all branches of chemistry as

well as areas of mathematics, physics, biology and engineering. In a non-

linear system dynamics is determined by behavior of some key variables,

like concentrations, temperature or pressure in a chemical reaction. The

possible behaviors of system of chemical reactions vary wildly; there are

systems that have a single steady state for all choices of rate constants, sys-

tems that have multiple steady states, systems that oscillate and systems

that admit chaotic behavior.

Many authors investigated dynamics of system of chemical reactions

[3, 11–13, 18]. The first chemical reaction that exhibited temporal oscil-

lations was discovered by Bray in [2] a hundred years ago. Some ex-

perimental work has discovered a number of interesting, real systems of

chemical oscillators [1, 14, 35]. In 1979, Schnakenberg in [30] proposed a

system showing sustained oscillations for a simple model of glycolysis, a

metabolic process that converts glucose to provide energy for metabolism.

The first experimental demonstrations of chaos in a chemical system

were made on the Belousov-Zhabotinsky (BZ) reaction (see [31]). Chaotic

behavior typically emerges from periodic oscillation as a control param-

eter is varied, often by a period-doubling route, but also by Neimark-

Sacker bifurcation, snap-back repellers or bifurcations co-dimension two

(see [6, 9, 15, 16, 19–21, 26]). Bifurcations can have significant implications

in two-species chemical reaction kinetics, as it can lead to sudden shifts in

reaction rates, product distributions, and overall system behavior. Under-

standing and predicting bifurcations in these types of systems are crucial

in fields such as chemical engineering, optimizing industrial processes, de-

signing control strategies to stabilize chemical reactors, enhancing process

efficiency, designing more effective drugs with improved pharmacokinetic

properties, creating novel materials with specific structures and properties,

deciphering complex physiological processes, such as neuronal signaling or

gene expression regulation which can lead to new approaches for diag-

nosing and treating diseases. Very interesting practical implications of
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bifurcations in industrial chemical processes and biological systems can

be found in [10] where Chen et al. investigate their impact on novel ap-

proaches for the production of the clean fuels: hydrogen and ethanol, and

the simulation of the acetylcholine neurocycle in the brain. Kim et al.

in [22] reported a chaotic model incorporating measurable state variables

less than the degrees of freedom of the model and the system was identified

with the artificial neural networks.

A typical characteristic for a chemical reaction system is the diffusion

phenomenon because of the movements of reactants. Considering this fact,

the systems with diffusion are realistic. Reaction-diffusion models have

been used over decades to study biological systems. Two concentrations

of two substances in some process involving diffusion and interaction, can

represent a chemical reaction or interacting populations, for example a

predator and its prey. Turing in [32] suggests reaction-diffusion models to

explain pattern formation in biological systems for example, mammalian

skin spots and stripes, fish skin patterns, snow flakes, and many others.

Noufaey in [27] investigated semi-analytical solutions for Schnakenberg

system with a reaction–diffusion cell. Yi et al. in [33] studied formation for

Turing pattern under the influence of diffusion and delay in Schnakenberg

type model. Hence, two-species chemical reaction systems are important

because they provide a simple and well-understood model system for the

study of chemical dynamics, which can be applied to a wide range of real-

world problems.

As arguing in [4], where authors give a method to construct many

kinds of systems with two internal components leading to a limit cycle,

two-species chemical reaction, described by A and B, is given as follows:

O
k1→ B, A

k2→ O, B
k3→ A, 2A

k4→ B, 2A+B
k5→ 3A (1)

where O represents the environment and k1, k2, k3, k4 and k5 are positive

numbers representing reaction rate coefficients. The rate constants ki,

i = 1, 2, 3, 4, 5 are additional data that need to be specified in order to

have a well-defined state of the system. The schematic diagram of two-

species chemical reaction network (1) is visualized in Figure 1. Considering
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Figure 1. Diagram for chemical reaction network (1)

chemical reaction network (1) and implementing the law of mass action,

one has the following two-dimensional induced dynamical system:

dx

dt
= −k2x− 2k4x

2 + k3y + k5x
2y

dy

dt
= k1 + k4x

2 − k3y − k5x
2y,

(2)

where x and y are dimensionless concentrations of species A and B, re-

spectively. To reduce the number of free parameters while still allowing

chaotic dynamics, we set the rate constants k2 = a, k3 = b, k1 = c and

k4 = k5 = 1. Then system (2) has the following form:

dx

dt
= −ax− 2x2 + by + x2y

dy

dt
= c+ x2 − by − x2y,

(3)

where parameters a, b, c > 0.

In this paper we analyzed discrete version of model (3) and proved ex-

istence of period-doubling bifurcation and 1:2 resonance bifurcation as a

borderline case between period-doubling and Naimark-Sacker bifurcation

which was examined in [8]. Din et al. in [8] analyzed also continuous

model (2) where authors examined existence and direction of Hopf bifur-

cation about positive equilibrium and carried out bifurcation control.

The novel contributions of this paper:

• Period-doubling bifurcation is a complex phenomenon that occurs
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when a small change in a parameter leads to a large change in the

behavior of a dynamical system. It occurs when a stable periodic

orbit, such as a limit cycle, loses stability and undergoes a bifurca-

tion, resulting in the emergence of a new periodic orbit with twice

the period of the original orbit. This process can repeat itself indefi-

nitely, leading to a cascade of period-doubling bifurcations that can

create a fractal structure known as a bifurcation diagram which is an

essential tool for understanding the complex behavior of nonlinear

systems.

• The discretization of the model is important for performing numer-

ical simulations and analyses. Discretization methods allow us to

transform the continuous differential equations into discrete equa-

tions that can be solved numerically. This simplifies the study of

system’s behavior, bifurcations, stability, and other properties using

computational techniques.

• In the chemical reaction model, co-dimension-two bifurcations play

a significant role for understanding the complex dynamics of the sys-

tem. Co-dimension-two bifurcations imply the simultaneous occur-

rence of two different types of bifurcations, resulting in a higher level

of complexity in the system’s behavior. 1:2 resonance refer to spe-

cific relationships between the frequencies of two or more oscillatory

components in the system.

The rest of this paper is organized as follows: in Section 2 we conduct

the discretization of the system of nonlinear differential equations and in-

vestigate a local stability of interior equilibrium point. In Section 3 and

4, we determine parametric conditions for period-doubling bifurcation and

1:2 resonance bifurcation at the fixed point of a two-dimensional map as-

sociated to system (5), respectively. Finally, in Section 5, some numerical

examples are presented in order to illustrate the theoretical discussions.

We chose some parameters to illustrate the dynamics in the neighborhood

of 1:2 resonance point, which implies that there exist a period-doubling

bifurcation curve and Naimark-Sacker bifurcation curve which intersect at

1:2 resonance point. All visualizations are generated by using Mathemat-
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ica Wolfram and Dynamica 3.0 (see [23]). We also calculated Lyapunov

exponents based on the computational algorithm in [29] since Lyapunov

exponents represent good way to test the sensitive dependence, i.e. con-

firmation of the chaos.

2 Discretization of the system

Discretization is an important tool for studying chemical reaction systems,

as it allows the application of mathematical and computational methods

to analyze the system. Discretization can also reduce the dimensionality of

the system in some cases, making them more manageable for examination

and control. Techniques like finite difference or finite element methods,

commonly used in simulation, become applicable after discretization. This

approach not only reduces computational costs but also enables the use of

standard numerical integration techniques. Numerical simulations do not

generate continuous curves.

There are several ways to conduct the discretization. One way is to

use consistency preserving discretization with nonstandard finite difference

scheme as in [8]. But for problems we planned to deal with, much more

suitable is Euler’s discretization with standard finite difference scheme

since it significantly simplifies the system we observe. So, we propose a

standard finite difference scheme for discretization of the system (3) as

follows
xn+1 − xn

h
= −axn − 2x2

n + byn + x2
nyn,

yn+1 − yn
h

= c+ x2
n − byn − x2

nyn,

(4)

where 0 < h < 1 is step size for discretization and a, b, c > 0. So we have

the following system:

xn+1 = xn + h(−axn − 2x2
n + byn + x2

nyn)

yn+1 = yn + h(c+ x2
n − byn − x2

nyn).
(5)
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Corresponding map associated to the system (5) is of the form:(
x

y

)
7→

(
x+ h

(
−ax− 2x2 + by + x2y

)
y + h

(
c+ x2 − by − x2y

) )
. (6)

In order to find equilibrium points of system (5), we solve the following

system:

−X2Y + aX − bY + 2X2 = 0

−c+X2Y + bY −X2 = 0.

The unique positive equilibrium E(X,Y ) =
(
X, X2+c

X2+b

)
of system (5) is

given as

E =

−a+
√
a2 + 4c

2
,

(
a2 + 4c

)
(b+ c) + a (c− b)

√
a2 + 4c

2
(
a2b+ (b+ c)

2
)

 . (7)

Jacobian matrix of the map T at the equilibrium point is given by

JT (h) =

(
(2XY − 4X − a)h+ 1 h

(
X2 + b

)
−2hX (Y − 1) −h

(
X2 + b

)
+ 1

)
,

and the corresponding characteristic equation is of the form

ϕ(λ) = λ2 − TrJT (h)λ+DetJT (h) = 0. (8)

In order to study the modulus of eigenvalues of the characteristic equation

(8) at the positive equilibrium point E(X,Y ), we first give the following

Lemma, which can be easily proved by the relations between roots and

coefficients of the quadratic equation (see [7, 25]).

Lemma 1. Assume that ϕ(λ) = λ2 − TrJTλ + DetJT is a polynomial

associated to characteristic equation. Suppose that ϕ(1) > 0 and λ1 and

λ2 are two roots of ϕ(λ) = 0. Then

a) |λ1| < 1 and |λ2| < 1 iff ϕ(−1) > 0 and ϕ(0) < 1.

b) |λ1| > 1 and |λ2| > 1 iff ϕ(−1) > 0 and ϕ(0) > 1.
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c) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) iff ϕ(−1) < 0.

d) λ1 and λ2 are complex and |λ1| = |λ2| = 1 iff (TrJT )
2−4DetJT < 0

and DetJT = 1.

e) λ1 = −1 and λ2 ̸= −1 iff ϕ(−1) = 0 and −TrJT ̸= 2,

f) λ1 = λ2 = −1 iff ϕ(−1) = 0 and −TrJT = 2.

Recall now some definitions of topological types for an equilibrium point

(x, y). If |λ1| < 1 and |λ2| < 1, an equilibrium point (x, y) is called a

sink. As we know, a sink is locally asymptotically stable. If |λ1| > 1

and |λ2| > 1, an equilibrium point (x, y) is called a source which is locally

unstable. If |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1 ) an equilibrium

point (x, y) is called a saddle. And, finally if either |λ1| = 1 or |λ2| = 1,

an equilibrium point (x, y) is called a non-hyperbolic.

Lemma 2. Let a, b, c, h > 0 and equilibrium point E (X,Y ) of system

(5) given by (7). Then the positive equilibrium point E is:

I) a source for a+ b+ 4X − 2XY +X2 ≤ 0,

II) 1. if
(
a+ b+ 4X − 2XY +X2

)2
> 4

(
b+X2

)
(a+ 2X) :

a) a sink if and only if h ∈ (0, h1),

b) a saddle point if and only if h ∈ (h1, h2),

c) a source if and only if h ∈ (h2,+∞),

d) a non-hyperbolic point with λ1 = −1 and |λ2| ≠ 1 for h = h1

or h = h2,

2. if
(
a+ b+ 4X − 2XY +X2

)2
= 4

(
b+X2

)
(a+ 2X) :

a) a sink if and only if h ∈ (0, ht),

b) a source if and only if h ∈ (ht,+∞),

c) a non-hyperbolic point with λ1,2 = −1 for h = ht = hm,

3. if 0 <
(
a+ b+ 4X − 2XY +X2

)2
< 4

(
b+X2

)
(a+ 2X) :

a) a sink if and only if h ∈ (0, ht),

b) a source if and only if h ∈ (ht,+∞),
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c) a non-hyperbolic point with λ1,2 ∈ C, |λ1,2| = 1 for h = ht <

hm,

where

h1,2 =
(a+b+4X−2XY+X2)±

√
(a+b+4X−2XY+X2)2−4(b+X2)(a+2X)

(b+X2)(a+2X) ,

ht =
a+b+4X−2XY+X2

(b+X2)(a+2X) and hm = 4
a+b+4X−2XY+X2 .

Proof. For λ1 and λ2 as a roots of characteristic equation (8), it holds

TrJT (h) = −h
(
a+ b+ 4X − 2XY +X2

)
+ 2,

and

DetJT (h) = h2 (a+ 2X)
(
b+X2

)
− h

(
a+ b+ 4X − 2XY +X2

)
+ 1.

Let us denote (TrJT (h))2 − 4DetJT (h) = h2K. Then

λ1,2 = 1− h

(
a+ b+ 4X − 2XY +X2

)
±

√
K

2
,

where

K =
(
a+ b+ 4X − 2XY +X2

)2 − 4
(
b+X2

)
(a+ 2X) . (9)

Now, ϕ(1) = h2 (2X + a)
(
X2 + b

)
> 0 and

ϕ(−1) = h2 (a+ 2X)
(
X2 + b

)
− 2h

(
a+ b+ 4X − 2XY +X2

)
+ 4,

ϕ(−1) = 0 ⇔ h1,2 =
(a+b+4X−2XY+X2)±

√
K

(b+X2)(a+2X) . (10)

Notice that h1,2 ∈ R for K ≥ 0 and 0 < h1 ≤ h2. Also,

ϕ(0) = h2 (a+ 2X)
(
b+X2

)
− h

(
a+ b+ 4X − 2XY +X2

)
+ 1,

ϕ(0) = 1 ⇔ h = ht =
a+ b+ 4X − 2XY +X2

(a+ 2X)(b+X2)
. (11)

If a + b + 4X − 2XY +X2 ≤ 0, then obviously ϕ(−1) > 0 and ϕ(0) > 1

which proves part I. Suppose now that a + b + 4X − 2XY + X2 > 0.
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Therefore, if K > 0, it directly follows that ϕ(−1) > 0 and ϕ(0) < 1 implies

h ∈ (0, h1), ϕ(−1) > 0 and ϕ(0) > 1 implies h ∈ (h2,+∞), ϕ(−1) < 0

implies h ∈ (h1, h2) and ϕ(−1) = 0 for h = h1 or h = h2 which completes

the proof of the part II 1.

If K = 0, then h1,2 = ht = a+b+4X−2XY+X2

(a+2X)(b+X2) = 4
a+b+4X−2XY+X2 = hm

and from (10) and (11) is obviously λ1,2 = −1, so the conclusions for the

part II 2. follow immediately.

If K < 0, then λ1,2 are complex-conjugate. Since ϕ(0) = 1 implies h =

ht =
a+b+4X−2XY+X2

(a+2X)(b+X2) , then |λ1| = |λ2| = 1 for h = ht and the part II 3.

is proved.

Let us convert the system (5) into the system with equilibrium point at
origin by using the translation un = xn −X, vn = yn − Y. Then the map
(6) can be transformed as

(
u

v

)
7→
(

u + h
(
u2v − u (a − 2X (Y − 2)) + u2 (Y − 2) + v

(
X2 + b

)
+ 2Xuv

)
v − h

(
u2v + u2 (Y − 1) + v

(
X2 + b

)
+ 2Xu (Y − 1) + 2Xuv

) )
.

(12)

In this paper we will consider bifurcation of the system (5) in equilib-

rium point E(X,Y ) when conditions II 1. d) and II 2. c) of Lemma 2

are satisfied. The case II 3. c) is considered in [8].

3 Period-doubling bifurcation

Let us consider now the case II 1. d) in Lemma 2 since it implies occur-

rence of a period-doubling bifurcation. For h = h1 or h = h2 equilibrium

point is non-hyperbolic with eigenvalues

λ1 = −1 and λ2 = 3− h1

(
a+ b+ 4X − 2XY +X2

)
̸= ±1.

Since h is a parameter of the discretization of the system (5), we will choose

smaller value for further consideration. Hence, as a step of discretization,

we will use

h1 =
(a+b+4X−2XY+X2)−

√
K

(b+X2)(a+2X) , K > 0
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for K defined in (9). Let us define the curve CPDB where exists period-

doubling bifurcation:

CPDB = {(a, b, c, h) : a, b, c > 0 ∧ h = h1 ∧ K > 0} . (13)

Now, system (12) can be written in the form(
u

v

)
7→ JT (h1 + ĥ)

(
u

v

)
+

(
P1(u, v)

P2(u, v)

)
(14)

where ĥ is very small perturbation in h1 and

P1(u, v) = (h1 + ĥ)
(
u2v + u2 (Y − 2) + 2Xuv

)
,

P2(u, v) = −(h1 + ĥ)
(
u2v + u2 (Y − 1) + 2Xuv

)
.

Suppose that (a, b, c, h) ∈ CPDB . In order to make the normal form of

system (14), we consider an invertible matrix

Φ =

(
a12 a12

−1− a11 λ2 − a11

)

where a11 = 1 − h1 (a− 2X (Y − 2)) and a12 = h1

(
X2 + b

)
. The basic

idea of normal form theory is to employ successive, near identity nonlinear

transformations to eliminate, the so called, non-resonant nonlinear terms,

and retaining the terms which cannot be eliminated (called resonant terms)

to form the normal form and which is sufficient for the study of qualitative

behavior of the original system. Hence, considering h1(a+ 4X − 2XY ) =

3− λ2 − h1(b+X2), we get

Φ =

(
h1

(
X2 + b

)
h1

(
X2 + b

)
1− λ2 − h1

(
b+X2

)
2− h1

(
b+X2

) )

and

Φ−1 =
1

λ2 + 1

 − bh1+X2h1−2
h1(b+X2) −1

λ2+bh1+X2h1−1
h1(b+X2) 1

 .
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Furthermore, taking into account the following similarity transformation(
u

v

)
= Φ

(
s

t

)
=

(
h1

(
X2 + b

)
(s+ t)

(1− λ2) s+ 2t− h1 (s+ t)
(
b+X2

) ) ,

system (14) takes the form

Φ

(
s

t

)
= JT (h1 + ĥ)Φ

(
s

t

)
+

(
P1(s, t)

P2(s, t)

)
.

It implies(
s

t

)
= Φ−1JT (h1 + ĥ)Φ

(
s

t

)
+Φ−1

(
P1(s, t)

P2(s, t)

)
.

Since

Φ−1JT (h1 + ĥ)Φ =

(
−1− 2

h1
ĥ 0

0 λ2 +
λ2−1
h1

ĥ

)

=

(
−1 0

0 λ2

)
+

(
− 2ĥ

h1
0

0 λ2−1
h1

ĥ

)
,

we get (
s

t

)
=

(
−1 0

0 λ2

)(
s

t

)
+

 f
(
s, t, ĥ

)
g
(
s, t, ĥ

)  ,

where

f
(
s, t, ĥ

)
= − 2

h1
ĥs+

(h1+ĥ)(s+t)

λ2+1 G1,

g
(
s, t, ĥ

)
= (λ2−1)

h1
ĥt+

(h1+ĥ)(s+t)

λ2+1 G2,

and

G1 =− h2
1

(
b+X2

)2
(2 (s+ t)− 1) (s+ t)

− 2h1

(
b+X2

)
(s+ t) (2X − Y + s (λ2 − 1)− 2 (t− 1))

+ 4X ((1− λ2) s+ 2t) ,
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G2 =− h2
1

(
b+X2

)2
(s+ t) ((λ2 − 1) (s+ t) + 1)

− h1

(
b+X2

)
(λ2 − 1) (s+ t) (2X − Y + s (λ2 − 1)− 2 (t− 1))

+ 2X (λ2 − 1) ((1− λ2) s+ 2t) .

Due to center manifold theory [17, 24], stability analysis of equilibrium

(u, v) = (0, 0) near ĥ = 0 can be discussed by investigating reduced equa-

tions on a center manifold WC(0, 0, 0)

WC(0, 0, 0) =
{(

s, t, ĥ
)
∈ R3

+ : t = M
(
s, ĥ

)
,M(0, ĥ) = 0, DM

(
s, ĥ

)
= 0

}
.

We assume that the center manifold can be approximated by

M
(
s, ĥ
)
= As2 + Bsĥ+ Cĥ2 +Ds3 + Es2ĥ+ Fsĥ2 + Gĥ3,

where A,B, C,D, E ,F and G are unknown coefficients. Then must hold

M
(
−s+ f

(
s,M

(
s, ĥ
)
, ĥ
)
, ĥ
)
− λ2M

(
s, ĥ
)
− g

(
s,M

(
s, ĥ
)
, ĥ
)
= 0,

hence

S03

λ2+1s
3 + S12

h1(λ2+1) ĥs
2 − S02

λ2+1s
2 − S21

h1(λ2+1) ĥ
2s

− (λ2−1)(C+Gh1)
h1

ĥ3 − C (λ2 − 1) ĥ2 − B (λ2 + 1) ĥs = 0,

where

S03 =−D (λ2 + 1)2 + 2Ah1 (λ2 + 1)
(
h1

(
b+X2

)
(2X − Y + 2) +X (λ2 − 1)

)
+ h2

1

(
b+X2

)
(λ2 − 1)

(
h1

(
b+X2

)
+ λ2 − 1

)
,

S12 =− Eh1 (λ2 − 1) (λ2 + 1)−A (λ2 + 1) (λ2 − 5)

+ h1

(
h2
1

(
b+X2

)2
+ (λ2 − 1) (2X − Y + 2)h1

(
b+X2

)
+ 2X (λ2 − 1)2

)
,

S02 =A
(
λ2
2 − 1

)
− h3

1

(
b+X2

)2 − 2h1X(λ2 − 1)2

− h2
1 (λ2 − 1) (2X − Y + 2)

(
b+X2

)
,

S21 =B (λ2 + 1)2 + Fh1 (λ2 + 1)2 − 2Ch4
1

(
b+X2

)2
− 2Ch2

1

(
h1

(
b+X2

)
(λ2 − 1) (2X − Y + 2) +X (λ2 − 1) (λ2 − 3)

)
.



362

It implies the following system

S03 = 0, S12 = 0, S02 = 0, S21 = 0,

(λ2 − 1) (C + Gh1) = 0, C (λ2 − 1) = 0,B (λ2 + 1) = 0.

Now we have B = C = G = F = 0,

D = h1
2(λ2+1)(h1(b+X2)(2X−Y +2)+X(λ2−1))A+h1(b+X2)(λ2−1)(h1(b+X2)+λ2−1)

(λ2+1)2
,

and for h1 ̸= 2(2X+2−Y )
5X2+2aX+b , λ2 = 3−h1(a+ b+4X−2XY +X2), remaining

coefficients can be written as

E =
4A

(λ2 − 1)h1
̸= 0,

and

A =
h2
1

(
b+X2

) (
h1

(
5X2 + 2aX + b

)
+ 2 (Y − 2X − 2)

)
λ2
2 − 1

̸= 0.

Further, it is satisfied

M
(
0, ĥ
)
= 0,

so the center manifold can be described as follows

WC(0, 0, 0) =

{(
s, t, ĥ

)
∈ R3

+ : t = As2 +Ds3 + Es2ĥ+ o

((
|s|+ |ĥ|

)4
)}

.

Now, we restrict our system to the center manifold:

𭟋
(
s, ĥ
)
=− s+ f

(
s,M

(
s, ĥ
)
, ĥ
)
= −s+ δĥs+ γs2 + o

((
|s|+

∣∣∣ĥ∣∣∣)3) .

After some calculations, we get

δ = − 2

h1
, γ =

[(5X2+2aX+b)h1+2(Y−2X−2)](b+X2)h2
1

4−h1(a+b+4X−2XY+X2) .

Now we have

∂𭟋 (0, 0)

∂ĥ
= 0,

∂2𭟋 (0, 0)

∂s∂ĥ
= δ = − 2

h1
̸= 0,
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∂2𭟋 (0, 0)

∂s2
= 2γ = 2

[(5X2+2aX+b)h1+2(Y−2X−2)](b+X2)h2
1

4−h1(a+b+4X−2XY+X2) .

Hence,
∂2𭟋 (0, 0)

∂s2
= 2γ ̸= 0 if h1 ̸= 2(2X+2−Y )

5X2+2aX+b .

Period doubling bifurcation theorem in [28] demands that the three fol-

lowing conditions must be satisfied:

(i) 𭟋 (0, h) = 0,

(ii) 𭟋′
s (0, 0) = −1 and

(iii) κ1 =
[
∂2𭟋(s,h)

∂s∂h + 1
2
∂𭟋(s,h)

∂h
∂2𭟋(s,h)

∂s2

]
|(0,0)

= δ ̸= 0,

κ2 =

[
1
6
∂3𭟋(s,h)

∂s3 +
(

1
2
∂2𭟋(s,h)

∂s2

)2]
|(0,0)

= γ2 ̸= 0 .

Appearance of stable or unstable period two cycle near equilibrium point

(0, 0) for small ĥ > 0 depends of the sign of κ2.

Theorem 1. If (a, b, c, h) ∈ CPDB and h1 ̸= 2(2X+2−Y )
5X2+2aX+b , there exists

a period-doubling bifurcation at E(X,Y ) of model (5). Furthermore, the

period-2 orbits bifurcated from E(X,Y ) are stable since κ2 > 0 which is

also known as supercritical period-doubling bifurcation.

4 1:2 resonance bifurcation

Let us consider now case II) 2. c) in Lemma 2 where the equilibrium

point is non-hyperbolic with eigenvalues λ1 = λ2 = −1 since it implies

occurrence of the so called 1:2 resonance bifurcation. This is a bifurcation

co-dimension 2, so we will take two bifurcation parameters ht and bt as

solutions of the following system TrJT = −2 and DetJT = 1.

For arbitrary but fixed parameters a, c,X = −a+
√
a2+4c
2 , Y = X2+c

X2+b we

determine bt as a root of equation

K = K (a, b, c,X) = 0, (15)

where K is given by (9), while ht = a+bt+4X−2XY+X2

(a+2X)(bt+X2) has the following

form ht =
b2t+(2X

2+4X+a)bt+X2(X2−a)
(a+2X)(bt+X2)2

. Note that the Jacobian matrix for
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(a, bt, c, ht) at equilibrium point E(X,Y ) = (X, X2+c
X2+b ) is

J (ht, bt) =

(
(2XY − 4X − a)ht + 1 ht

(
X2 + bt

)
−2htX (Y − 1) −ht

(
X2 + bt

)
+ 1

)
.

We can always select two linearly independent eigenvectors pi ∈ R2, i =

1, 2 of J (ht, bt) such that

J (ht, bt)p1 =− p1,

J (ht, bt)p2 =− p2 + p1,

and similarly adjoint eigenvectors qi ∈ R2, i = 1, 2 of the transposed

matrix of JT (ht, bt) such that

JT (ht, bt)q1 =− q1,

JT (ht, bt)q2 =− q2 + q1,

and ⟨p1,q1⟩ = ⟨p2,q2⟩ = 0 and ⟨p1,q2⟩ = ⟨p2,q1⟩ = 1.

The following eigenvectors will be chosen to transform map (12) to the 1:2

resonance normal form at (h, b) = (ht, bt). After some tedious calculations

we get

p1 =

(
2 2(p21+p22)−(2X+a)p21ht

(2X+a)ht

((2X+a)ht−2)(2(p21+p22)−(2X+a)p21ht)
(2X+a)ht

)
,p2 =

(
p21

p22

)
,

q1 =

(
− ((2X+a)ht−2)(2(q21−q22)+(2X+a)q22ht)

(2X+a)ht

2 2(q21−q22)+(2X+a)q22ht

(2X+a)ht

)
,q2 =

(
q21

q22

)
.

For p21 = q22 = 0 it follows

p1 =

(
4p22

(2X+a)ht

2((2X+a)ht−2)p22

(2X+a)ht

)
,p2 =

(
0

p22

)
,

q1 =

(
− 2((2X+a)ht−2)q21

ht(2X+a)
4q21

(2X+a)ht

)
,q2 =

(
q21

0

)
.
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It obviously holds:

⟨p1,q1⟩ = ⟨p2,q2⟩ = 0,

⟨p1,q2⟩ = ⟨p2,q1⟩ =
4p22q21

(2X + a)ht
= 1

and by choosing q21 = (2X+a)ht

4 , it implies p22 = 1. Hence,

p1 =

(
4

(2X+a)ht

2((2X+a)ht−2)
(2X+a)ht

)
,p2 =

(
0

1

)
,

q1 =

(
− (2X+a)ht−2

2

1

)
,q2 =

(
(2X+a)ht

4

0

)
.

In order to determine the critical normal form coefficients b̂ and ĉ of the 1:2

resonance bifurcation that determine the non-degeneracy and the scenario

of the bifurcation, we need to conduct the following analysis. Denote the

nonlinear term of map (12) as F (U, 0), UT = (u, v). Taylor expansion near

the origin can be written as

F (U, 0) =
1

2
B(U,U) +

1

6
C(U,U, U)

where B(U,U) and C(U,U, U) are multilinear functions. It follows that

B(u, v) =

2∑
j,k=1

∂2F (ξ, 0)

∂ξj∂ξk
|ξ=0 ujvk

and

C(u, v, w) =

2∑
j,k,l=1

∂3F (ξ, 0)

∂ξj∂ξkξl
|ξ=0 ujvkwl.

In our case, above mentioned functions are given as

B (X ,Y) = 2ht

(
(Y − 2)x1y1 +Xx1y2 +Xx2y1

− (Y − 1)x1y1 −Xx1y2 −Xx2y1

)
,

C (X ,Y,Z) = 2ht

(
x1y1z2 + x1y2z1 + x2y1z1

−x1y1z2 − x1y2z1 − x2y1z1

)
.
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Now we need to determine

b̂ =
1

6

〈
q1, C (p1,p1,p1) + 3B

(
p1,h

20
)〉

where h20 = (I2 − J (ht, bt))
−1

B (p1,p1) . Since

B (p1,p1) = 32

(
Xht(2X+a)−2X+Y−2

ht(2X+a)2

−Xht(2X+a)−2X+Y−1

ht(2X+a)2

)
, B (p1,p2) = 8

(
X

2X+a
−X

2X+a

)
,

C (p1,p1,p1) = 192

(
(2X+a)ht−2

h2
t (2X+a)3

− (2X+a)ht−2

h2
t (2X+a)3

)
,

(I2 − J (ht, bt))
−1

=

(
1

ht(2X+a)
1

ht(2X+a)
−2X(Y−1)

ht(bt+X2)(2X+a)
4X+a−2XY

ht(bt+X2)(2X+a)

)
,

h20 = 32

 − 1
h2
t (2X+a)3

− 4X3ht+4X2(aht−1)+aX(aht−2)+(Y−1)a

h2
t (2X+a)3(X2+bt)

 ,

B
(
p1,h

20
)
=

128

 −htX(2X+a)(5X2+2Xa+bt)−2(5X3+X2(2(a+1)−Y )+X((1−Y )a+bt)+(2−Y )bt)
h2
t (2X+a)4(bt+X2)

htX(2X+a)(5X2+2Xa+bt)−2(5X3+X2(2a+1−Y )+X(a(1−Y )+bt)+(1−Y )bt)
h2
t (2X+a)4(bt+X2)

 ,

we finally get

b̂ = 16 B̂
h2
t (2X+a)4(bt+X2)

̸= 0,

if

B̂ = h2
t (2X + a)

2 (
8X3 + 3X2a− abt

)
+ 8

(
bt +X2

)
−2ht (2X + a)

(
8X3 + (3a− 2Y + 4)X2 + 2a (1− Y )X

)
−2ht (2X + a) (4− 2Y − a) bt ̸= 0.

(16)

Further,

ĉ = 1
2

〈
q1, C(p1,p1,p2) + 2B(p1,h

11) +B(p2,h
20)
〉

+ 1
2

〈
q2, C(p1,p1,p1) + 3B(p1,h

20)
〉
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where

h11 = (I2 − J (ht, bt))
−1 (

B (p1,p2) + h20
)
.

After some calculations we get that the second non-degeneracy condition

for the 1:2 resonance bifurcation is

ĉ+ 3b̂ = 16
ϕ0(2X+a)3h3

t+ϕ1(2X+a)2h2
t+8ϕ2(2X+a)ht+ϕ3

h3
t (2X+a)5(bt+X2)2

̸= 0 (17)

where

ϕ0 = 2
(
bt +X2

) (
12X3 + 5X2a− abt

)
,

ϕ1 = −52X5 − 5 (2Y + 5a− 4)X4 + 2 (aY + 11a− 24bt)X
3

+2
(
14Y bt + 4a2 − bt (11a+ 28)

)
X2

+2bt (9Y a− 13a+ 2bt)X + 3b2t (2Y + a− 4) ,

ϕ2 = 3X5 + (3Y + 2a− 1)X4 + (2bt − 5a+ Y a)X3

−
(
Y 2a+ Y (4bt − 3a) + 2a (a+ 1)− 2bt (a+ 8)

)
X2

+
(
Y a (a− 3bt)− a2 + bt (7a− bt)

)
X

+bt
(
Y 2a+ Y (bt − 3a) + 2a+ bt

)
,

ϕ3 = −16
(
bt +X2

) (
3X2 + 2Xa− Y a+ a− bt

)
.

So, we have the following theorem.

Theorem 2. If bt is a root of the equation

(
a+ b+ 4X − 2XY +X2

)2 − 4
(
b+X2

)
(a+ 2X) = 0,

h = ht = a+bt+4X−2XY+X2

(bt+X2)(a+2X) where X = −a+
√
a2+4c
2 , Y = X2+c

X2+b , and

conditions (16) and (17) are satisfied, then equilibrium point E(X,Y ) of

system (5) undergoes 1:2 resonance bifurcation.

Remark. Two types of degenerate points which can be met in generic two-

parameter discrete-time systems, while moving along co-dimension one

curves, precisely 1:3 and 1:4 resonance points located on Neimark-Sacker

curve, are associated with cases when Jacobian matrix of the system (5)

about positive fixed point has complex conjugate eigenvalues − 1
2 ± i

√
3
2 ,

and ±i respectively. Those are also co-dimension two bifurcations where
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Figure 2. Visual representation of bifurcation distribution near 1:2 res-
onance point for values of parameters a = 2 and c = 8 in
(b, h(b)) plane where bt ≈ 6.420649595 and ht ≈ 0.25293386.

two independent parameters ht and bt can be determined by solving the fol-

lowing conditions respectively: TrJT = −1 and DetJT = 1, and TrJT = 0

and DetJT = 1. Further, there is a type of degeneracy point correspond-

ing to the case λ1 = λ2 = 1, also known as 1:1 resonance point, or λ1 = 1,

λ2 = −1, or special type which appears in the case, so called, Chenciner

bifurcation. By using normal form theory and arguing as in [24], condi-

tions for existence above mentioned bifurcations can be determined, but

that we leave for some other investigations.

5 Numerical results and illustrations

Consider now the special case of system (5) when c = b, i.e. (a, b, b, h) ∈
CPDB . Then it holds Y = X2+c

X2+b = 1 and
√
K =

√
(−X2 + 2X + a− b)

2
.

Since K > 0, it implies −X2+2X+a− b ̸= 0 and a− b+1 ̸= 0. Therefore

h1 =

{
2

X2+b if a− b+ 1 < 0
2

2X+a if a− b+ 1 > 0
.
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Now, h1 = 2
X2+b < 2

2X+a = h2 if X2 − 2X + b− a > 0, i.e. a− b+ 1 < 0

or h1 = 2
2X+a < 2

X2+b = h2 if X2 − 2X + b − a < 0, i.e. a − b + 1 > 0.

Then it holds h1 ̸= 2(2X+2−Y )
5X2+2aX+b .

So, we have
∂2𭟋 (0, 0)

∂s2
̸= 0 for c = b and the equilibrium point E = (X, 1)

of system (5) exhibits period-doubling bifurcation.

(a) (b)

Figure 3. (a) Bifurcation diagram for values of parameters a = 2,

b = c = 8, h = 1
6
+ ĥ and initial conditions (x0, y0) =

(2.001, 1.001).
(b) Corresponding Lyapunov exponent for the same value of
parameters.

Numerically, for values of parameters a = 2, b = c = 8, h = 1
6+ĥ and initial

conditions (x0, y0) = (2.001, 1.001) we have equilibrium point E = (2, 1)

and the minimal period-two solution
{
. . . , P 2

1 , P
2
2 , P

2
1 , P

2
2 , . . .

}
where

P 2
1 =

(
u2
1, v

2
1

)
= (2.6579444530118583, 0.7141311825147865) ,

P 2
2 =

(
u2
2, v

2
2

)
= (1.1492888076477241, 1.4620299876429752) .

On Figure 3 (a), for ĥ = 0.007, components of period-two solutions are

represented as follows:

u2
1 with blue circle (0.007, 2.6579444530118583),

v21 with purple circle (0.007, 0.7141311825147865),

u2
2 with blue point (0.007, 1.1492888076477241),

v22 with purple point (0.007, 1.4620299876429752).

For a = 2, b = c = 8 it is h = h1 = 1
6 and for ĥ = 0.01512, h+ ĥ = 0.18179

there exists the minimal period-four solution

{
. . . , Q4

1, Q
4
2, Q

4
3, Q

4
4, Q

4
1, Q

4
2, Q

4
3, Q

4
4, . . .

}
,
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where

Q4
1 =

(
u4
1, v

4
1

)
= (3.072093792829229, 0.5260167014481686) ,

Q4
2 =

(
u4
2, v

4
2

)
= (0.1912394870792422, 2.0285487061653544) ,

Q4
3 =

(
u4
3, v

4
3

)
= (3.0720573954270725, 0.5258714228008146) ,

Q4
4 =

(
u4
4, v

4
4

)
= (0.19081571729926905, 2.0288446871685437) .

Not all decimals in period-four solution are shown (see Figure 3 (a)). The

maximum Lyapunov exponent which indicates the occurrence of periodic

orbits, critical bifurcation sets, and chaotic region as ĥ varies, was also

plotted (see Figure 3 (b)). Let us recall that Lyapunov exponents can be

calculated exactly in a very small number of examples. They are mostly

calculated numerically. Lyapunov exponent is calculated by eigenvalues of

the limit of the following expression: (J0 · J1 · . . . · Jn)1/n where n tends to

infinity, and Ji is the Jacobian of the function at the iterated point (xi, yi),

i.e.

Li = lim
n→∞

1

n
log Λi, i = 1, 2

where Λ1,2 are eigenvalues of Jacobian matrix Jn. For more details see

[5, 34].

(a) (b)

Figure 4. (a) Bifurcation diagram for value of parameters a = 2, b =
6.420649595592701, c = 8 and initial conditions (x0, y0) =
(2.0001, 1.001).
(b) Corresponding Lyapunov exponent for the same value of
parameters (500-505 iterations).

Phase portraits for specifically chosen values of parameters show us some

symmetric phenomena (see Figure 5, 6, 7 and 8).
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Phase portrait for value of parameters:
a = 2, b = 2, c = 8, h1 = 2

9
and:

(a) ĥ = −0.008, initial point (u0, v0) = (0.5, 1.0),

(b) ĥ = 0, initial point (u0, v0) = (0.5, 1.0),

(c) ĥ = 0.001, initial point (u0, v0) = (2.0, 0.5),

(d) ĥ = 0.001, initial point (u0, v0) = (1.8, 2.0),

(e) ĥ = 0.005, initial point (u0, v0) = (0.5, 0.5),

(f) ĥ = 0.001, initial point (u0, v0) = (1.8, 2.0).
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(a) (b)

(c) (d)

Figure 6. Phase portrait for value of parameters:
a = 2, b = 6, c = 8, h1 = 19

75
and:

(a) ĥ = −0.015, initial point (u0, v0) = (2.5, 1.4),

(b) ĥ = 0, initial point (u0, v0) = (2.5, 1.4),

(c) ĥ = 0.004, initial point (u0, v0) = (2.15, 0.65),

(d) ĥ = 0.004, initial point (u0, v0) = (2.2, 1.15).

(a) (b)

(c) (d)

Figure 7. Phase portrait for value of parameters:
a = 2, b = 6.420649595, c = 8, ht = 0.25293386 and:
(a) ĥ = −0.05, initial point (u0, v0) = (2.001, 1.001) ,

(b) ĥ = 0, initial point (u0, v0) = (2.001, 1.001),

(c) ĥ = 0.0038, initial point (u0, v0) = (2.001, 1.001),

(d) ĥ = 0.0038, initial point (u0, v0) = (1.6, 1.25).
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(a) (b)

(c) (d)

Figure 8. Phase portrait for value of parameters:
a = 2, b = 8, c = 8, h1 = 1

6
and:

(a) ĥ = 0, initial point (u0, v0) = (1.0, 1.65),

(b) ĥ = 0.007, initial point (u0, v0) = (2.001, 1.001),

(c) ĥ = 0.007, initial point (u0, v0) = (2.1, 1.1).,

(d) ĥ = 0.01512, (u0, v0) = (2.1, 1.2).

(a) (b)

Figure 9. (a) Basin of attractions for values of parameters a = 2, b =
8, c = 8, h = 1

6
+ 0.007 and initial condition (u0, v0) =

(2.001, 1.001).
(b) Stable (green) and unstable (red) manifold for the same
values of parameters as in (a).

Some interesting phenomena occurs for values of parameters a = 34 and

c = 35. In that case K = (b2 − 26b + 9)(b − 35)(b − 3) = 0. For one root

of previous equation b = 13+ 4
√
10, it holds b̂ = 387

√
10− 12656 ̸= 0 and

ĉ + 3b̂ = 64
√
10−325
729 ̸= 0, so we have 1:2 resonance point. On Figure 10

one can see phase portraits where fixed point loses its stability through

pitchfork bifurcation and it becomes stable period-two solution. Then

these points change to the two stable closed invariant curves which merges
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into one stable invariant curve and eventually leads to chaos.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Phase portrait for value of parameters a = 34, b = 25, c =
35, E = (X,Y ) = (1, 18

13
), h1 ≈ 0.0629795 and initial point

(u0, v0) = (1.01, 1.38) and:
(a) h = 0.0629 < h1,
(b) h = 0.062981 > h1,
(c) h = 0.0645 > h1,
(d) h = 0.065 > h1,
(e) h = 0.0651 > h1 and
(f) h = 0.06510965 > h1.

6 Conclusion

We considered a discrete counterpart of nonlinear differential equations for

a two-species chemical reaction and its qualitative behavior. It was studied
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the local dynamics of the of model and proved that system has a unique

positive equilibrium point. Parametric conditions for local asymptotic

stability of model (5) are obtained. Furthermore, some of co-dimension-

one and co-dimension-two bifurcations are discussed. By using normal

form method and bifurcation theory, it is proved that system (5) under-

goes period-doubling bifurcation at its positive equilibrium point and co-

dimension-two bifurcation associated with 1:2 strong resonances. In the

case of 1:2 resonance, the system exposes a resonance pattern where the

frequency of one oscillatory component is twice that of another component.

This can lead to the repression or amplification of certain oscillations in

the system, resulting in a complex behavior. The aim of this type of re-

search is to enable chemists, biologists and other scientists to suppress the

chaotic behavior of the model by inspecting the type of bifurcations with

the appropriate selection of parameters.

Acknowledgment : The authors are very thankful to the anonymous ref-
erees for their useful comments and suggestions, which helped us to refine
and enhance this paper.
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namics and bifurcations of certain second order rational difference
equation with quadratic terms, Qualit. Th. Dynamic. Sys. 15 (2015)
283–307.
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