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Abstract

In this paper, a non-steady-state amperometric biosensor with
the mixed enzyme kinetics and diffusion limitations under the inhi-
bitions of substrate and product is modeled mathematically. The
non-steady-state reaction-diffusion equations of the system consist
non-linear terms related to an enzymatic reaction of non-Michaelis-
Menten kinetics. We have presented the approximate analytical so-
lutions for the concentrations of substrate and product in non-steady
and steady-state models using the new approach of Homotopy per-
turbation method (HPM). The provided expression is presented for
all potential diffusion and kinetic parameter values. Analytical ex-
pressions of the biosensor current and sensitivity are also presented
and discussed. In addition, we also provided numerical solutions
for the proposed model by utilizing the pdepe tool in MATLAB
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software. When comparing the analytical solution with the nu-
merical solution, a satisfactory result is noted for all the possible
values of the parameters. Furthermore, the influence of diffusion
and kinetic parameters on both the current and the sensitivity are
discussed. Analytical expressions for the limiting cases of biosensor
enzyme kinetics are presented in this research article. Additionally,
an analytical expression for determining the effective thickness of
the membrane is derived and presented.

1 Introduction

Biosensors are analytical devices that detect and measure the concen-

tration of biological or chemical compounds in a sample using a biolog-

ical recognition element, such as an enzyme. Among the various types

of biosensors, amperometric biosensors are particularly attractive due to

their high sensitivity, rapid response, and simple operation. Amperometric

biosensors detect variations in the electric current produced at the elec-

trode due to the direct oxidation or reduction of a biochemical reaction.

An amperometric biosensor typically consists of an electrode, a biological

recognition element immobilized on the electrode surface, and a transducer

that converts the biochemical signal into an electrical signal [3,10]. These

biosensors have been widely used in various applications, such as clini-

cal diagnosis, environmental monitoring, and food analysis. They offer

advantages over traditional analytical methods, such as high sensitivity,

real-time monitoring, and low sample consumption [12,19,23].

Amperometric techniques exhibit a linear relationship between the

measured current and analyte concentration in the buffer solution, de-

livering a current response that increases in direct correlation with rising

concentrations, typically within a standard dynamic range. In spite of po-

tential errors in current measurements that may arise as a result of mul-

titude of influencing factors, meticulous calibration and vigilant control

of experimental variables guarantee the reliability and precision of these

methods for quantifying analyte concentration [2,25]. Various models have

been developed for biosensors that account for substrate and product inhi-

bition under steady-state [15, 16] and non-steady-state conditions [9]. To

optimize the amperometric biosensor by reducing the substrate and prod-
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uct inhibition in enzyme activity Šimelevičius and Baronas [27] proposed

a mathematical model of biosensor considering the mixed enzyme kinetics

with both substrate and product inhibition.

Kirthiga and Rajendran [8] utilized the Homotopy perturbation me-

thod, which was proposed by Ji Huan He [4] to obtain approximate ana-

lytical expressions for concentrations of substrate and product of the non-

steady-state reaction-diffusion equations of mono-enzymatic amperometric

biosensor that describe the diffusion coupled with a Michaelis–Menten ki-

netics and analytical expression of biosensor current are also provided. In

the case of substrate inhibition kinetics in enzymatic reaction of amper-

ometric biosensor, Manimozhi et al. [14] derived an analytical expression

for the steady-state substrate concentration of the amperometric biosen-

sor with substrate inhibition through the use of the variational iteration

method (VIM) and HPM which is proved to the suitable for all values of

parameters. Whereas for the case of the amperometric biosensor’s non-

steady-state reaction-diffusion equation with substrate inhibition kinetics,

an approximate analytical solution for both the substrate concentration

and the dimensionless current response was presented in the study by

Senthamarai and Jana Ranjani [26]. They employed the Homotopy Per-

turbation Method (HPM) to derive these solutions.

Swaminathan et al. [34] derived approximate analytical solutions for

substrate and product concentrations, current, sensitivity, and resistance

in steady-state amperometric biosensors featuring substrate inhibition ki-

netics, employing both the Taylors series method and the new Homotopy

perturbation method. For the product inhibition kinetics, Rani et al. [21]

provided mathematical analysis by utilising the Adomian Decomposition

and Taylors series method to obtain the approximate analytical solutions

for both substrate and product concentrations, fluxes of the enzymes in

the biosensor and provided analytical expressions for the sensitivity and re-

sistance of amperometric biosensor. In [13], authors have considered and

analysed a mathematical model of a steady-state amperometric biosen-

sor incorporating the mixed enzyme kinetics with external and internal

diffusion limitations under the substrate and product inhibition kinetics.

Approximate analytical expressions for the substrate and product concen-
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trations have been provided using the Adomian Decomposition and Taylors

series method and the analytical expressions for current, sensitivity and

resistance are provided, parameter analysis is also done.

However, this approach is limited to the steady-state conditions of the

amperometric biosensor with the substrate inhibition and product inhi-

bition kinetics. To the author’s best knowledge, no approximate analyt-

ical formulation exists for substrate and product concentrations, current,

and biosensor sensitivity in the context of non-steady-state amperometric

biosensors operating with mixed enzyme kinetics and subject to internal

and mass transfer limitations under substrate and product inhibition ki-

netics.

This paper aims to present the results of a non-steady-state amper-

ometric biosensor model incorporating mixed enzyme kinetics with sub-

strate and product inhibitions. It was observed that a broad spectrum

of concentrations of substrate and product lead to significant variations in

both physical and kinetic parameters within the system. Analytical expres-

sions for the mathematical model is particularly preferred over numerical

simulations due to their simplicity in manipulation of data and optimizing

the critical parameters across a wide range of applications. In this paper,

we have provided approximate analytical expressions for non-steady-state

substrate and product concentrations as well as current density for all the

parameter values of the amperometric biosensor with the mixed enzyme

kinetics with the inhibition in substrate and product. The numerical solu-

tion is obtained using MATLAB software and subsequently compared with

the derived approximate analytical results. Analytical expression for the

sensitivity of biosensor is provided. The limiting cases in the enzymatic

kinetics affecting the biosensor working is presented. Also, the analytical

expression for effective thickness of the membrane layer for obtaining the

maximum current potential is presented.
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2 Mathematical model

Biosnenors generally operate by the Michaelis-Menten reaction, which is

given as

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P, (1)

where enzyme and substrate are represented as E and S, which react with

k1 kinetics and k−1 kinetics for reverse reaction to produce the unsta-

ble enzyme substrate complex ES, which then with k2 kinetics produces

enzyme and product P , where the ki, i = −1, 1, 2 is the rate constants

of reaction. The Michaelis-Menten reaction demonstrates irreversibility

in second step due to its unidirectional enzymatic conversion, with elec-

trons flowing from the enzymatic reaction to the electrode as substrate is

transformed into product. This irreversibility is a fundamental aspect in

biosensor applications, as it ensures the biosensor specificity and sensitiv-

ity. The rate at which the product is generated is contingent upon the

substrate concentration. We consider the non-Michaelis-Menten reaction

Figure 1. Illustration of the working of Amperometric biosensor

where the enzyme-substrate complex ES is inhibited and reacts with ad-

ditional substrate molecule and forms a non-active ESS complex with k3

kinetics (k−3 for backward kinetics), here k3 and k−3 are the rate constant

of substrate inhibition

ES + S
k3−−⇀↽−−
k−3

ESS, (2)
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Also, this paper examines the inhibition of the product molecule inter-

acting with a molecule of enzyme producing the non-active EP complex

with k4 kinetics (k−4 for backward kinetics), here k4 and k−4 are the rate

constant of product inhibition

E + P
k4−−⇀↽−−
k−4

EP, (3)

Comprehending the distinct attributes of biosensors is a vital aspect of

their design, as depicted in Figure 1. In the bulk solution, the analyte

exists and flows to the diffusion layer, where mass transport by diffusion

occurs. In the enzyme membrane layer, enzymatic reactions and additional

mass transport through diffusion take place. Finally, the analyte reaches

the electrode, where electron transfer occurs, leading to the generation of

a measurable electrical signal.

The significance of the reversible interactions involving both the sub-

strate and the product often goes unnoticed, even though they constitute

a crucial component of the entire process. The following are non-steady

non-linear differential kinetics equations of substrate and product inhibi-

tion [27]:
∂s(x, t)

∂t
= Ds

∂2s(x, t)

∂x2
− v(s, p), (4)

∂p(x, t)

∂t
= Dp

∂2p(x, t)

∂x2
+ v(s, p), 0 < x < d, (5)

where

v(s, p) =
Vmaxs(x, t)

km

(
1 + p(x,t)

kp

)
+ s(x, t)

(
1 + s(x,t)

ks

) , (6)

Ds and Dp represent the diffusion coefficients of the substrate and product

concentration, respectively, at the enzyme layer. The concentrations of the

substrate and product are represented by the variables s(x, t) and p(x, t),

respectively. The parameter Vmax corresponds to the maximum enzymatic

rate, while ks and kp are the inhibition constants which is same as k3 and

k4 in Eqs. (2) and (3). Furthermore, km denotes the Michaelis-Menten
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constant.

s (x, 0) = 0, p (x, 0) = 0 when t = 0, (7)

∂s (0, t)

∂x
= 0, p (0, t) = 0 when x = 0, (8)

s (d, t) = s0, p (d, t) = 0 when x = d, (9)

where s0 is the concentration of substrate at x = d.

The biosensor current density I is expressed as

I = neFDp
∂p

∂x

∣∣∣∣
x=0

, (10)

ne is the amount of electron taking part in the electrochemical reaction.

By using the following dimensionless parameters Eqs. (4) and (5) are made

dimensionless.

χ =
x

d
, τ =

Dst

d2
, S (χ, τ) =

s (x, t)

s0
, P (χ, τ) =

p (x, t)

s0
,

ϕ2 =
Vmaxd

2

Dss0
, φ =

Dp

Ds
, α =

s0
kp

, γ =
km
s0

, β =
s20
ks

, (11)

where S(χ, τ) and P (χ, τ) depict the dimensionless concentration of the

substrate and product. ϕ2, φ are reaction diffusion parameters, α, β,

γ illustrate saturation parameters. τ and χ are dimensionless time and

distance.

∂S(χ, τ)

∂τ
=

∂2S(χ, τ)

∂χ2
− ϕ2S(χ, τ)

γ + αP (χ, τ) + S(χ, τ) + βS2(χ, τ)
, (12)

∂P (χ, τ)

∂τ
= φ

∂2P (χ, τ)

∂χ2
+

ϕ2S(χ, τ)

γ + αP (χ, τ) + S(χ, τ) + βS2(χ, τ)
, (13)

with the following boundary conditions:

S (χ, 0) = 0, P (χ, 0) = 0 when τ = 0, (14)

∂S (0, τ)

∂χ
= 0, P (0, τ) = 0 when χ = 0, (15)

S (1, τ) = 1, P (1, τ) = 0 when χ = 1, (16)
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the dimensionless current is as follows:

Ψ =
I

neFDp

[
d

s0

]
=

∂P (χ, τ)

∂χ

∣∣∣∣
χ=0

. (17)

3 Approximate analytical expressions of non

- steady - state substrate and product con-

centrations and current using HPM

In fields like applied mathematics, physics and chemical engineering, prob-

lems are depicted using non-linear equations. Finding solutions for these

non-linear differential equations is the constant problem faced by scien-

tists in those fields. In recent years, various analytical and semi-analytical

techniques have gained considerable attention for solving strongly non-

linear differential equations in physical, biological, and chemical sciences.

These methods include the Homotopy analysis method (HAM) [28–30],

Taylor’s series method (TSM) [6, 31, 32], Homotopy perturbation method

(HPM) [4,5,7,11,18,35], Variational iteration method (VIM) [20,33], and

Adomian decomposition method (ADM) [1,17,24].

Ji-Huan He introduced the Homotopy perturbation method (HPM) [4]

as a technique for obtaining approximate analytical solutions for various

strongly non-linear differential equations. Recently, J.H. He and his col-

leagues [5] have applied the HPM to solve problems arising in oscillators,

while Vijayalakshmi and Senthamarai [20,35] have utilized the method to

solve a non-linear prey-predator model. Khan et al. [7, 11] used a combi-

nation of the Laplace transform technique and HPM to effectively solve

the non-linear partial differential equations that arise in the various fields

of science. The HPM offers an advantage over other approximate ana-

lytical methods by reducing the inherent complexity of solving non-linear

differential equations. Approximate analytical solution of substrate con-

centration Eq. (12) derived using HPM (see Appendix - A) is obtained as
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follows:

S (χ, τ) =
cosh

(√
δχ
)

cosh(
√
δ)

− π

∞∑
n=0

(2n+ 1) e−ητcos
(

(2n+1)π
2 χ

)
η sin

(
(2n+1)π

2

) , (18)

approximate analytical solution of product concentration Eq. (13) derived

using the HPM is obtained as:

P (χ, τ) =
χ

φ
+

1− χ− cosh(
√
δχ)

φ cosh(
√
δ)

+ δπ

∞∑
n=0

(−1)n(2n+ 1)

η[δφ− η(φ− 1)]

×

[
sin(

√
η/φ(χ− 1))

sin(
√
η/φ)

+ cos
(
(2n+ 1)

π

2
χ
)]

e−ητ

− 2δ

π

∞∑
n=1

(−1)n

n[δφ− n2π2φ(φ− 1)]

×

[
sin[nπ(χ− 1)]

cosh(
√

δ − n2π2φ)
− sin(nπχ)

]
e−n2π2φτ

+
(φ− 1)

φ

[
2 sin(

√
[δ/(φ− 1)](χ− 1))

sin(2
√
[δ/(φ− 1)])

−
sin(

√
[δ/(φ− 1)]χ)

sin(
√
[δ/(φ− 1)])

+
cos(

√
[δ/(φ− 1)]χ)

cos(
√
[δ/(φ− 1)])

]
e−

δφ
1−φ τ , (19)

where

η =
π2(2n+ 1)2

4
+ δ, δ =

ϕ2

α (γ/α+ 1/α + β/α)
.

Eqs. (18) and (19) satisfies the given boundary conditions (14) - (16) and

we obtain dimensionless current given by Eq. (17) as

Ψ =
I(τ)

neFDp

[
d

s0

]
=

[
1

φ
− 1

φ cosh(
√
δ)

]
+ δπ

∞∑
n=0

[
(−1)n(1 + 2n) cot(

√
η/φ)

√
ηφ[δφ− η(φ− 1)]

]
e−ητ

+ 2δ

∞∑
n=1

[
(−1)n − sec(

√
δ − n2π2)

δφ− n2π2φ(φ− 1)

]
e−n2π2φτ . (20)
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3.1 Limiting cases

3.1.1 First-Order (unsaturated) kinetics

We first discuss a limitation that arises when the Michaelis-Menten con-

stant ki exceeds the amount of substrate available in the enzyme layer

S(χ, τ) i.e S ≪ ki where i = s, p,m. Hence the Eqs. (12) and (13) is

reduced as
∂S(χ, τ)

∂τ
=

∂2S(χ, τ)

∂χ2
− ϕ2

γ
S(χ, τ), (21)

∂P (χ, τ)

∂τ
= φ

∂2P (χ, τ)

∂χ2
+

ϕ2

γ
S(χ, τ). (22)

The above represented Eqs. (21) and (22) are linear partial differential

equation for which we can obtain the exact solutions. By solving the

above equations the substrate and product concentrations and the biosen-

sor current are obtained identical to the Eqs. (18), (19) and (20) but

δ = ϕ2/γ

3.1.2 Zero-Order (saturated) kinetics

We examine another significant constraint involving substrate concentra-

tion S(χ, τ) exceeding the Michaelis-Menten kinetics ki in the enzymatic

layer i.e. S ≫ ki where i = s, p,m. Hence the Eqs. (12) and (13) is

reduced as
∂S(χ, τ)

∂τ
=

∂2S(χ, τ)

∂χ2
− ϕ2, (23)

∂P (χ, τ)

∂τ
= φ

∂2P (χ, τ)

∂χ2
+ ϕ2. (24)

The solution of the substrate and product concentration of zero order

kinetics by solving the above equations is obtained as

S(χ, τ) = 1 +
ϕ2

2
(χ2 − 1)− 4

π

∞∑
n=0

(
4ϕ2

π2(2n+ 1)2
− 1

)

×
cos
(

(2n+1)π
2 χ

)
e−ητ

(2n+ 1) sin
(

(2n+1)π
2

) , (25)
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P (χ, τ) =
ϕ2

2φ
(χ− χ2) +

2ϕ2

φπ3

∞∑
n=1

sin(nπx)

n3
[(−1)n − 1] e−n2π2φτ , (26)

and the current expression is obtained as

Ψ =
ϕ2

2φ
+

2ϕ2

φ

∞∑
n=1

[(−1)n − 1] e−n2π2φτ

n2π2
, (27)

the above Eqs. (25), (26) and (27) are the analytical expressions of the

substrate Eq. (23) and product Eq. (24) concentrations and current.

4 Approximate analytical expressions of ste-

ady - state substrate and product concen-

trations and current using HPM

Biosensor reaches its equilibrium and attains a steady-state over an ex-

tended period of time as τ approaches infinity. In this state, the system’s

dynamics become independent of time, and the system has achieved a sta-

ble, unchanging configuration.

The steady-state analytical expressions of dimensionless concentrations of

the substrate and product can be obtained by evaluating Eqs. (18) - (19)

as τ → ∞, given as follows:

S (χ) =
cosh

(√
δχ
)

cosh(
√
δ)

, (28)

P (χ) =
χ

φ
+

1− χ− cosh(
√
δχ)

φ cosh(
√
δ)

, (29)

the steady-state dimensionless current is obtained by evaluating Eq. (20)

as

Ψ =
I

neFDp

[
d

s0

]
=

[
1

φ
− 1

φ cosh(
√
δ)

]
. (30)

Previously [13] we have derived approximate analytical solution for the

steady-state condition of amperometric biosensor with substrate inhibi-
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tion and product inhibition kinetics using TSM and ADM. Eqs. (28) and

(29) provide new approximate analytical solution for the concentrations of

substrate and product of amperometric biosensor with substrate inhibition

and product inhibition kinetics.

5 Validation of analytical results

In order to validate the accuracy of the approximate analytical solution ob-

tained using HPM for non-steady-state conditions, we employed the pdepe

tool in Matlab software to obtain the numerical solution. The pdepe uti-

lizes the method of lines (MOL) to solve time-dependent partial differential

equations (PDEs). MOL discretizes the spatial variables while treating

the time variable analytically, effectively converting the PDE into a sys-

tem of ordinary differential equations (ODEs). It automatically manages

the spatial discretization and selects the suitable ODE solver for the given

problem.

The results were then compares and presented in Figs. 2 and 5 and

Table 1 - 3. The comparison revealed that the analytical solution ob-

tained using HPM was satisfactory the maximum error percentage noted

between the numerical and non-steady-state approximate analytical so-

lution is 0.078%. In addition, we have compared the novel steady-state

approximate analytical solution Eqs. (28) and (29) using HPM with the

previous results obtained in [13]. From the Table 2 it is scene that the ap-

proximate analytical result obtained using the HPM gives better result for

our system compared to the previous result. The maximum error obtained

between the analytical and numerical solution for steady-state condition

is found to be 0.024% which is lesser than the previous result.

The comparison of the dimensionless current response is also presented

in Table 3. The comparison revealed that the analytical solution obtained

using HPM was satisfactory for the dimensionless current of the amper-

ometric biosensor with substrate and product inhibition kinetics. The

maximum error percentage obtained between the numerical solution and

current response obtained analytically using HPM is 0.32%.
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Figure 2. Concentration profiles of substrate Eq. (18) and product
Eq. (19) in dimensionless form are depicted as a function
of distance from the electrode (χ) for the parameter values
τ = 10, ϕ2 = 1, α = 2, β = 3, γ = 1 and φ = 0.1 where
‘—’ represents the numerical solution and ■ represents the
HPM solution.

6 Result and discussion

Eqs. (18) and (19) present new closed-form approximate analytical ex-

pressions for the non-steady-state substrate and product concentrations,

Eqs. (12) and (13), respectively, of the amperometric biosensor model

with substrate inhibition and product inhibition. Similarly, Eqs. (28) and

(29) provide approximate analytical expressions for the steady-state con-

centrations of the substrate and product. Finally, Eq. (20) and Eq. (30)

describe the analytical expressions for the non-steady-state and steady-

state current, respectively.

Fig. 2 represents the dimensionless concentration of substrate S and

product P of the non-Michaelis-Menten reaction kinetics model of the am-

perometric biosensor with substrate and product inhibition. From the fig-

ure, it is observed that the substrate concentration is a increasing function.

By the boundary condition Eq. (16) the substrate reaches its maximum

concentration at χ = 1 it can be observed that the from the initial point

χ = 0 substrate concentration increases gradually and reaches its max-

imum concentration when χ = 1. Whereas, the product concentration
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initially increases from 0 and reaches its peak concentration as the χ ap-

proaches the 0.5 away from the surface of the electrode and it gradually

decreases to 0 concentration when χ = 1 equivalent to the boundary con-

dition Eq. (16) for all values of other parameters.

Figs. 3 and 4 represents the effect of dimensionless time τ and dimen-

sionless distance χ on the concentrations of substrate and product. From

the figures it is observed that both the concentrations are decreasing func-

tions with respect to time this phenomenon can be clearly seen in Figs. 3b

and 4b. The concentration attains is at its maximum at the initial stage of

the dimensionless time and then gradually decreases as the time increases.

This can be clearly seen in Fig. 5, it is seen that time is inversely pro-

portional to the concentrations. From Figs. 5a and 5b it is seen that the

concentration decreases as time increases and attains its equilibrium when

the time τ ≥ 2 and there is no change in the concentrations of substrate

and product.

From the graphs of the dimensionless current presented in Fig. 6 - 9,

it can be observed that the current stabilizes instantly when τ > 1 for all

parameter values. When the saturation parameters β and γ are increased,

the current decreases, as shown in Figs. 6 and 7. Where as in the case

of ratio of diffusion coefficient φ the current decreases with the increase

of the parameter this can be seen in Fig. 8. When τ = 1 the current

reaches its maximum and then when dimensionless time τ = 2 the current

gradually decreases and stabilizes when τ = 3. However, Figs. 9 indicates

that the current increases with an increase in the diffusion parameter ϕ2.

The saturation parameter α does not have any significant effect on the

current response of amperometric biosensor.

6.1 Sensitivity

Sensitivity is a pivotal attribute of amperometric biosensor. The sensitiv-

ity of the biosensor can be defined as the rate of change of the steady-state

current concerning the variations of substrate concentration. Because of

the significant variations in both biosensor current and substrate concen-
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(a) (b)

Figure 3. Simulation of substrate concentration versus dimensionless
time τ and dimensionless distance χ for the parametric val-
ues ϕ2 = 0.5, α = 2, β = 5, γ = 0.1, φ = 0.6.

(a) (b)

Figure 4. Simulation of product concentration versus dimensionless
time τ and dimensionless distance χ for the parametric val-
ues ϕ2 = 0.5, α = 2, β = 5, γ = 0.1, φ = 0.6.

tration, particularly when making comparisons between different sensors,

another valuable parameter to consider is the dimensionless sensitivity.

The sensitivity of the amperometric biosensor with the substrate inhibi-

tion and product inhibition kinetics to changes in substrate concentration
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Figure 5. Non-steady-state concentrations of (5a) substrate and (5b)
product versus dimensionless distance χ with variation in
dimensionless time τ for the fixed parametric values ϕ2 =
0.5, α = 2, β = 5, γ = 0.1, φ = 0.6, where ‘−’ represents
numerical and ‘■’ represents the HPM solution.
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Figure 6. Dimensionless current Ψ as a function of dimensionless time
(τ) for fixed ϕ2 = 0.5, α = 2, γ = 0.1, φ = 1 and for
different values of β

is calculated using Eq. (30).

BA =
∂I(s0)

∂s0
× s0

I(s0)
=

(
Dss0sinh

(√
δ
)(

δ
s0

− ϕ2(kp/s
2
0+kp/kskm)

α(1/α+β/α+γ/α)2

))
2Dp

√
δcosh

(√
δ
)2

(
1
φ
− 1

φcosh(
√
δ)

) , (31)

where BA is the sensitivity of the biosensor.
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Figure 7. Dimensionless current Ψ as a function of dimensionless time
(τ) for fixed ϕ2 = 0.5, α = 2, β = 5, φ = 1 and for different
values of γ
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Figure 8. Dimensionless current Ψ as a function of dimensionless time
(τ) for fixed ϕ2 = 0.5, α = 2, β = 5, γ = 0.1 and for
different values of φ

Fig. 10 - 13 represents the non-monotonic sensitivity of biosensor BA

for increasing substrate concentration s0. It is noted that the increase in

the concentration decreases the sensitivity of the amperometric biosensor.

When s0 ≈ 103µM , the biosensor sensitivity reduces to its minimum value

0. An increase in the enzyme layer distance d and the maximum enzymatic

rate Vmax results increase of the sensitivity BA which can be seen in Figs.

10 and 13. Whereas in the case of the diffusion constants Ds, Dp and rate

constant km, the biosensor sensitivity of the maximum enzymatic rate

results in a decrease of the sensitivity BA as represented in Figs. 11 and
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Figure 9. Dimensionless current Ψ as a function of dimensionless time
(τ) for fixed α = 2, β = 5, γ = 0.1, φ = 1 and for different
values of ϕ2

Table 1. Table presenting a comparison between the numerical solution
for the non-steady-state substrate S(χ) and product P (χ)
concentration and the analytical solution obtained through
the HPM for the fixed parameters τ = 10, ϕ2 = 0.74, α = 2,
β = 5, γ = 0.1, and φ = 1

S(χ) P (χ)

χ Numerical HPM Error% Numerical HPM Error

0.0 0.96960 0.97030 0.07219 0.00000 0.00000 0.00000
0.2 0.97083 0.97081 0.00185 0.04858 0.04852 0.12351
0.4 0.97449 0.97609 0.16371 0.07276 0.07266 0.13156
0.6 0.98058 0.98165 0.10883 0.07269 0.07260 0.12022
0.8 0.98909 0.99026 0.11868 0.04844 0.04842 0.04129
1.0 1.00001 1.00000 0.00093 0.00000 0.00000 0.00000
Average Error% 0.07677 0.06943

12.

6.2 Effective membrane thickness

By making use of the dimensionless current Eq. (30), the approximate

value of the effective membrane thickness d can be determined analyti-

cally. This value corresponds to the point at which the steady-state cur-

rent reaches its maximum, given specific parameter values of Vmax, Ds,

km, kp, ks, s0.
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Figure 10. Sensitivity of biosensor BA Eq. (31) versus s0µM for fixed
values of Vmax = 1µM/s, ks = 100M, km = 100M, kp =
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distance d
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Figure 11. Sensitivity of biosensor BA Eq. (31) versus s0µM for fixed
values of Vmax = 1µM/s, ks = 100M, km = 100M, kp =
100M, d = 10µm and for various valued of distance Ds

and Dp

Current equation Eq. (30) can be written as follows:

I(d)

neF
=

Dss0
d

[
1− sech(

√
δ)
]
, (32)
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Figure 13. Sensitivity of biosensor BA Eq. (31) versus s0µM for fixed
values of ks = 100M, km = 100M, d = 10µm, kp =
100M, Ds = Dp = 100µm2/s and for various valued of
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by differentiating the above equation with respect to d we obtain the ex-

pression as follows

∂I(d)

∂d
=

neFDss0
d2


(√

δ tanh(
√
δ)− cosh(

√
δ)

+ cosh(
√
δ)sech(

√
δ)

)
cosh2(

√
δ)

 , (33)
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and we aim to find the value of d when the derivative reaches zero

√
δ tanh(

√
δ)− 2 sinh2(

√
δ/2) = 0, (34)

the numerical solution of Eq. (34) results in a singular value of δmax ≈
1.5055. As a result, we can determine the membrane thickness d at which

the maximum current I is achieved, where

dmax = δmax

√√√√Dskms0

(
kp

s0
+

kp

km
+

s0kp

kskm

)
Vmaxkp

= 86.87µm, (35)

at the parametric values Ds = 300µm2/s, km = 100M, kp = 100M,

ks = 100M, Vmax = 10µM/s, s0 = 10µM .

7 Conclusion

The mathematical model of amperometric biosensor with the inhibitions

of substrate and product is discussed in this paper. The model is a non-

linear non-steady-state reaction-diffusion equation of second order. The

closed-form approximate analytical expressions for substrate and product

concentrations obtained using the Laplace transform and HPM method

for non-steady and steady-state system. The obtained approximate an-

alytical solutions are compared with the numerical solution obtained by

using MATLAB software. The limiting cases of the enzyme kinetics on the

amperometric biosensor is also analysed and the analytical expressions for

the both cases are derived and presented.

In addition, the analytical expressions of Biosensor current and sen-

sitivity are also presented. It is noted that the diffusion coefficient ratio

φ has a significant impact on the biosensor current as it peaks when di-

mensionless time τ = 1 then starts decreasing gradually and stabilizes

only when τ = 3 where as the other parameters stabilizes instantly af-

ter τ = 1. The bulk substrate concentration s0 has a significant im-

pact on the sensitivity of amperometric biosensor. The expression for

calculating effective membrane thickness for which the maximum current
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can be obtained for the given specific parameter values is represented

as dmax = 1.5055

√
Dskms0

(
kp

s0
+

kp

km
+

s0kp

kskm

)
/Vmaxkp. The theoretical

model represented in this paper will be helpful for the experimental sci-

entists to improve the sensitivity of amperometric biosensor and a better

understanding of the characteristics of substrate and product inhibitions

in amperometric biosensor.

Appendix A Obtaining an Approximate An-

alytical Solution of the Equa-

tion through HPM.

The homotopy for Eq. (12) is constructed as follows:

(1− p)

[
∂S (χ, τ)

∂τ
−

∂2S (χ, τ)

∂χ2
+

ϕ2S(χ, τ)

α (γ/α + 1/α+ β/α)

]
+p

[
∂S (χ, τ)

∂τ
−

∂2S (χ, τ)

∂χ2
+

ϕ2S(χ, τ)

γ + αP (χ, τ) + S (χ, τ) + βS2(χ, τ)

]
= 0, (36)

The given conditions at the initial and boundaries of Eq. (36) are

at τ = 0, S (τ, 0) = 0,

at χ = 0, ∂S(0,τ)
∂χ = 0, (37)

at χ = 1, S (1, τ) = 1.

Approximate solution of the above Eq. (36) is [4]

S (χ, τ) = S0 (χ, τ) + pS1 (χ, τ) + p2S2 (χ, τ) + p3S3 (χ, τ) + · · · , (38)

by substituting Eq. (38) into Eq. (36) and equating the coefficients of the

zeroth power of p, we obtain

∂S0 (χ, τ)

∂τ
− ∂2S0 (χ, τ)

∂χ2
+ δS0 (χ, τ) = 0, (39)
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where

δ =
ϕ2

α (1/α + γ/α+ β/α)
.

The given conditions at the initial and boundaries are defined by,

at τ = 0, S0 (χ, 0) = 0,

at χ = 0, ∂S0(0,τ)
∂τ = 0, (40)

at χ = 1, S0 (1, τ) = 1,

we can express the Eqs. (39) and (40) in the Laplace domain as follows [22]:

d2S̃0 (χ, s)

dχ2
− (s+A) S̃0 (χ, s) = 0, (41)

the boundary conditions are specified as

when χ = 0, dS̃0(χ,s)
dχ = 0,

when χ = 1, S̃0 (χ, s) =
1
s , (42)

the Laplace transformation of S0(χ, τ) is denoted as S̃0 (χ, s), where s is

the Laplace variable. By using Eq. (42), the solution of S̃0 can be obtained

as shown in Eq. (43).

S̃0 (χ, τ) =
cosh

(√
s+ δχ

)
cosh(

√
s+ δ)

. (43)

The concentration of substrate S(χ, τ) can be obtained by utilizing the

complex inversion formula

S0(χ, τ) =
1

2πi

∫ χ+i∞

χ−i∞
esτ S̃0(χ, s)ds

= sum of residues at all poles lie inside the

range (χ− i∞, χ+ i∞). (44)

The residues of Eq. (43) can be determined at s = 0, where a simple pole

is obtained. By solving cosh(
√
s+ δ) = 0 yields infinitely many poles,
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represented as sn = π2(2n+1)2

4 + δ for n = 0, 1, 2, 3, ...

Res

[
cosh

(√
s+ δχ

)
cosh(

√
s+ δ)

]
=

[
cosh(

√
s+δχ)

cosh(
√
s+δ)

]
s=0

+

[
cosh(

√
s+δχ)

cosh(
√
s+δ)

]
s=sn

, (45)

at s = 0

Res

[
cosh

(√
s+ δχ

)
cosh(

√
s+ δ)

]
s=0

=
cosh

(√
δχ
)

cosh(
√
δ)

, (46)

and the residue of sn is obtained as

Res

[
cosh

(√
s+ δχ

)
cosh(

√
s+ δ)

]
s=sn

=

− π

∞∑
n=0

(2n+ 1) e−ητcos
(

(2n+1)π
2 χ

)
η sin

(
(2n+1)π

2

) , (47)

we get the approximate analytical expression for the concentration of the

substrate S(χ, τ) by adding Eqs. (46) and (47) which is the result given

in Eq. (18). Similarly, we can get the approximate analytical expression

of the product concentration Eq. (19).
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Appendix B Nomenclature

Symbol Meaning Unit

s Concentration of substrate µM
p Concentration of product µM
s0 Concentration of substrate at x = d µM
t Time s
km Michaelis-menten constant M
ks, kp Inhibition constants M
Vmax Maximal enzymatic rate µM/s
d Thickness of the enzyme layer µm
F Faraday constant C/mol
Ds Diffusion coefficient of the substrate µm2/s
Dp Diffusion coefficient of the product µm2/s
I Density of the current µA/cm2

x Distance cm
ne Number of electrons take part in electrochem-

ical reaction
None

S Dimensionless substrate concentration None
P Dimensionless product concentration None
χ Dimensionless distance None
τ Dimensionless time None
ϕ2 Diffusion parameter of substrate None
φ Ratio of diffusion coefficient None
α Saturation parameter None
β Saturation parameter None
γ Saturation parameter None
BA Sensitivity of biosensor None
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