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Abstract

The Wnt signaling pathway plays a critical role in various bio-
chemical processes, including embryonic development, tissue home-
ostasis, and cancer progression. In this paper, we conduct a com-
parative analysis of β-catenin-dependent Wnt signaling reaction net-
works, which we refer to as Feinberg, Schmitz, and MacLean models,
based on the previous study by MacLean et al. (PNAS USA 2015).
Using the methods of finest independent decomposition (FID) and
Equilibria Parametrizations (EP), along with our newly developed
Common Reactions Equilibria (CORE) and Concordance Profile
(CP) analyses, we uncover three interesting results. Firstly, employ-
ing FID and EP reveals that both the Schmitz and MacLean models
lack absolute concentration robustness (ACR) property, whereas the

∗Corresponding author.

https://doi.org/10.46793/match.93-2.291H


292

Feinberg model demonstrates ACR in a single species. Second, uti-
lizing FID and CORE unveils significant relationships within the
equilibria sets of augmented Schmitz and MacLean models, while
also highlighting the lack of substantial associations between Fein-
berg and MacLean models. Finally, based on concordance levels, CP
analysis indicates greater similarity between MacLean and Schmitz
models compared to MacLean and Feinberg models. Therefore, the
methods could detect differences between models that are not evi-
dent in the standard reaction network analysis.

1 Introduction

The Wnt signaling pathway plays a crucial role in numerous biochemical

processes, including embryonic development, tissue homeostasis, and can-

cer progression [13,17,20,22,24]. Parameter-free analysis through reaction

networks has been used as a tool for studying the complexities of Wnt sig-

naling pathways [15] primarily to investigate the occurrence of bistability,

i.e., the network has the capacity to admit two stable positive equilibria

with the same conserved quantities [2].

Building upon previous research efforts, particularly those of MacLean

et al. [15], we analyze and compare β-catenin-dependent Wnt signaling

models. In particular, we utilize methods of finest independent decompo-

sitions (FIDs) [6, 7] and equilibria parametrizations (EP) [8, 10]. Impor-

tantly, motivated by Wnt signaling, we introduce two novel approaches,

which we call Common Reactions Equilibria (CORE) analysis and Concor-

dance Profile (CP) analysis, to reveal kinetic and structural relationships

among reaction networks on the basis of their sets of positive equilibria.

The Lee model [12] focuses mainly on elucidating the formation of the

destruction complex from its individual components and how its subse-

quent ability to degrade β-catenin is influenced by the presence or absence

of an external Wnt stimulus. This model assumes a uniform distribution of

all species throughout the cell, without distinguishing between the nucleus

and the cytoplasm. Feinberg [4] introduced modifications to the Lee model

by consolidating a complex of three species into a single species, making a

reaction reversible, and eliminating another species from the network. The

model was used by Feinberg to explore the concept of the “hidden” con-
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cordance property in a reaction network [4]. Next, the Schmitz model [18]

investigates the impact of shuttling of β-catenin and the destruction com-

plex between the cytoplasm and the nucleus on the binding of the T-cell

factor to β-catenin within the nucleus. Finally, the MacLean model [15]

focuses on both degradation of β-catenin and shuttling between the cyto-

plasm and the nucleus, potentially serving as a mechanism for governing

bistability in the pathway [15].

In our recent study [9], we showed strong similarity between the Lee

and the Feinberg models. Furthermore, the Lee model is mono-stationary

while the three remaining models are multi-stationary. Hence, we focus

on the analysis of the latter three multistationary models: the Feinberg,

Schmitz, and MacLean models. The reaction networks of the models are

given in Tables 5 and 6.

Using the algorithm of Hernandez et al. [8], which utilizes FIDs, we de-

termine equilibria parametrizations of the networks and infer the network

species with absolute concentration robustness (ACR) [21]: the Schmitz

and MacLean networks lack ACR while the Feinberg network has ACR

in a single species. This means that the positive equilibrium of the said

species of the Feinberg network does not depend on any initial concentra-

tions of the other species. On the other hand, the value of the positive

equilibrium value of any species of the Schmitz and MacLean networks are

always dependent on the initial concentrations of some species.

Importantly, our analyses using FID and CORE reveal essential rela-

tionships within the equilibria sets of the augmented Schmitz and MacLean

models. Furthermore, these two methods show the absence of a significant

relationship between the equilibria sets of the Feinberg and MacLean mod-

els. These findings are not evident in the standard reaction network analy-

sis. We also analyze the level of concordance of the Schmitz and MacLean

networks. According to the concordance levels, CP analysis suggests that

the MacLean and Schmitz networks exhibit greater similarity compared to

the MacLean and Feinberg networks.

By employing a computational approach, our study contributes to the

ongoing efforts in investigating complexities of biochemical pathways and

offers new perspectives for comparing biochemical reaction networks.
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2 Comparison of basic structural and kinetic

properties of the networks

Various reports were generated using the Windows application CRNTool-

box [5] to complete the overview of the basic properties of the networks,

and their results are collected in Table 1. The kinetic properties in-

clude both purely kinetic, i.e., those that remain invariant under dynam-

ical equivalence, and structo-kinetic, i.e., those which may vary. Non-

degeneracy of an equilibrium is an example of the former class, while

mono-/multi-stationarity is an example of the latter type. As seen from

the table, we can verify the coincidence of the basic properties among the

Feinberg, Schmitz, and MacLean models, which we denote as NF , NS ,

and NM , respectively.

Table 1. CRNToolbox results of the Feinberg (NF ), Schmitz (NS) and
MacLean (NM ) Wnt signaling models

Property NF NS NM

Conservative No No No
Positive dependent Yes Yes Yes
Existence of degenerate

Yes Yes Yes
equilibrium
Non-degenerate network Yes Yes Yes
Injective No No No
Multi-stationary Yes Yes Yes

3 Comparison of the FIDs of the Feinberg,

MacLean, and Schmitz models

In this section, we first present a method for comparative analysis using

the FIDs of reaction networks. We then compute the FIDs of the three

networks, which turn out to differ significantly. In subsequent sections,

we use this variation in FIDs to infer interesting relationships between

networks.
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3.1 A novel structural property: the network’s finest

independent decomposition

The concept of FID was introduced by B. Hernandez and R. De la Cruz

in [7]. Since some networks have only the trivial decomposition as an inde-

pendent decomposition, they provided a characterization for the existence

of a non-trivial FID. Furthermore, they developed an algorithm to com-

pute the said decomposition. The uniqueness of the FID was shown in [6],

establishing the FID as a novel network property. The subnetworks from

the FID comprise the smallest “building blocks” of a network.

The significance of FID for any kinetics on a network derives from Fein-

berg’s Decomposition Theorem [3,4]: for any independent decomposition,

the positive equilibria set of the whole network is the intersection of the

positive equilibria sets of the independent subnetworks (Theorem 4 in the

Appendix in this paper).

Remark. The positive equilibria of the FID subnetworks are the smallest

“building blocks” of the equilibria of the whole network.

3.2 Computation and comparison of the FIDs of the

three networks

The following lists and tables collect the information about the FIDs of

the three networks, providing the basis for our subsequent analysis.

Using the algorithm of Hernandez and De la Cruz [7], the FID of NF

has eight subnetworks:

NF,1 = {R1, R4, R5, R12, R38, R45, R46}
NF,2 = {R14, R15}
NF,3 = {R18, R19}
NF,4 = {R43, R44}
NF,5 = {R47, R48}
NF,6 = {R49, R50}
NF,7 = {R51, R52}
NF,8 = {R53, . . . , R56}.

Table 2 presents the network numbers of the subnetworks from the FID

of NF .
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Table 2. Network numbers of the Feinberg model (NF ) and the sub-
networks of its FID

Network numbers NF NF,1 NF,2 NF,3 NF,4 NF,5 NF,6 NF,7 NF,8

Species 15 5 2 2 3 1 3 3 4
Complexes 21 7 2 2 2 2 2 2 5
Reactant complexes 19 6 2 2 2 2 2 2 4
Reversible reactions 9 2 1 1 1 1 1 1 1
Irreversible reactions 5 3 0 0 0 0 0 0 2
Reactions 23 7 2 2 2 2 2 2 4
Linkage classes (LC) 7 2 1 1 1 1 1 1 2
Strong LC 12 5 1 1 1 1 1 1 4
Terminal strong LC 7 2 1 1 1 1 1 1 2
Rank 12 4 1 1 1 1 1 1 2
Deficiency 2 1 0 0 0 0 0 0 1

On the other hand, NM has the following FID. The corresponding

network numbers are shown in Table 3:

NM,1 = {R1, . . . , R7, R36, . . . , R39}

NM,2 = {R8, R9}

NM,3 = {R18, R19}

NM,4 = {R20, R21}

NM,5 = {R22, R23}

NM,6 = {R24, . . . , R29}

NM,7 = {R30, . . . , R35}.

Table 3. Network numbers of the MacLean model (NM ) and the sub-
networks of its FID

Network numbers NM NM,1NM,2NM,3NM,4NM,5NM,6NM,7

Species 19 6 3 2 2 2 6 6
Complexes 28 9 2 2 2 2 6 6
Reactant complexes 22 7 2 2 2 2 4 4
Reversible reactions 12 3 1 1 1 1 2 2
Irreversible reactions 7 5 0 0 0 0 2 2
Reactions 31 11 2 2 2 2 6 6
Linkage classes (LC) 10 3 1 1 1 1 2 2
Strong LC 16 5 1 1 1 1 4 4
Terminal strong LC 10 3 1 1 1 1 2 2
Rank 14 4 1 1 1 1 3 3
Deficiency 4 2 0 0 0 0 1 1

Finally, the FID of the Schmitz network NS is as follows (Table 4
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presents the network numbers):

NS,1 = {R1, . . . , R7, R10, . . . , R13}

NS,2 = {R8, R9}

NS,3 = {R14, R15}

NS,4 = {R16, R17}.

Table 4. Network numbers of the Schmitz model (NS) and the sub-
networks of its FID

Network numbers NS NS,1 NS,2 NS,3 NS,4

Species 11 8 3 2 2
Complexes 16 11 2 2 2
Reactant complexes 14 9 2 2 2
Reversible reactions 6 3 1 1 1
Irreversible reactions 5 5 0 0 0
Reactions 17 11 2 2 2
Linkage classes (LC) 5 3 1 1 1
Strong LC 10 8 1 1 1
Terminal strong LC 5 3 1 1 1
Rank 9 6 1 1 1
Deficiency 2 2 0 0 0

We note the wide variation among the subnetworks of the three net-

works. Only the subnetworks NM,2 and NS,2 coincide. This variation is,

of course, due to the FIDs being directly based on the (different) reaction

sets. The FID is, thus, the only structural property that differentiates the

three multi-stationary networks so far. Though FID is a network property

that shows big differences between the three models, FID also serves as

the basis of the other techniques (EP, CORE, and CP) as we present in

the subsequent sections.

4 Equilibria parametrizations

In this section, we use the algorithm of Hernandez et al. [8] to compute

the parametrization of positive equilibria of the Schmitz and Feinberg net-

works, both of which are endowed with mass action kinetics. The algo-

rithm combines the use of FIDs [6, 7] and an earlier method by Johnston

et al. [10] for equilibria parametrization (which was previously applied to
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the MacLean network, referred to as “shuttled Wnt” in [10]). Analysis of

parametrized equilibria allows us to determine the presence of ACR species

in a network. This concept of ACR was introduced by Shinar and Feinberg

in the Science journal [21], where they described ACR as the capacity of a

species to have the same value at every positive steady state of the system.

Generally speaking, in ACR, different sets of initial conditions yield the

same steady state value for the species.

4.1 A brief review of the equilibria parametrization

algorithm via network decomposition

The following summary of the parameterization algorithm for positive

equilibria of Hernandez et al. [8] shows the significance of FIDs in the

procedure.

Utilizing the Feinberg Decomposition Theorem [3,4], which states that

the set of positive equilibria of the whole network is equal to the intersec-

tion of the sets of positive equilibria of its stoichiometrically-independent

subnetworks, we first break the CRN into its smallest independent sub-

networks (under the FID). This allows us to compute more easily the

parametrized positive equilibria of each subnetwork. We then merge these

results to obtain the parametrized positive equilibria of the entire network.

The computed positive equilibria of the species common to some subnet-

works are equated to each other to get the positive equilibria parametriza-

tion of the whole network.

As an illustration, suppose that a given network N (with three species

X1, X2, and X3) has two smaller independent subnetworks under the FID,

say, N1 (with species X1 and X2) and N2 (with species X2 and X3). We

compute the parametrized positive equilibria of each subnetwork indepen-

dently. The parametrized positive equilibria of N contain the computed

parametrization of x1 (from subnetwork N1), x3 (from subnetwork N2),

and the solution to x2 after equating the computed parametrizations from

subnetworks N1 and N2.
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4.2 Equilibria parametrization of the Schmitz system

Following the method outlined above, we compute a parametrization of

the positive equilibria of the Schmitz network (NS) as follows:

a1 := ya =
σ1(k5 + k10)

k4k10

a2 := yi =
k14σ1(k5 + k10)

k4k10k15

a3 := yan =
σ2(k7 + k11)

k6k11

a4 := x =
k1(k3 + σ2)

k2σ2 + k3σ1 + σ1σ2

a5 := xn =
k1k2

k2σ2 + k3σ1 + σ1σ2

a6 := t = τ2

a7 := cXT =
k1k2k8τ2

k9(k2σ2 + k3σ1 + σ1σ2)

a8 := cXY =
k1σ1(k3 + σ2)

k10(k2σ2 + k3σ1 + σ1σ2)

a9 := cXY n =
k1k2σ2

k11(k2σ2 + k3σ1 + σ1σ2)

a10 := xP =
k1σ1(k3 + σ2)

k12(k2σ2 + k3σ1 + σ1σ2)

a11 := xpn =
k1k2σ2

k13(k2σ2 + k3σ1 + σ1σ2)

where σ2 =
k16k6k11(k5 + k10)σ1

k17k4k10(k7 + k11)
and σ1, τ2 > 0.

4.3 Equilibria parametrization of the Feinberg system

A positive equilibria parametrization of the Feinberg network (NF ) is as

follows:

a1 =
a2k15
k14

a2 =
k55σ2a23

k54(k53 + σ2)
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a4 =
k1k14(k5 + k45)

k38k5k14 + k38k14k45 + a2k4k15k45

a6 =
a7k50(k38k5k14 + k38k14k45 + a2k4k15k45)

k1k14k49(k5 + k45)

a8 =
a2k1k4k15

k38k5k14 + k38k14k45 + a2k4k15k45

a10 =
a2k1k4k15k45

k12(k38k5k14 + k38k14k45 + a2k4k15k45)

a12 =
a13k19
k18

a13 =
k54
σ2

a24 =
a27k52(k38k5k14 + k38k14k45 + a2k4k15k45)

k1k14k51(k5 + k45)

a25 =
a2k1k4k15k45

k46(k38k5k14 + k38k14k45 + a2k4k15k45)

a26 =
k47
k48

a27 =
a23k1k14k44k48k51(k5 + k45)

k43k47k52(k38k5k14 + k38k14k45 + a2k4k15k45)

a28 =
a23k53k55

k56(k53 + σ2)

where σ2, a7, a23 > 0.

4.4 ACR in the multi-stationary Wnt signaling sys-

tems

The following proposition describes ACR in the three multi-stationary

systems under consideration.

Proposition 1. The following statements describe the ACR properties of

the MacLean, Schmitz, and Feinberg systems:

i. The MacLean and Schmitz mass action systems lack ACR in any

species.

ii. In the Feinberg mass action system, only A26 (i.e., axin) has ACR.
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Proof. To show (i), we reproduce here the equilibria parametrization of

Johnston et al. for NM :

a1 := ya =
K1

K2

a2 := yi =
k23
k22

k28 + k29
k27

τ13
τ12

a3 := yan =
K4

K3

a4 := x =
K2

K6

a5 := xn =
K3

K6

a6 := t = d12

a7 := cXT =
k8
k9

K3

K6
d12

a8 := cXY =
K5

K6

a9 := cXY n =
K7

K6

a12 := di =
k19
k18

k21
k20

k25 + k26
k24k26

k29
K3

K4
τ13

a13 := da =
k21
k20

k25 + k26
k24k26

k29
K3

K4
τ13

a14 := dan =
k25 + k26
k24k26

k29
K3

K4
τ13

a15 := yin =
k28 + k29

k27

τ13
τ12

a16 := p =
k21
k20

k22
k23

k29
k35

k27
k24k26

k25 + k26
k28 + k29

k30k32
k33

k34 + k35
k31 + k32

(
K1K3

K2K4

)
τ12

a17 := pn = τ12

a18 := cY D =
k21
k20

k29k30
k24k26

k25 + k26
k31 + k32

(
K1K3

K2K4

)
τ13

a19 := cY Dn =
k29
k26

τ13

a20 := cY P =
k32
k35

k21
k20

k29k30
k24k26

k25 + k26
k31 + k32

(
K1K3

K2K4

)
τ13

a21 := cY Pn = τ13
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where

K1 = (k5 + k36)σ1k6k1(k2k7 + k2k37 + σ2k37 + k39k37 + k3k7 + k39k7)

K2 = k4k6k1(k5 + k36)(k37σ2 + (k3 + k39)(k7 + k37))

K3 = k4k6k2k1(k5 + k36)(k7 + k37)

K4 = k4k2σ2k1(k5 + k36)(k7 + k37)

K5 = k4σ1k6k1(k2k7 + k2k37 + σ2k37 + k39k37 + k3k7 + k39k7)

K6 = k4k6 (k36σ1(k7k2 + k7k3 + k37k2 + k7k39 + k37k39 + k37σ2)

+ (k5 + k36)(k37σ2k2 + k7k39k2 + k37k39k2 + k37σ2k38 + k7k3k38

+ k7k39k38 + k37k3k38 + k37k39k38))

K7 = k4k6k2σ2k1(k5 + k36)

and σ1, σ2, d12, τ12, τ13 > 0.

In the parametrizations of the positive equilibria of NS and NM , no

equilibrium concentration entirely depends on the rate constants ki. In

fact, all species concentrations depend on free parameters. Note that var-

ious combinations of these free parameters correspond to various sets of

initial conditions. Hence, the two models do not have species that exhibit

ACR.

For (ii), we can easily observe from the equilibria parametrization of

Feinberg in Section 4.3 that only a26 depends entirely on rate constants.

Hence, the only ACR species in the Feinberg mass action system is A26.

5 Common reactions equilibria (CORE)

analysis of the Wnt networks

5.1 CORE analysis of the augmented Schmitz and the

MacLean networks

The CORE analysis in this section begins with the observation that the

set of common reactions of Schmitz and MacLean is contained in the union

of the FID subnetworks NS,1 ∪ NS,3 and NM,1 ∪ NM,3. This opens the
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possibility of relating any positive equilibria of the subnetwork generated

by the set of common reactions to those of the two networks.

Remark. We will use the notation ⟨R⟩ to denote the reaction network

generated by the set of reactions R.

Let us define the augmented Schmitz network NSA as the union of NS

and ⟨{A4 → 0, 0 → A10, 0 → A11}⟩. NSA shares all the basic structural

and kinetic properties of NS , including its multi-stationarity. Their FIDs

differ only in one subnetwork NSA,1, which is equal to NS,1 plus the three

additional flow reactions. Flow reactions are reactions of the form A → 0

or 0 → A.

We can now state the main result of this section:

Theorem 2. Let NSAM := ⟨RSA ∩ RM ⟩ be the subnetwork of common

reactions of the augmented Schmitz and MacLean networks. Then we have

the following:

i. NSAM is a reversible and deficiency zero network.

ii. The set of positive equilibria of NSAM induces a subset of positive

equilibria of NM .

iii. A subset of positive equilibria of NSAM induces a subset of positive

equilibria of NSA.

Proof. (i) follows directly from Table 5. (ii) Since all the reactions of

NSAM are contained in NM,1 ∪ NM,2, then the stoichiometric subspace

SSAM is a subspace of SM,1+SM,2. Since the rank of NSAM is 5, which is

equal to the rank of NM,1 ∪ NM,2, the spaces coincide. According to the

Deficiency Zero Theorem (page 89 of [4]), NSAM has a unique, complex

balanced, and stable equilibrium in each stoichiometric class. A result of

Joshi and Shiu in [11] implies that the equilibria of NSAM can be lifted

to the equilibria of NM,1 ∪ NM,2. According to Lemma 3 of Lubenia et

al. [14], such an equilibrium is an equilibrium for NM if and only if there

is an equilibrium of the complementary subnetwork NM,3 ∪ . . . ∪ NM,7

whose components in the common species with NM,1∪NM,2 coincide with

its components (the common species of the two independent subnetworks
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are A1, . . . , A5). (iii) Through the additional inflows, we obtain an inde-

pendent decomposition NSA,1 ∪ NSA,2 = NSAM ∪ ⟨{A10 ⇄ 0 ⇄ A11}⟩
so that the positive equilibria of NSAM that are also the equilibria of

⟨{A10 ⇄ 0 ⇄ A11}⟩ are the equilibria of the union of FID subnetworks.

The remaining argument is identical to that of (ii).

Remark. 1. The additional reactions in the augmented Schmitz net-

work do not change the stoichiometric subspaces since their reaction

vectors are already contained in the stoichiometric subspace of the

Schmitz network.

2. The mass action kinetics considered in (ii) and (iii) are identical

except in their respective domains.

3. Statement (ii) easily generalizes to positive dependent subnetworks

comprised of unions of FID subnetworks (which are not the whole

network).

4. The results in Theorem 2 provide a further example of the usefulness

of FIDs in comparative network analysis.

Remark. Since the common reaction set between MacLean and Schmitz

is not positive dependent, CORE is not directly applicable. However,

adding A4 → 0 ensures positive dependence and show the impact on the

equilibria of the MacLean network. This minimal augmentation is actually

already sufficient for the comparison with the CORE analysis of MacLean-

Feinberg. The addition augmentation of the reaction pair completes the

impact picture for the Schmitz model.
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Table 5. Species and reactions of the Schmitz (NS) and MacLean
(NM ) Wnt signaling models

Common to NS and NM

A1, . . . , A9

R1 : 0 → A4

R2 : A4 → A5

R3 : A5 → A4

R4 : A1 +A4 → A8

R5 : A8 → A1 +A4

R6 : A5 +A3 → A9

R7 : A9 → A5 +A3

R8 : A6 +A5 → A7

R9 : A7 → A6 +A5

Unique to NS Unique to NM

A10, A11 A12, . . . , A21

R10 : A8 → A1 +A10 R18 : A12 → A13

R11 : A9 → A3 +A11 R19 : A13 → A12

R12 : A10 → 0 R20 : A13 → A14

R13 : A11 → 0 R21 : A14 → A13

R14 : A1 → A2 R22 : A2 → A15

R15 : A2 → A1 R23 : A15 → A2

R16 : A1 → A3 R24 : A3 +A14 → A19

R17 : A3 → A1 R25 : A19 → A3 +A14

R26 : A19 → A14 +A15

R27 : A15 +A17 → A21

R28 : A21 → A15 +A17

R29 : A21 → A3 +A17

R30 : A13 +A1 → A18

R31 : A18 → A13 +A1

R32 : A18 → A13 +A2

R33 : A2 +A16 → A20

R34 : A20 → A2 +A16

R35 : A20 → A1 +A16

R36 : A8 → A1

R37 : A9 → A3

R38 : A4 → 0
R39 : A5 → 0
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5.2 CORE analysis of the Feinberg and MacLean net-

works

Table 6 shows that the set of common reactions of NF and NM is as

follows: {R1, R4, R5, R18, R19, R38}. The following proposition describes

the properties of the corresponding subnetwork.

Theorem 3. Let NFM = ⟨{R1, R4, R5, R18, R19, R38}⟩ be the subnetwork

of common reactions of NF and NM . Then

i. NFM is a reversible, deficiency zero subnetwork;

ii. NFM is contained in NF,1 ∪NF,3, but is a dependent subnetwork of

it; and

iii. NFM is contained in NM,1 ∪ NM,3, but is a dependent subnetwork

of it.

Proof. (i) is evident from Table 6. (ii) As shown in Section 3, we have

{R1, R4, R5, R38} ⊂ NF,1 and {R18, R19} = NF,3. However, the rank of

NF,1 ∪ NF,3 is 4 + 1 = 5 while the sum of the rank of NFM and the rank

of (NF,1 ∪ NF,3)\NFM is 3 + 3 = 6. (iii) Similarly, as shown in Section

3, {R1, R4, R5, R38} ⊂ NM,1 and {R18, R19} = NM,3. However, the rank

of NM,1 ∪ NM,3 is 4 + 1 = 5 while the sum of the rank of NFM and the

rank of (NM,1 ∪ NM,3)\NFM is 3 + 4 = 7.

In contrast to the equilibria of NSAM being building blocks of the

equilibria of NSA and NM (see the remark at the end of Section 3.1), the

equilibria of NFM are not building blocks of the equilibria of NF and NM .

Remark. The Wnt models of Feinberg, MacLean and Schmitz are not dy-

namically equivalent, but have dynamically similar behavior [9,15]. Struc-

turally, the concurrent difference and similarity can be analyzed by com-

paring the subnetwork of common reactions and the subnetworks of each

of the networks being compared. The set of positive equilibria of any sub-

network can be viewed as a superset of those of the whole network; if the

subnetwork is independent, it is a “building block”. CORE assesses the

impact of the equilibria set of common reactions by its size and alignment

with the FID subnetworks.
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Table 6. Species and reactions of the Feinberg (NF ) and MacLean
(NM ) Wnt signaling models

Common to NF and NM

A1, A2, A4 A6, A7, A8, A12, A13

R1 : 0 → A4

R4 : A1 +A4 → A8

R5 : A8 → A1 +A4

R18 : A12 → A13

R19 : A13 → A12

R38 : A4 → 0

Unique to NF Unique to NM

A10, A23, . . . , A28 A3, A5, A9, A14, . . . , A21

R12 : A10 → 0 R2 : A4 → A5

R14 : A1 → A2 R3 : A5 → A4

R15 : A2 → A1 R6 : A5 +A3 → A9

R43 : A24 +A26 → A23 R7 : A9 → A5 +A3

R44 : A23 → A24 +A26 R8 : A6 +A5 → A7

R45 : A8 → A25 R9 : A7 → A6 +A5

R46 : A25 → A1 +A10 R20 : A13 → A14

R47 : 0 → A26 R21 : A14 → A13

R48 : A26 → 0 R22 : A2 → A15

R49 : A4 +A6 → A7 R23 : A15 → A2

R50 : A7 → A4 +A6 R24 : A3 +A14 → A19

R51 : A24 +A4 → A27 R25 : A19 → A3 +A14

R52 : A27 → A24 +A4 R26 : A19 → A14 +A15

R53 : A13 +A2 → A28 R27 : A15 +A17 → A21

R54 : A2 → A23 R28 : A21 → A15 +A17

R55 : A23 → A2 R29 : A21 → A3 +A17

R56 : A28 → A13 +A23 R30 : A13 +A1 → A18

R31 : A18 → A13 +A1

R32 : A18 → A13 +A2

R33 : A2 +A16 → A20

R34 : A20 → A2 +A16

R35 : A20 → A1 +A16

R36 : A8 → A1

R37 : A9 → A3

R39 : A5 → 0
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6 Concordance profile (CP) analysis of the

Wnt networks

Feinberg’s multi-stationary network NF has the remarkable property that

removing a single reversible pair results in a concordant subnetwork. Con-

cordance is a strong form of injectivity, and hence he dubbed this abrupt

change of stability-related system properties an indictation of “the subtlety

of concordance”. The question of whether the other Wnt networks also

possessed a high level of “hidden concordance” led us to develop concepts

and procedures to quantify and measure this property using the network’s

FID and collect them in a method called Concordance Profile (CP) analy-

sis. After a brief review of the concordance concepts and basic results, we

introduce CP analysis and apply it to the Wnt reaction networks.

Concordant networks were introduced by G. Shinar and M. Feinberg

[19] as an abstraction of continuous flow stirred tank reactors, a model that

is extensively used in chemical engineering. The concept of concordance

of a network, as described by them, refers to “architectures that enforce

duller and more restrictive behavior despite what might be the intricacy

in the interplay of many species, even independent of the values that the

kinetic parameters might take”. For detailed technical information on

concordance, please refer to Appendix A.4.

6.1 Concordance dimension and concordance level of

a reaction network

The observation that Feinberg’s network decomposed into the independent

concordant subnetwork and the reversible pair pointed us to a network’s

FID as the starting point of our theory. After applying the Concordance

Test of the CRNToolbox to each FID subnetwork, we define two subsets:

Definition 1. The concordance (discordance) set FIDC (FIDD) of the

network is the set of all concordant (discordant) subnetworks of the FID.

Note that the FIDC or the FIDD can be empty. For example, the

network {A1 + 2A2 ⇄ A2 + 2A1} is discordant, and its FID is the trivial
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decomposition. Thus, its FIDC is ∅. On the other hand, the network

{A2 ⇄ A3} is concordant and also has the trivial FID. Hence, its FIDD is

∅. Furthermore, the union of concordant networks need not be concordant

even in an independent decomposition. This is shown by the Feinberg Wnt

network.

If there is at least one concordant FID subnetwork, i.e., the FIDC is

non-empty, we can define the following concepts:

Definition 2. The concordance dimension (denoted by c) of a reaction

network is the rank of a maximal independent concordant subnetwork.

Such a subnetwork is called a concordance core. The number d := s − c

is called the discordance dimension of the network. The ratios c
s and d

s

are called the concordance level and the discordance level of the network,

respectively.

The following remark collects basic properties and additional details

about the concepts above:

Remark. 1. If the concordance set (discordance set) is empty, we set

c = 0 (d = 0).

2. For any network, 0 ≤ c and d ≤ s.

3. If the FIDC is non-empty, c ≥ max(rank(Ni)), Ni in the FIDC.

4. There may be more than one concordance core in a reaction network.

For example, the 2-site phosphorylation/dephosphorylation network

[1, 23] has two concordant cores of dimension c = 1 with s = 2.

Example 1. a. For any concordant network, c = s, hence c
s = 1.

b. For the Feinberg Wnt network, c = 11 while s = 12. Hence, c
s = 0.91.

6.2 CP analysis of the Wnt networks

6.2.1 Schmitz Wnt signaling network

The Concordance Report generated by the Windows application CRN-

Toolbox shows that all the FID subnetworks of NS are concordant. Thus,

the FIDC of NS is equal to the FID.
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Recall that NS is a discordant network. Removing the rank 1 sub-

network NS,4 results to a concordant subnetwork. However, when we

remove the other rank 1 subnetworks NS,2 or NS,3 from NS , the result-

ing subnetwork remains discordant. Thus, the concordance core of NS is

CC = NS,1 ∪ NS,2 ∪ NS,3. The rank of CC is 8, i.e., the concordance

dimension is c = 8. This results to a concordance level of c
s = 8

9 ≈ 0.89.

Despite its discordance, NS seems to have a high degree of “hidden

concordance” as evidenced by the concordance level of about 0.89.

6.2.2 MacLean Wnt signaling network

Similar to NS , the Concordance Report from the CRNToolbox shows that

all FID subnetworks of NM are concordant. Thus, the FIDC equals the

FID.

NM is a discordant network. Removing any of the rank 1 subnetworks

from NM results to a discordant subnetwork. We then try to remove

a combination of two rank 1 subnetworks: all combinations result to a

discordant subnetwork except the removal of NM,4∪NM,5 from NM which

gives rise to a concordant subnetwork. Thus, the FIDC of NM is CC =

NM,1 ∪ NM,2 ∪ NM,3 ∪ NM,6 ∪ NM,7. The rank of CC is 12, i.e., the

concordance dimension is c = 12. This results to a concordance level of
c
s = 12

14 ≈ 0.86.

Similar to NS , NM has a high degree of “hidden” concordance (con-

cordance level of about 0.86).

We conclude from CP analysis that the MacLean and Schmitz networks

are more similar (concordance levels of 0.86 compared to 0.89) than the

MacLean and Feinberg networks (0.86 versus 0.91).

7 Summary and recommendation

Through techniques such as the finest independent decompositions (FID),

equilibria parametrizations (EP), and our newly developed Common Re-

actions Equilibria (CORE) and Concordance Profile analyses, we have

revealed significant findings in comparing reaction networks with respect

to their sets of equilibria. In particular, we applied these techniques to
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Wnt signaling models in biochemistry. First, we explored absolute con-

centration robustness (ACR) and found that, although the Feinberg model

exhibits ACR in a specific species, both the Schmitz and MacLean models

lack this property. Second, our analyses using FID and CORE revealed im-

portant relationships between the equilibria sets of the augmented Schmitz

and MacLean models. Furthermore, we detected subtle differences between

the equilibria sets of Feinberg and MacLean models, which were not evident

in standard reaction network analysis. Lastly, based on the concordance

levels, CP analysis suggests that the MacLean and Schmitz networks are

more similar than the MacLean and Feinberg networks. Moving forward,

these findings offer valuable insights into the behavior of Wnt signaling

networks, and comparative analysis of biochemical models, in general.

Appendix A Preliminaries

A.1 Fundamentals of chemical reaction networks

A chemical reaction network (CRN) is defined by a triple of nonempty and

finite sets N = (S ,C ,R) with

a. species set S = {A1, A2, . . . , Am},

b. complex set C = {C1, C2, . . . , Cn} consisting of non-negative linear

combinations of the species, and

c. reaction set R = {R1, R2, . . . , Rr} ⊂ C × C .

We commonly represent a reaction (y, y′) as y → y′. Here, y is referred

to as reactant complex while y′ is termed product complex. Moreover,

reaction vector of the reaction is the difference y′ − y, which is a linear

combination, probably nonnegative, of the species.

The linear subspace within the vector space Rm, over R, generated by

all the reaction vectors in the CRN is identified as the stoichiometric sub-

space of N , i.e., S = span{y′−y ∈ Rm | y → y′ ∈ R}. The stoichiometric

matrix of the network is an m× r matrix, where each column contains the

coefficients of the associated species in the corresponding reaction vector

linked to the respective reaction.
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The deficiency of a CRN is given by δ = n − ℓ − s where n is the

number of complexes, ℓ is the number of connected components and s is

the rank of the stoichiometric matrix, which coincides with the dimension

of the stoichiometric subspace of the network. Finally, a CRN is weakly

reversible if each reaction belongs to a directed cycle.

The linkage classes are the connected components of a CRN when

viewed as an undirected graph. We denote the number of linkage classes

by ℓ. Furthermore, a linkage class is said to be strong linkage class if for

each pair i and j, there is a directed path from complex Ci to complex

Cj , and vice versa. We denote the number of strong linkage classes by

sℓ. A terminal strong linkage classes is a maximal strongly connected

subnetwork where there are no reactions from a complex in the subgraph

to a complex outside the subnetwork. We denote the number of terminal

strong linkage classes by t.

A.2 Fundamentals of chemical kinetic systems

To describe the dynamics of the evolution of the concentrations of species

over time, a CRN is endowed with kinetics. Kinetics is defined as follows:

A kinetics for a reaction network N = (S ,C ,R) is an assignment to

each reaction y → y′ ∈ R of a continuously differentiable rate function

Ky→y′ : Rm
≥0 → R≥0 such that the following positivity condition holds:

Ky→y′(c) > 0 if and only if supp y ⊂ supp c, where supp y refers to the

support of the vector y, i.e., the set of species with nonzero coefficient in

y. The pair (N ,K) is called a chemical kinetic system. In particular, a

kinetics for a CRN (S ,C ,R) is mass-action if for each reaction y → y′

(i.e., [y1, y2, . . . , ym]⊤ → [y′1, y
′
2, . . . , y

′
m]⊤),

Ky→y′(x) = ky→y′

∏
i∈S

xyi

i

for some ky→y′ > 0.

The species formation rate function (SFRF) of a chemical reaction

system (N ,K) is given by f (x) =
∑

y→y′∈R

Ky→y′ (x) (y′ − y). Note that

the SFRF can be written as f(x) = NK(x) where where N represents the
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stoichiometric matrix of the network, and K is the vector of rate functions.

The system of ordinary differential equations (ODEs) for a chemical kinetic

system is described by
dx

dt
= f (x), where x denotes a vector that represents

the concentrations of species evolving over time.

A steady state or equilibrium is represented by a vector c of species

concentrations satisfying the condition f(c) = 0. An equilibrium is positive

when each concentration in the vector is greater than zero. We denote the

set of positive steady states of a chemical kinetic system (N ,K) by E :=

E+(N ,K). Assuming that f is a differentiable function, an equilibrium

x∗ is degenerate if Ker(Jx∗(f)) ∩ S ̸= {0} where Jx∗(f) is the Jacobian of

f evaluated at x∗. Otherwise, the equilibrium is non-degenerate.

The reaction vectors of a CRN are positively dependent if for each

reaction Ci → Cj in the network, there exists a positive number αCi→Cj

such that ∑
Ci→Cj

αCi→Cj (Cj − Ci) = 0.

A CRN with positively dependent reaction vectors is called positive depen-

dent.

A CRN admits multiple (positive) equilibria or is characterized asmulti-

stationary if positive rate constants exist such that the ODE system has

more than one stoichiometrically-compatible equilibria.

A.3 Decompositions of chemical reaction networks

A CRN can be decomposed into subnetworks [3, 4, 7]. by partitioning

its reaction set into disjoint subsets. If the rank of the stoichiometric

matrix of the whole network (the stoichiometric matrix is equal to the

sum of the ranks of the stoichiometric matrices of its subnetworks, then

the decomposition is independent. In this case, the subnetworks are called

independent subnetworks. The significance of independent decompositions

is apparent through the following result by Martin Feinberg [3, 4].

Theorem 4. Let N be a CRN endowed with kinetics K and let N be

decomposed into independent subnetworks N1, N2, . . . , Nn such that the

rate functions of the reactions in N are also the rate functions of the
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reactions in the smaller independent subnetworks. Then the set of positive

steady states of the whole network coincides with the intersection of the

sets of positive steady states of the n independent subnetworks, i.e.,

E = E1 ∩ E2 ∩ . . . ∩ En.

A.4 Concordance concepts and basic properties

To define the concept, we need to consider the linear map L : Rr → S (with

S as the stoichiometric subspace) where L(α) =
∑

y→y′∈R

αy→y′(y′ − y).

Definition 3. Let R be the reaction set of a reaction network. The

reaction network is concordant if there do not exist an α ∈ kerL and a

nonzero σ ∈ S having the following properties:

1. For each y → y′ ∈ R such that αy→y′ ̸= 0, supp(y) contains a species

A for which sgn(σA) = sgn(σy→y′) where σA denotes the term in σ

involving the species A and sgn is the signum function.

2. For each y → y′ ∈ R such that αy→y′ = 0, either σA = 0 for all

A ∈ supp(y), or else supp(y) contains species A and A′ for which

sgn(σA) = sgn(σA′), but not zero.

A network that is not concordant is called discordant.

Concordance is closely associated with two classes of kinetics on a net-

work: injective and weakly monotonic kinetics, as described in [19].

Definition 4. A kinetic system (N ,K) is injective if, for each pair of

distinct stoichiometrically compatible vectors x∗, x∗∗ ∈ Rm
≥0 (m here is the

number of species), at least one of which is positive,∑
y→y′∈R

Ky→y′(x∗∗)(y′ − y) ̸=
∑

y→y′∈R

Ky→y′(x∗)(y′ − y).

An injective kinetic system is necessarily a monostationary system. It

cannot admit two distinct stoichiometrically compatible equilibria, at least

one of which is positive.
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Definition 5. A kineticsK for a reaction network N is weakly monotonic,

if for each pair of vectors x∗, x∗∗ ∈ Rm
≥0, the following implications hold for

each y → y′ ∈ R such that supp(y) ⊂ supp(x∗) and supp(y) ⊂ supp(x∗∗):

1. Ky→y′(x∗∗) > Ky→y′(x∗) =⇒ there exists a species A ∈ supp(y)

with x∗∗
A > x∗

A.

2. Ky→y′(x∗∗) = Ky→y′(x∗) =⇒ x∗∗
A = x∗

A for all A ∈ supp(y) or else

there are species A,A′ ∈ supp(y) with x∗∗
A > x∗

A and x∗∗
A′ < x∗

A′ .

We say that a system (N ,K) is weakly monotonic when its kinetics K is

weakly monotonic.

Some examples of weakly monotonic kinetics systems are mass action

systems and a class of power law systems where all kinetic orders are

nonnegative called non-inhibitory kinetics, denoted by PL-NIK.

Appendix B Meaning of the species in Wnt

signaling networks

Table 7 provides the species in the Wnt signaling networks that we con-

sider.
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Table 7. Species and corresponding biomolecules that can occur in the
Wnt signaling models considered

Species Meaning
A1 destruction complex (DC) (active form)
A2 DC (inactive form)
A3 active DC residing in the nucleus
A4 β-catenin
A5 β-catenin in the nucleus
A6 T-cell factor (TCF)
A7 β-catenin-TCF complex
A8 β-catenin bound with DC
A9 β-catenin bound with DC in the nucleus
A10 β-catenin (for proteasomal degradation)
A11 β-catenin (for proteasomal degradation) in the nucleus
A12 dishevelled (inactive form)
A13 dishevelled (active form)
A14 active dishevelled in the nucleus
A15 inactive DC in the nucleus
A16 phosphatase
A17 phosphatase in the nucleus
A18 active DC bound with dishevelled
A19 active DC bound with dishevelled in the nucleus
A20 active DC bound with phosphatase
A21 active DC bound with phosphatase in the nucleus
A22 GSK3β
A23 axin-APC complex
A24 APC
A25 β-catenin bound with DC (for proteasomal degradation)
A26 axin
A27 β-catenin-axin complex
A28 a complex considered as a single species (in [4]):

(A13 +A22 +A23 = A28)
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